Skip to main content

Classification with Quantification for Air Quality Monitoring

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9651))

Abstract

In this paper, a fuzzy classification with quantification algorithm is proposed for solving the air quality monitoring problem using e-noses. When e-noses are used in dynamic outdoor environment, the performance suffers from noise, signal drift and fast-changing natural environment. The question is, how to develop a prediction model capable of detecting as well as quantifying gases effectively and efficiently? The current research work has focused either on detection or quantification of sensor response without taking into account of dynamic factors. In this paper, we propose a new model, namely, Fuzzy Classification with Quantification Model (FCQM) to cope with the above mentioned challenges. To evaluate our model, we conducted extensive experiments on a publicly available datasets generated over a three-year period, and the results demonstrate its superiority over other baseline methods. To our knowledge, gas type detection together with quantification is an unsolved challenge. Our paper provides the first solution for this kind.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Al-Maskari, S., Li, X., Liu, Q.: An effective approach to handling noise and drift in electronic noses. In: Proceedings of the 25th Australasian Database Conference on Databases Theory and Applications, ADC 2014, Brisbane, QLD, Australia, 14–16 July, pp. 223–230 (2014)

    Google Scholar 

  2. Vergara, A., Vembu, S., Ayhan, T., Ryan, M.A., Homer, M.L., Huerta, R.: Chemical gas sensor drift compensation using classifier ensembles. Sens. Actuators B: Chem. 166–167, 320–329 (2012)

    Article  Google Scholar 

  3. Al-Maskari, S., Saini, D., Omar, W.: Cyber infrastructure and data quality for environmental pollution control - in Oman. In: Proceedings of the 2010 DAMD International Conference on Data Analysis, Data Quality and Metada, p. 71 (2010)

    Google Scholar 

  4. Nimsuk, N., Nakamoto, T.: Study on the odor classification in dynamical concentration robust against humidity and temperature changes. Sens. Actuators B: Chem. 134(1), 252–257 (2008)

    Article  Google Scholar 

  5. Goodner, K.L., Dreher, J., Rouseff, R.L.: The dangers of creating false classifications due to noise in electronic nose and similar multivariate analyses. Sens. Actuators B: Chem. 80(3), 261–266 (2001)

    Article  Google Scholar 

  6. Marco, S., Pardo, A., Ortega, A., Samitier, J.: Gas identification with tin oxide sensor array and self organizing maps: adaptive correction of sensor drifts. In: Instrumentation and Measurement Technology Conference, IMTC 1997, Proceedings of the Sensing, Processing, Networking, vol. 2, pp. 904–907. IEEE, May 1997

    Google Scholar 

  7. Zuppa, M., Distante, C., Siciliano, P., Persaud, K.C.: Drift counteraction with multiple self-organising maps for an electronic nose. Sens. Actuators B: Chem. 98(23), 305–317 (2004)

    Article  Google Scholar 

  8. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press Inc., New York (1995)

    MATH  Google Scholar 

  9. Gulbag, A., Temurtas, F.: A study on quantitative classification of binary gas mixture using neural networks and adaptive neuro-fuzzy inference systems. Sens. Actuators B: Chem. 115(1), 252–262 (2006)

    Article  Google Scholar 

  10. Gemperline, P.J., Long, J.R., Gregoriou, V.G.: Nonlinear multivariate calibration using principal components regression and artificial neural networks. Anal. Chem. 63(20), 2313–2323 (1991)

    Article  Google Scholar 

  11. Domanskỳ, K., Baldwin, D.L., Grate, J.W., Hall, T.B., Li, J., Josowicz, M., Janata, J.: Development and calibration of field-effect transistor-based sensor array for measurement of hydrogen and ammonia gas mixtures in humid air. Anal. Chem. 70(3), 473–481 (1998)

    Article  Google Scholar 

  12. Geng, Z., Yang, F., Chen, X., Wu, N.: Gaussian process based modeling and experimental design for sensor calibration in drifting environments. Sens. Actuators B: Chem. 216, 321–331 (2015)

    Article  Google Scholar 

  13. Wilson, D.M., Dunman, K., Roppel, T., Kalim, R.: Rank extraction in tin-oxide sensor arrays. Sens. Actuators B: Chem. 62(3), 199–210 (2000)

    Article  Google Scholar 

  14. Llobet, E., Brezmes, J., Ionescu, R., Vilanova, X., Al-Khalifa, S., Gardner, J., Barsan, N., Correig, X.: Wavelet transform and fuzzy artmap-based pattern recognition for fast gas identification using a micro-hotplate gas sensor. Sens. Actuators B: Chem. 83(13), 238–244 (2002). Selected Papers from TRANSDUCERS 2001 EUROSENSORS XV

    Article  Google Scholar 

  15. Nakata, S., Nakamura, H., Yoshikawa, K.: New strategy for the development of a gas sensor based on the dynamic characteristics: principle and preliminary experiment. Sens. Actuators B: Chem. 8(2), 187–189 (1992)

    Article  Google Scholar 

  16. Zhang, D.Q., Chen, S.C.: A novel kernelized fuzzy c-means algorithm with application in medical image segmentation. Artif. Intell. Med. 32(1), 37–50 (2004). Artificial Intelligence in Medicine in China

    Article  Google Scholar 

  17. Nahar, V., Al-Maskari, S., Li, X., Pang, C.: Semi-supervised learning for cyberbullying detection in social networks. In: Wang, H., Sharaf, M.A. (eds.) ADC 2014. LNCS, vol. 8506, pp. 160–171. Springer, Heidelberg (2014)

    Google Scholar 

  18. Bélisle, E., Huang, Z., Gheribi, A.: Scalable gaussian process regression for prediction of material properties. In: Wang, H., Sharaf, M.A. (eds.) ADC 2014. LNCS, vol. 8506, pp. 38–49. Springer, Heidelberg (2014)

    Google Scholar 

  19. Gibbs, M.N., MacKay, D.J.C.: Efficient implementation of gaussian processes. Submitted to Statistics and Computing

    Google Scholar 

  20. Rodriguez-Lujan, I., Fonollosa, J., Vergara, A., Homer, M., Huerta, R.: On the calibration of sensor arrays for pattern recognition using the minimal number of experiments. Chemometr. Intell. Lab. Syst. 130, 123–134 (2014)

    Article  Google Scholar 

  21. U.S. Department of Labor, O.S.H.A.: occupational exposure limits osha annotated table (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanad Al-Maskari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Al-Maskari, S., Bélisle, E., Li, X., Le Digabel, S., Nawahda, A., Zhong, J. (2016). Classification with Quantification for Air Quality Monitoring. In: Bailey, J., Khan, L., Washio, T., Dobbie, G., Huang, J., Wang, R. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2016. Lecture Notes in Computer Science(), vol 9651. Springer, Cham. https://doi.org/10.1007/978-3-319-31753-3_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31753-3_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31752-6

  • Online ISBN: 978-3-319-31753-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics