Skip to main content

Computing Capture Tubes

  • Conference paper
  • First Online:
Book cover Scientific Computing, Computer Arithmetic, and Validated Numerics (SCAN 2015)

Abstract

Many mobile robots such as wheeled robots, boats, or plane are described by nonholonomic differential equations. As a consequence, they have to satisfy some differential constraints such as having a radius of curvature for their trajectory lower than a known value. For this type of robots, it is difficult to prove some properties such as the avoidance of collisions with some moving obstacles. This is even more difficult when the initial condition is not known exactly or when some uncertainties occur. This paper proposes a method to compute an enclosure (a tube) for the trajectory of the robot in situations where a guaranteed interval integration cannot provide any acceptable enclosures. All properties that are satisfied by the tube (such as the non-collision) will also be satisfied by the actual trajectory of the robot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    A trajectory \(\mathbf {x}\), which is a function from \(\mathbb {R}\) to \(\mathbb {R}^{n}\), can be denoted equivalently \(\mathbf {x}\left( t\right) \) or \(\mathbf {x}\left( \cdot \right) \). When no ambiguity may exist, i.e., when t is already used in the same paragraph, we shall often prefer \(\mathbf {x}\left( t\right) \), for simplicity.

References

  1. Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Birkhäuser, Boston (1990)

    MATH  Google Scholar 

  2. Le Bars, F., Sliwka, J., Reynet, O., Jaulin, L.: State estimation with fleeting data. Automatica 48(2), 381–387 (2012)

    Article  MathSciNet  Google Scholar 

  3. Berz, M., Makino, K.: Verified integration of ODEs and flows using differential algebraic methods on high-order Taylor models. Reliable Comput. 4(3), 361–369 (1998)

    Article  MathSciNet  Google Scholar 

  4. Bethencourt, A., Jaulin, L.: Solving non-linear constraint satisfaction problems involving time-dependant functions. Math. Comput. Sci. 8(3), 503–523 (2014)

    Article  MathSciNet  Google Scholar 

  5. Blanchini, F., Miani, S.: Set Theoretic Methods in Control. Birkhauser, Boston (2008)

    Book  Google Scholar 

  6. Bouissou, O., Chapoutot, A., Djaballah, A., Kieffer, M.: Computation of parametric barrier functions for dynamical systems using interval analysis. In: IEEE CDC, Los Angeles, United States (2014)

    Google Scholar 

  7. Chabert, G., Jaulin, L.: Contractor programming. Artif. Intell. 173, 1079–1100 (2009)

    Article  MathSciNet  Google Scholar 

  8. Chapoutot, A., Alexandre dit Sandretto, J., Mullier, O.: Dynibex. ENSTA (2015). http://perso.ensta-paristech.fr/~chapoutot/dynibex/

  9. Fernandes, M.L., Zanolin, F.: Remarks on strongly flow-invariant sets. J. Math. Anal. Appl. 128, 176–188 (1987)

    Article  MathSciNet  Google Scholar 

  10. Jaulin, L., Le Bars, F.: An interval approach for stability analysis: application to sailboat robotics. IEEE Trans. Robot. 27(5), 282–287 (2012)

    Google Scholar 

  11. Kapela, T., Zgliczynski, P.: A lohner-type algorithm for control systems and ordinary differential inclusions. Discrete Continuous Dyn. Syst. 11(2), 365–385 (2009)

    Article  MathSciNet  Google Scholar 

  12. Langson, W., Chryssochoos, I., Rakovic, S.V., Mayne, D.Q.: Robust model predictive control using tubes. Automatica 40(1), 125–133 (2004)

    Article  MathSciNet  Google Scholar 

  13. Lhommeau, M., Jaulin, L., Hardouin, L.: Capture basin approximation using interval analysis. Int. J. Adap. Control Sig. Process. 25(3), 264–272 (2011)

    Article  MathSciNet  Google Scholar 

  14. Lohner, R.: Enclosing the solutions of ordinary initial and boundary value problems. In: Kaucher, E., Kulisch, U., Ullrich, C.H. (eds.) Computer Arithmetic: Scientific Computation and Programming Languages, pp. 255–286. BG Teubner, Stuttgart (1987)

    Google Scholar 

  15. Le Menec, S.: Linear differential game with two pursuers and one evader. In: Breton, M., Szajowski, K. (eds.) Advances in Dynamic Games, vol. 11, pp. 209–226. Birkhauser, Boston (2011)

    Chapter  Google Scholar 

  16. Moore, R.E.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)

    MATH  Google Scholar 

  17. Nedialkov, N.S., Jackson, K.R., Corliss, G.F.: Validated solutions of initial value problems for ordinary differential equations. Appl. Math. Comput. 105(1), 21–68 (1999)

    MathSciNet  MATH  Google Scholar 

  18. Raissi, T., Ramdani, N., Candau, Y.: Set membership state and parameter estimation for systems described by nonlinear differential equations. Automatica 40, 1771–1777 (2004)

    Article  MathSciNet  Google Scholar 

  19. Ratschan, S., She, Z.: Providing a basin of attraction to a target region of polynomial systems by computation of Lyapunov-like functions. SIAM J. Control Optim. 48(7), 4377–4394 (2010)

    Article  MathSciNet  Google Scholar 

  20. Revol, N., Makino, K., Berz, M.: Taylor models and floating-point arithmetic: proof that arithmetic operations are validated in COSY. J. Logic Algebraic Program. 64, 135–154 (2005)

    Article  MathSciNet  Google Scholar 

  21. Stancu, A., Jaulin, L., Bethencourt, A.: Stability analysis for time-dependent nonlinear systems: an interval approach. Internal report, University of Manchester (2015)

    Google Scholar 

  22. Wilczak, D., Zgliczynski, P.: Cr-Lohner algorithm. Schedae Informaticae 20, 9–46 (2011)

    Google Scholar 

  23. Yorke, J.A.: Invariance for ordinary differential equations. Math. Syst. Theor. 1(4), 353–372 (1967)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc Jaulin .

Editor information

Editors and Affiliations

Rights and permissions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Jaulin, L. et al. (2016). Computing Capture Tubes. In: Nehmeier, M., Wolff von Gudenberg, J., Tucker, W. (eds) Scientific Computing, Computer Arithmetic, and Validated Numerics. SCAN 2015. Lecture Notes in Computer Science(), vol 9553. Springer, Cham. https://doi.org/10.1007/978-3-319-31769-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31769-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31768-7

  • Online ISBN: 978-3-319-31769-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics