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On Strongly First-Order Dependencies

Pietro Galliani

Abstract We prove that the expressive power of first-order logic with team seman-
tics plus contradictory negation does not rise beyond that of first-order logic (with
respect to sentences), and that the totality atoms of arityk+ 1 are not definable
in terms of the totality atoms of arityk. We furthermore prove that all first-order
nullary and unary dependencies are strongly first order, in the sense that they do not
increase the expressive power of first order logic if added toit.

1 Introduction

In the last few years, team semantics [14, 18] has proved itself to be a very powerful
theoretical framework for the study of dependency notions and their interaction; and,
furthermore, some intriguing potential applications of team semantics in the areas
of belief representation [6, 8], social choice and physics [2] and database theory [15]
have been noticed.

As a natural generalization of Tarski’s semantics to the case of multiple assign-
ments, team semantics allows to extend first-order logic in novel ways, in particular
by adding to itdependency atomsthat specify complex patterns of dependence and
independence between variables; and much of the research inthe area so far has
been dedicated to the comparison of the logics thus obtained.

Many of these logics are much stronger than first-order logicitself – for instance,
dependence logic is as expressive as the existential fragment of second-order logic
[18], and inclusion logic is as expressive as greatest fixed point logic [11] – but this
needs not be the case. Indeed, as shown in [9], many nontrivial dependency notions,
such as for instance the negations of functional dependence, inclusion, exclusion,
and conditional independence, arestrongly first-orderin the sense that they do not
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increase the expressive power of first-order logic if added to it. Thetotality atoms,
which assert that a certain tuple of variables takes all possible values in a team, are
an especially interesting example of a strongly first-orderdependency, and in this
work we will study them in some depth.

It is important to emphasize here that these strongly first-order dependencies, de-
spite not increasing the expressive power of first-order logic sentences, cannot be
disposed of: even though every sentence containing them (but not other, stronger
dependencies) is logically equivalent to some first-order sentence, the satisfaction
conditions offormulascontaining them are not in general equivalent to the satis-
faction conditions of any first-order formula with respect to team semantics. This
disparity between the behaviour of formulas and that of sentences is one of the most
intriguing phenomena of team semantics.

The study of team semantics (and, in particular, of stronglyfirst-order depen-
dencies) can thus be seen as an attempt to investigate the nature of theboundary
between first- and second-order logic; and, from a more practical point of view, de-
pendencies which are strongly first-order are eminently treatable in that they do not
increase the complexity of the logic.

The purpose of this work is to further investigate the properties of strongly first-
order dependencies and – more in general – of team semantics-based extensions
of first-order logic whose expressive power is no greater than that of first-order
logic proper. In Section 3 we will investigate the effect of adding the contradictory
negation operator to extensions of first-order logic by strongly first-order operator;
then in Section 4 we will develop ahierarchy theoremfor totality atoms, and in
Sections 5 and 6 we will study dependency atoms of arity 0 or 1.

2 Preliminaries

In this section we will briefly recall some fundamental definitions, as well as some
results that we will need to use later in this work.

Definition 1 (Team).LetM be a first order model with domainM and letV be a set
of variables. Ateam XoverM with domainDom(X) = V is a set of assignments
s : V → M.

Given such a teamX and a tuplev of variables inDom(X), we writeX(v) for the
relation{s(v) : s∈ X}; and given a first-order formulaθ , we write(X ↾ θ ) for the
team{s∈ X : M |=s θ} obtained by taking only the assignments ofX which satisfy
θ (according to Tarski’s semantics).

For the purposes of this work, we will only consider the so-called lax version of
team semantics, and we will only work with formula in negation normal form:

Definition 2. LetM be a first order model, letX be a team over it, and letφ(v) be a
first order formula in negation normal form and with free variables inv ⊆ Dom(X).
We say thatX satisfiesφ(v) in M, and we writeM |=X φ(v), if and only if this can
be deduced from the following rules:
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TS-lit: For all first-order literalsα, M |=X α if and only if for all s∈ X, M |=s α
according to Tarski semantics;

TS-∨: M |=X ψ ∨θ if and only if there existY,Z⊆ X such thatX =Y∪Z, M |=Y

ψ andM |=Z θ ;
TS-∧: M |=X ψ ∧θ if and only if M |=X ψ andM |=X θ ;
TS-∃: M |=X ∃vψ if and only if there exists a functionF : X →P(M)\{ /0} such

that, forY = X[F/v] = {s[m/v] : m∈ F(s)}, we have thatM |=Y ψ ;
TS-∀: M |=X ∀vψ if and only if M |=X[M/v] ψ , whereX[M/v] = {s[m/v] : s∈

X,m∈ M}.

A sentenceφ is said to betrue in a modelM if and only if M |={ /0} φ ; and in this
case, we writeM |= φ .

The next result shows that, in the case of first-order logic, team semantics may
indeed be reduced to Tarski’s semantics:

Proposition 1 ([18]).For all first-order formulasφ , all modelsM and all teams X,
M |=X φ if and only if for all s∈ X we have thatM |=s φ according to Tarski’s
semantics. In particular, for all first-order sentencesφ we have thatM |={ /0} φ if
and only ifM |= φ according to Tarski’s semantics.

However, team semantics allows us to extend first-order logic in novel ways, for
instance by operators such as theintuitionistic implication[1]

TS-intimp: M |=X φ → ψ if and only if for allY ⊆ X, M |=Y φ ⇒M |=Y ψ ,

thecontradictory negation[19]

TS-∼: M |=X∼ φ if and only if M 6|=X φ ,

theclassical disjunction[18]

TS-⊔: M |=X φ ⊔ψ if and only ifM |=X φ orM |=X ψ ,

or thepossibility operator[9]

TS-♦: M |=X ♦φ iff there exists aY ⊆ X, Y 6= /0 s.t.M |=Y φ

or by means of novel atoms corresponding to notions of constancy and functional
dependence [18]

TS-con: M |=X=(v) iff for all s,s′ ∈ X, s(v) = s′(v);
TS-fdep: M |=X=(v,w) iff for all s,s′ ∈ X, s(v) = s′(v)⇒ s(w) = s′(w),

inclusion dependence [7]

TS-inc: M |=X v ⊆ w iff X(v)⊆ X(w)

(conditional) independence [12]

TS-ind: M |=X v ⊥u w iff for all s,s′ ∈ X with s(u) = s′(u) there exists as′′ ∈ X
with s′′(uvw) = s(uv)s′(w).

or totality [2]:
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TS-all: M |=X All(v) iff X(v) = M|v|.

More in general, all these atoms (and many more besides) can be seen as special
cases of the following definition ([17]):

Definition 3 (Dependency Notion).Let k ∈ N. A k-ary dependency notionD is a
class, closed under isomorphisms, of models over the signature{R}, whereR is a
k-ary relation symbol. For all modelsM, all teamsX, and all tuplesv of variables
in the domain ofX,

M |=X Dv if and only if (M,X(v)) ∈ D.

Given a familyD of dependency notions, we will writeFO(D) for the logic
obtained by adding allD ∈ D to the language of first-order logic. We will indicate
with =(·) the family of all constancy dependencies=(v) of all arities, with=(·, ·)
the family of all functional dependency atoms=(v,w) of all arities, and withAll the
family of all totality atomsAll(w) of all arities; and when necessary, we will indicate
the arities as a subscript – for instance,=(·)1 represents the unary constancy atoms
=(v) wherev is a single variable, and=(·, ·)2,2 represents the functional dependency
atoms of the form=(v1v2,w1w2).

The following notion ofdefinabilityis of central importance for the study of team
semantics:

Definition 4 (Definability). LetD be ak-ary dependency notion and letD be a class
of dependency notions. Then we say thatD is definablethroughD if there exists a
formulaθ (v) ∈ FO(D) over the empty vocabulary, wherev = v1 . . .vk is a tuple of
k distinct variables, such that

M |=X Dv if and only if M |=X θ (v)

for all modelsM and teamsX whose domain containsv.

It is easy to see thatFO(=(·)) = FO(=(·)1): indeed, for anyk-tuplev = v1 . . .vk

of variable it is trivial to check that=(v)≡
∧k

i=1 =(vi), and hence=(·)k is definable
through=(·)1. On the other hand, in [3] it was shown that

Theorem 1.For all k ∈ N, FO(=(·, ·)k,1)( FO(=(·, ·)k+1,1),1

in [10] it was shown that a similar result holds for independence atoms, and in [13]
it was shown that the same may be said in the case of inclusion atoms too.

What about totality dependencies? We will address this question in Section 4.
All dependencies that we mentioned so far arefirst-order in the following sense:

Definition 5 (First-Order Dependency Notion).A k-ary dependency notionD is
first-order if and only if there exists a first order formulaD∗ on the signature{R}
(for R k-ary) such that

1 To be more precise, this results holds if we are allowing models over all signatures. The case in
which only models over the empty signature are considered isyet open.
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D = {(M,R) : (M,R) |= D∗}.

It is easy to see that ifD is first-order thenM |=X Dv ⇔ (M,X(v)) |= D∗; but owing
to the higher-order nature of team semantics (and in particular, to the second-order
quantification implicit in its rules for disjunctions and existential quantifiers) it does
not follow from this that these dependencies do not increasethe expressive power
of first-order logic. For instance, theFO(=(·, ·)1,1)-sentence

∃x∀y∃z(=(z,y)∧z 6= x)

is true in a modelM if and only if it is infinite, even though=(·, ·)1,1 is first-order
and corresponds to the sentence∀xyy′(Rxy∧Rxy′ → y= y′).

Therefore, the question arises of whether there exist interesting dependency no-
tions for which this is not the case. More formally, one may ask if there exist non-
trivial dependencies which arestrongly first-orderin the following sense:

Definition 6 (Strongly First Order Dependencies).A k-ary dependencyD is
strongly first orderif every sentence ofFO(D) is equivalent to some sentence of
FO. Similarly, a family of dependenciesD is strongly first order if every sentence
of FO(D) is equivalent to some sentence ofFO.

In [9], a positive answer was found for the above question.

Definition 7. A dependency notionD is upwards-closedif (M,R) ∈ D,R⊆ S⇒
(M,S) ∈ D.

Theorem 2 ([9]). Let D be a family of upwards-closed first-order dependencies.
Then{=(·)}∪D is strongly first order.

As a consequence, it was shown that – for instance – all the following dependencies
are strongly first-order for all arities ofv andw, as is any set containing them (and
the constancy atoms=(·)):

TS-nonempty: M |=X NE iff X 6= /0;
TS-ncon: M |=X 6=(v) iff there exists,s′ ∈ X such thats(v) 6= s′(v);
TS-ndep: M |=X 6=(v,w) iff there exists,s′ ∈ X with s(v) = s′(v) but s(w) 6=

s′(w);
TS-geq: For all n∈N, M |=X |v| ≥ n iff |X(v)| ≥ n;
TS-all: M |=X All(v) iff X(v) = M|v|;
TS-6⊆: M |=X v 6⊆ w iff there exists somes∈ X such that for alls′ ∈ X, s(v) 6=

s′(w);
TS-6⊥: M |=X v 6⊥uw iff there exists,s′ ∈ X with s(u) = s′(u) but such that for

all s′′ ∈ X, s′′(uvw) 6= s(uv)s′(w).

The last two dependencies are not upwards-closed, but as shown in [9] they are
definable in terms of constancy atoms and first-order, upwards-closed dependencies.

We conclude this section by mentioning a few shorthands and results that we will
need to use in the rest of this work:
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Definition 8 (⊤, ⊥). Let v be any variable. Then we write⊤ for ∀v(v = v) and⊥
for ∃v(v 6= v).

Proposition 2. For all modelsM and teams X,M |=X ⊤; and furthermore,M |=X

⊥ if and only if X= /0.

Proof. Obvious.

Definition 9 (Dual Negation). Let φ be a first-order formula in negation normal
form. Then we write¬φ as a shorthand for the formula thus obtained:

• If φ is a positive literalRt or t1 = t2, ¬φ is its negation (that is,¬Rt or t1 6= t2);
• If φ is a negative literal¬Rt or t1 6= t2, ¬φ is the corresponding positive literal

(that is,Rt or t1 = t2);
• ¬(φ ∨ψ) = (¬φ)∧ (¬ψ);
• ¬(φ ∧ψ) = (¬φ)∨ (¬ψ);
• ¬(∃vφ) = ∀v(¬ψ);
• ¬(∀vφ) = ∃v(¬ψ);

It is not difficult to see, by structural induction onφ , that

Proposition 3. For all first-order formulasφ , all modelsM and all teams X,
M |=X ¬φ if and only if for all s∈ X we have thatM |=s ¬φ according to Tarski’s
semantics.

Definition 10 (φ ↾ θ ). Let D be any class of dependencies, letφ ∈ FO(D) and let
θ ∈ FO. Then we writeφ ↾ θ as a shorthand for

(¬θ )∨ (θ ∧φ)

Proposition 4 ([9]). Let D be any class of dependencies, letφ ∈ FO(D) and let
θ ∈ FO. Then for all suitable modelsM and teams X,

M |=X φ ↾ θ if and only ifM |=X↾θ φ .

Definition 11 (Flattening).LetD be any class of dependencies and letφ ∈FO(NE).
Then we define itsflatteningφ f as the first-order formula obtained by substituting
all atomsDv in it with ⊤.

Lemma 1. For all classes of dependenciesD , modelsM, teams X, and formulas
φ ∈ FO(D), if M |=X φ thenM |=X φ f .

Proof. Trivial.

Lemma 2 ([9]).LetD be a class ofupwards-closed(but not necessarily first-order)
dependencies. Then for all modelsM, teams X and Y such that X⊆ Y, andφ ∈
FO(D), if M |=X φ andM |=Y φ f thenM |=Y φ .
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Lemma 3 ([9]). Let D be a class of dependencies (not necessarily first-order or
upwards-closed) and letφ(v) be aFO(=(·),D) formula. Thenφ(v) is equivalent
to some formula of the form∃w(=(w)∧ψ(w,v)), whereψ ∈ FO(D) contains the
exactly the same instances ofD-atoms (for allD ∈ D) thatφ does, and in the same
number.

The following simple result - which allows us to add, essentially for free, the
classical disjunction⊔ to our language – will also be of some use in the rest of this
work:

Proposition 5. Let D be any class of dependencies and letφ ∈ FO(D ,⊔). Thenφ
is equivalent to some formula of the form

⊔n
i=1ψi , where allψi are in FO(D).

Proof. It suffices to show that the⊔ connective commutes with all other connec-
tives:

• (ψ ⊔ θ )∨ χ ≡ (ψ ∨ χ)⊔ (θ ∨ χ): Suppose thatM |=X (ψ ⊔ θ )∨ χ . ThenX =
Y ∪Z for two Y, Z such thatM |=Y ψ ⊔ θ andM |=Z χ . By the satisfaction
conditions for⊔, we have thatM |=Y ψ or M |=Y θ . In the first case we have
thatM |=X ψ ∨ χ and in the second case we have thatM |=X θ ∨ χ , so in either
caseM |=X (ψ ∨ χ)⊔ (θ ∨ χ).
Conversely, suppose thatM |=X (ψ∨χ)⊔(θ ∨χ). ThenM |=X (ψ∨χ) orM |=X

(θ ∨ χ). In the first case, we have thatX = Y ∪ Z for two Y and Z such that
M |=Y ψ andM |=Z χ ; but thenM |=Y ψ ⊔θ too, and thusM |=X (ψ ⊔θ )∨ χ .
The case in whichM |=X (θ ∨ χ) is dealt with analogously.

• (ψ ⊔θ )∧ χ ≡ (ψ ∧ χ)⊔ (θ ∧ χ): M |=X (ψ ⊔θ )∧ χ iff (M |=X ψ or M |=X θ )
andM |=X χ iff (M |=X ψ andM |=X χ) or (M |=X θ andM |=X χ) iff M |=X

(ψ ∧ χ)⊔ (θ ∧ χ).
• ∃v(ψ ⊔θ ) ≡ (∃vψ)⊔ (∃vθ ): Suppose thatM |=X ∃v(ψ ⊔θ ). Then there exists

a choice functionF such thatM |=X[F/v] ψ or M |=X[F/v] θ . In the first case we
have thatM |=X ∃vψ , and in the second case we have thatM |=X ∃vθ ; so in
either caseM |=X (∃vψ)⊔ (∃vθ ).
Conversely, suppose thatM |=X (∃vψ)⊔ (∃vθ ). If M |=X (∃vψ) then there is a
F such thatM |=X[F/v] ψ , and thereforeM |=X[F/v] ψ ⊔θ , and thereforeM |=X

∃v(ψ ⊔θ ); and similarly, ifM |=X (∃vθ ) there is aF such thatM |=X[F/v] θ , and
thereforeM |=X[F/v] ψ ⊔θ , and thereforeM |=X ∃v(ψ ⊔θ ).

• ∀v(ψ⊔θ )≡ (∀vψ)⊔(∀vθ ):M |=X ∀v(ψ⊔θ ) iff M |=X[M/v] (ψ⊔θ ) iff (M |=X[M/v]
ψ orM |=X[M/v] θ ) iff (M |=X ∀vψ orM |=X ∀vθ ) iff M |=X (∀vψ)⊔ (∀vθ ).

Lemma 4. For all modelsM and sentencesφ1,φ2 ∈ FO,

M |= φ1⊔φ2 ⇔M |= φ1∨φ2.

Proof. Suppose thatM |= φ1 ⊔ φ2. Then, by definition,M |={ /0} φi for somei ∈
{1,2}. Suppose, without loss of generality, thatM |={ /0} φ1; then sinceφ2 is first-
order we have thatM |= /0 φ2, and henceM |={ /0} φ1∨φ2. The case forM |={ /0} φ2

is analogous. Conversely, suppose thatM |={ /0} φ2∨φ2: then{ /0} = Y∪Z for two
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Y,Z⊆{ /0} such thatY∪Z= { /0},M |=Y φ1 andM |=Z φ2. ThenY= { /0} orZ= { /0},
and henceM |= φ1 orM |= φ2 and finallyM |= φ1⊔φ2, as required.

Corollary 1. LetD be a strongly first-order class of dependencies. Then every sen-
tence ofFO(D ,⊔) is equivalent to some sentence ofFO.

Proof. Let φ ∈ FO(D ,⊔). As per the above results, we may assume thatφ is of the
form

⊔
i ψi , where allψi areFO(D)-sentences, and hence equivalent to first-order

sentencesψ ′
i . Now letφ ′ =

∨
i ψ ′

i .

3 On the Contradictory Negation

It is known from [19] thatteam logicFO(=(·, ·),∼), that is, the logic obtained by
adding the contradictory negationand functional dependency conditions (of all ari-
ties) to the language of first-order logic, is as expressive as second-order logic over
sentences; and, furthermore, in [16] it was shown that all second-order properties of
teams correspond to the satisfaction conditions of team logic sentences.

But what if we add the contradictory negation to weaker extensions of first-order
logic? Or, for that matter, what if we considerFO(∼), that is, the logic obtained by
addingonly the contradictory negation to the language of first-order logic?

In this section, we will prove that

1. BothFO(∼,=(·)) andFO(∼, 6=(·)) are equivalent to full team logic;
2. FO(∼) = FO(NE,⊔) = FO(NE,⊔,∼);
3. Every sentence ofFO(NE,⊔) is equivalent to some first-order sentence.

Thus, the contradictory negation alone does not suffice to bring the expressive power
of our logic beyond that of first-order logic, but as soon as weadd even simple
strongly first-order dependencies such as constancy or non-constancy we obtain the
full expressive power of second-order logic.

Lemma 5. FO(∼,=(·)) = FO(∼, 6=(·)).

Proof. It suffices to observe that, for any tuplev of variables,6=(v) is logically
equivalent to∼=(v) and=(v) is logically equivalent to∼6=(v).

Lemma 6. For any two tuplev, w of variables, the functional dependence atom
=(v,w) is definable inFO(∼,=(·)).

Proof. Consider the formula

∼ (∃pq1q2(=(p)∧=(q1)∧=(q2)∧q1 6= q2∧∼ (vw 6= pq1)∧∼ (vw 6= pq2)). (1)

It is easy to check that Equation (1) is logically equivalentto=(v,w), as required.

Corollary 2. FO(∼,=(·)) = FO(∼, 6=(·)) = FO(∼,=(·, ·)) = Team Logic.
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So far so good. But what can we say aboutFO(∼)? In what follows, we will
prove that this logic isnot more expressive than first-order logic over sentences;
indeed, it is equivalent toFO(NE,⊔).

Lemma 7. Letψ ∈ FO(NE) and letθ ∈ FO. Then∼ (ψ ↾ θ ) is logically equivalent
to ((∼ ψ) ↾ θ ).

Proof. Suppose thatM |=X∼ (ψ ↾ θ ). Then forY = {s∈X : M |=s θ} we have that
M 6|=Y ψ . But thenM |=Y∼ ψ , and thusM |=X ((∼ ψ) ↾ θ ).

Conversely, suppose thatM |=X ((∼ ψ) ↾ θ ). Then forY as above we have that
M 6|=Y ψ ; and therefore,M 6|=X (ψ ↾ θ ), and in conclusionM |=X∼ (ψ ↾ θ ).

Lemma 8. Letφ ∈ FO(NE). Then∼ φ is equivalent to some formula inFO(NE,⊔).

Proof. We proceed by structural induction onφ .

1. Suppose thatφ is a first-order formula (not necessarily a literal). Then∼ φ is
logically equivalent toNE ↾ (¬φ). Indeed, suppose thatM |=X∼ φ : then, since
φ is first-order, there exists as∈ X such thatM 6|=s φ according to Tarski’s
semantics. But thens∈ X ↾ (¬φ), and thusM |=X NE↾ (¬φ).
Conversely, suppose thatM |=X NE↾ (¬φ). Then the setX ↾ (¬φ) is not empty,
and therefore there exists somes∈ X which satisfies¬φ according to Tarski’s
semantics, and finallyM 6|=X φ .

2. ∼ NE is easily seen to be equivalent to⊥, which is true only in the empty team.
3. Suppose thatφ is of the form(ψ ∨θ ). Then∼ φ is logically equivalent to

((∼ ψ) ↾ ψ f )⊔ ((∼ θ ) ↾ θ f )⊔ ∼ (ψ f ∨θ f ). (2)

Indeed, suppose thatM |=X∼ (ψ ∨θ ). Then it is not the case thatX =Y∪Z for
two Y, Z such thatM |=Y ψ andM |=Z θ . In particular, takeY = X ↾ ψ f and
Z = X ↾ θ f : thenY∪Z 6= X, and henceM |=X∼ (ψ f ∨ θ f ), or M 6|=Y ψ , and
henceM |=X ((∼ ψ) ↾ ψ f ), orM 6|=Z θ , and henceM |=X ((∼ θ ) ↾ θ f ).
Conversely, suppose thatM |=X (ψ ∨θ ). ThenX =Y∪Z for two Y,Z such that
M |=Y ψ andM |=Y θ . Now takeY′ = X ↾ ψ f andZ′ = X ↾ θ f : by Proposition 1
we have thatM |=Y ψ f andM |=Z θ f , by Lemma 1 we have thatY ⊆Y′ andZ⊆
Z′, and thusX =Y′∪Z′, and by Lemma 2 we have thatM |=Y′ ψ andM |=Z′ θ .
ThereforeM 6|=X (∼ ψ) ↾ ψ f , M 6|=X (∼ θ ) ↾ θ f , andM |=X (ψ f ∨θ f ), so in
conclusionX does not satisfy Equation (2).

4. Suppose thatφ is of the form(ψ ∧ θ ). Then∼ φ is logically equivalent to(∼
ψ)⊔ (∼ θ ).

5. Suppose thatφ is of the form(∃vψ). Then∼ φ is logically equivalent to

∼ (∃vψ f )⊔∀v((∼ ψ) ↾ ψ f ) (3)

Indeed, suppose thatM |=X∼ (∃vψ) andM |=X ∃vψ f , and consider the choice
functionF such thatF(s) = {m : M |=s[m/v] ψ f }. F(s) is nonempty for alls∈ X,
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sinceM |=X ∃vψ f ; and therefore, by hypothesis,M 6|=X[F/v] ψ . But by construc-
tion, we have thatX[F/v] = X[M/v] ↾ ψ f , and thusM 6|=X[M/v] ψ ↾ ψ f , and
finally M |=X ∀v((∼ ψ) ↾ ψ f ).
Conversely, suppose that there exists a choice functionF : X →P(M)\{ /0} such
thatM |=X[F/v] ψ . Then in particularM |=X[F/v] ψ f , and henceM |=X ∃vψ f

andM 6|=X∼ (∃vψ f ); and furthermore, we have thatX[F/v]⊆ X[M/v] ↾ ψ f , and
thereforeM |=X[M/v] ψ ↾ ψ f andM 6|=X[M/v] (∼ ψ) ↾ ψ f . So in conclusion the
teamX does not satisfy Equation (3).

6. Suppose thatφ is of the form(∀vψ). Then∼ φ is logically equivalent to∀v∼ ψ :
indeed,M |=X∼ φ iff M 6|=X ∀vψ iff M 6|=X[M/v] ψ iff M |=X[M/v]∼ ψ iff M |=X

∀v∼ ψ .

We are now equipped to prove the main result of this section:

Theorem 3.Letφ ∈FO(NE,⊔). Then∼ φ is equivalent to some formula inFO(NE,⊔).

Proof. By Proposition 5, we may assume thatφ is of the form
⊔n

i=1 ψi , where each
ψi is in FO(NE). Thus,∼ φ is logically equivalent to

∧n
i=1(∼ ψi); and by the above

lemma, ifψi is in FO(NE) then∼ ψi is in FO(NE,⊔), as required.

The two following corollaries then follow at once:

Corollary 3. FO(NE,⊔,∼) = FO(NE,⊔).

Corollary 4. FO(∼)⊆ FO(NE,⊔).

We still need to show the other direction of the equivalence betweenFO(NE,⊔)
andFO(∼):

Proposition 6. FO(NE,⊔)⊆ FO(∼).

Proof. It suffices to show that the nonemptiness atom and the classical disjunction
are definable inFO(∼). As for the former, observe thatM |=X∼ ⊥ if an only if X
is nonempty; and for the latter, observe thatφ ⊔ψ is logically equivalent to∼ ((∼
φ)∧ (∼ ψ)).

Putting everything together, we have that

Theorem 4.FO(∼) = FO(NE,⊔).

Finally, we need to prove that every sentence ofFO(NE,⊔) is equivalent to some
first-order sentence. But this is immediate:

Theorem 5.Let φ ∈ FO(NE,⊔) be a sentence. Thenφ is logically equivalent to
someφ ′ ∈ FO.

Proof. By Proposition 5 we may assume thatφ is of the form
⊔n

i=1 ψi , where each
ψi is a sentence inFO(NE). But then by Theorem 2, eachψi is equivalent to some
first-order sentenceψ ′

i , and thusφ is equivalent to the first-order sentence
∨n

i=1ψ ′
i .

Corollary 5. The constancy and inconstancy atoms arenotdefinable inFO(NE,⊔).

Proof. If they were then we would have thatFO(=(·, ·),∼) ⊆ FO(NE,⊔); but this
is not possible, becauseFO(NE,⊔) is strongly first-order andFO(=(·, ·),∼) is as
strong as second-order logic.
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4 Arity Hierarchies for Totality Atoms

In this section we will investigate the properties of thek-ary totality atoms Allk, and
we we establish a strictarity hierarchyfor them.

Let us begin by generalizing a notion from [9]:

Definition 12 (γ-boundedness).Let γ : N → N be a function. Then a dependency
notionD is said to beγ-bounded if for all finite modelsM and teamsX, if M |=X D
then there exists a subteamY ⊆ X, |Y| ≤ γ(|M|), such thatM |=Y D.

Proposition 7. All k-ary dependenciesD are |M|k-bounded.

Proof. Suppose thatM |=X Dv. Then(M,X(v)) ∈ D; and sinceX(v) ⊆ Mk, it is
clear that|X(v)| ≤ |M|k. Now for anym∈ X(v), let sm ∈ X be such thatsm(v) = m,
and letY = {sm : m∈X(v)}. Then|Y| ≤ |M|k andY(v) =X(v), and thusM |=Y Dv.

Theorem 6.Let D = {Di : i ∈ I} be a class of upwards-closed dependencies, for
everyDi ∈ D let γi : N→ N be such thatDi is γi-bounded, letφ ∈ FO(D) be such
that everyDi occurs ki times, and letνφ (n) = Σi∈I kiγi(n). Thenφ is νφ -bounded, in
the sense that

M |=X φ ⇒∃Y ⊆ X, |Y| ≤ νφ (|M|),M |=Y φ

for all finite modelsM and all teams X.

Proof. The proof is by induction, and mirrors the analogous proof from [9].

1. If φ is a first order literal then it is 0-bounded (since the empty team satisfies it),
as required.

2. If φ is an atomDx then the statement follows at once from the definitions of
boundedness.

3. Let φ be a disjunctionψ1∨ψ2 thenνφ = νψ1 + νψ2. Suppose now thatM |=X

ψ1∨ψ2: thenX =X1∪X2 for two X1 andX2 such thatM |=X1 ψ1 andM |=X2 ψ2.
This implies that there existY1 ⊆X1,Y2 ⊆X2 such thatM |=Y1 ψ1 andM |=Y2 ψ2,
|Y1| ≤ νψ1(|M|) and|Y2| ≤ νψ2(|M|). But thenY =Y1∪Y2 satisfiesψ1∨ψ2 and
has at mostνψ1(|M|)+νψ2(|M|) elements.

4. If φ is a conjunctionψ1∧ψ2 then, again,νφ = νψ1 + νψ2. Suppose thatM |=X

ψ1∧ψ2: thenM |=X ψ1 andM |=X ψ2, and therefore by Lemma 1M |=X ψ f
1

andM |=X ψ f
2 ; and, by induction hypothesis, there existY1,Y2 ⊆ X with |Y1| ≤

νψ1(|M|), |Y2| ≤ νψ2(|M|), M |=Y1 ψ1 andM |=Y2 ψ2. Now letY =Y1∪Y2: since

Y ⊆ X, by Proposition 1M |=Y ψ f
1 andM |=Y ψ f

2 . ButY1,Y2 ⊆Y, and therefore
by Lemma 2M |=Y ψ1 andM |=Y ψ2, and in conclusionM |=Y ψ1∧ψ2.

5. If φ is of the form∃vψ thenνφ = νψ . Suppose thatM |=X ∃vψ : then for some
F we have thatM |=X[F/v] ψ , and therefore by induction hypothesis there exists
a Z ⊆ X[F/v] with |Z| ≤ νψ (|M|) such thatM |=Z ψ . For anyh∈ Z, let f(h) be
a s∈ X such thath∈ s[F/v] = {s[m/v] : m∈ F(s)},2 and letY = {f(h) : h∈ Z}.

2 SinceZ ⊆ X[F/v], such asalways exists. Of course, there may be multiple ones; in thatcase, we
just pick arbitrarily one.
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Now Z ⊆Y[F/v]⊆ X[F/v]. SinceM |=X[F/v] ψ f andY[F/v]⊆ X[F/v], we have
thatM |=Y[F/v] ψ f ; and sinceM |=Z ψ , this implies thatM |=Y[F/v] ψ and that
M |=Y ∃vψ . Furthermore|Y| ≤ |Z| ≤ νφ (|M|), as required.

6. If φ is of the form∀vψ then, again,νφ = νψ . Suppose thatM |=X[M/v] ψ : again,
by induction hypothesis there is aZ ⊆ X[M/v] with |Z| ≤ νψ (|M|) and such that
M |=Z ψ . For anyh ∈ Y, let g(h) pick somes∈ X which agrees withh on all
variables except possiblyv, and letY = {g(h) : h ∈ Z}. Similarly to the previ-
ous case,Z ⊆ Y[M/v] ⊆ X[M/v]: therefore, sinceM |=X[M/v] ψ f we have that
M |=Y[M/v] ψ f , and sinceM |=Z ψ we have thatM |=Y[M/v] ψ . So in conclusion
M |=Y ∀vψ , as required, and|Y| ≤ |Z| ≤ νφ (M).

Using some care, we can extend this result to the case ofFO(=(·),D ,⊔):

Theorem 7.Let D = {Di : i ∈ I} be a class of upwards-closed dependencies, for
everyDi ∈ D let γi : N→ N be such thatDi is γi-bounded, letφ ∈ FO(=(·),D ,⊔)
be such that everyDi occurs ki times, and letνφ (n) = Σi∈I kiγi(n). Thenφ is νφ -
bounded, in the sense that

M |=X φ ⇒∃Y ⊆ X, |Y| ≤ νφ (|M|),M |=Y φ .

Proof. By Proposition 5, we can assume thatφ is of the form
⊔n

i=1 ψi , where allψi

are inFO(=(·),D). Furthermore, by Lemma 3 we can assume that everyψi is of the
form ∃wi(=(wi)∧θi), for θi ∈ FO(D) and all tuples of variableswi are new. Now
suppose thatM |=X φ : then there exists ani ∈ 1. . .n and a tuple of elementsm ∈ M
such thatM |=X[m/wi ] θi . But then there exists aY ⊆ X[m/wi ], |Y| ≤ νθi (|M|), such
thatM |=Y φ . Now let Z be the restriction ofY to the domain ofX: clearlyZ ⊆ X
and|Z| ≤ |Y| ≤ νθi (|M|) ≤ νφ (|M|), and furthermoreM |=Z ∃wi(=(wi)∧θi) and
so in conclusionM |=Z φ .

Theorem 8.Let k′ > k, and letD be a class of k-ary upwards-closed (not necessar-
ily first-order) dependencies. Then Allk′ is not definable inFO(=(·),D ,⊔).

Proof. Suppose thatφ(v) ∈ FO(=(·),D ,⊔) definesAllk′ . Then, since all depen-
dencies inD are|M|k-bounded, we have at once thatφ is q|M|k-bounded for some
q∈ N. Now letn∈ N be such thatnk′ > qnk, let M be a model in the empty signa-
ture with n elements, letv be a tuple ofk′ variables, and letX = { /0}[M/v]. Then
M |=X Allk′v, and thereforeM |=X φ(v). But then there must be aY ⊆ X, |Y| ≤ qnk,
such thatM |=Y φ(v); and this is not possible, because for such aY we would have
thatM 6|=Y Allk′x.

In particular, it follows at once from this thatAllk+1 is not definable inFO(=
(·),Allk,⊔). On the other hand ifk′ < k the operatorAllk′v is easily seen to be defin-
able as∀w(Allkvw); therefore

Corollary 6. For all k ∈ N, FO(=(·),Allk,⊔) ( FO(=(·),Allk+1,⊔) (and all these
logics are equivalent to first-order logic over sentences).
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5 0-ary Dependencies: Escaping the Empty Team

As a limit case of the notion of dependency, we have that

Definition 13. A 0-ary dependencyD is a set of models over the empty signature.
For all modelsM and teamsX, M |=X D if and only if M ∈ D.

If a 0-ary dependency is first-order, we have thatM |=X D if and only if M |= D∗,
whereD∗ is a sentence over the empty signature; therefore, it is natural to generalize
them all to an operator[·] of the form

TS-[·]: For all first-order sentencesφ in the signature ofM,M |=X [φ ] if and only
if M |= φ according to the usual Tarski semantics.

WheneverX is nonempty it follows at once from Proposition 1 thatM |=X [φ ] if
and only ifM |=X φ ; but sinceM |= /0 φ for all first-order sentencesφ , in first-order
logic with team semantics we have no way of verifying whethera given first-order
sentence is true of our model when we are considering satisfiability with respect to
the empty team. Therefore, we will add this[·] operator to our language. It is easy
to see that adding it to a strongly first-order extension of first-order logic does not
break the property of being strongly first-order:

Proposition 8. LetD be any family of dependencies, and letφ ∈ FO(D , [·]). Thenφ
is logically equivalent to some sentence of the form

∧
i [θi ]∧ψ , whereψ ∈ FO(D).

Proof. The proof is by induction onφ , and it is entirely straightforward. We report
only the case of disjunction:

• For all first-order sentencesθi , θ ′
j and allFO(D) formulasψ1,ψ2 we have that

(
∧

i [θi ]∧ψ1)∨(
∧

j [θ ′
j ]∧ψ2) is logically equivalent to

∧
i [θi ]∧

∧
j [θ ′

j ]∧(ψ1∨ψ2).
Indeed, suppose thatX = Y∪Z for two Y, Z such thatM |=Y

∧
i [θi ]∧ψ1 and

M |=Z
∧

j [θ ′
j ]∧ψ2. ThenM |=

∧
i θi ∧

∧
j θ ′

j , and thereforeM |=X
∧

i [θi ]∧
∧

j [θ ′
j ];

and sinceM |=Y ψ andM |=Z θ , we also have thatM |=X ψ ∨ θ , and so in
conclusionM |=X

∧
i [θi ]∧

∧
j [θ ′

j ]∧ (ψ1∨ψ2).
The other direction is similar: ifM |=

∧
i θi ∧

∧
j θ ′

j andM |=X ψ1 ∨ ψ2 then
X =Y∪Z for two Y andZ such thatM |=Y ψ1 andM |=Z ψ2. But thenM |=Y∧

i [θi ]∧ψ1 andM |=Z
∧

j [θ j ]∧ψ2, and so in conclusionM |=X (
∧

i [θi ]∧ψ1)∨
(
∧

j [θ ′
j ]∧ψ2).

Therefore we have the following result:

Proposition 9. Let D be a strongly first-order class of dependencies and letφ ∈
FO(D , [·]) be a sentence. Thenφ is logically equivalent to some first-order sentence
φ ′, in the sense thatM |={ /0} φ if and only ifM |= φ ′.

Proof. We may assume thatφ is on the form
∧

i [θi ]∧ ψ , whereψ is a FO(D)-
sentence. Now sinceD is strongly first-order,ψ is equivalent to some first-orderψ ′;
and since{ /0} is nonempty, we can takeφ ′ =

∧
i θi ∧ψ .
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6 Unary Dependencies

We will now consider the case ofunarydependencies, that is, of dependence atoms
of arity one. As we will see,all first-order unary dependencies are strongly first-
order and definable inFO(=(·), [·],All1,⊔).

In order to prove this we will make use of the following standard result:

Lemma 9. Let φ be a first-order sentence over the vocabulary{P}, where P is
unary. Thenφ is logically equivalent to a Boolean combination of sentences of the
form∃=kxPx and∃=kx¬Px.

Therefore, in order to show that all unary dependencies are in FO(=(·), [·],All1,⊔)
it suffices to show that the following four dependencies are in it:

TS-eq-pos: For all k∈ N, M |=X |v|= k iff |X(v)|= k;
TS-neq-pos: For allk∈ N, M |=X |v| 6= k iff |X(v)| 6= k;
TS-eq-neg: For all k∈ N, M |=X |M− v|= k iff |M\X(v)|= k;
TS-neq-neg: For all k∈N, M |=X |M− v| 6= k iff |M\X(v)| 6= k.

Let us prove that this is the case.

Lemma 10.The nonemptiness atom NE is definable inFO(All1) as∀qAll1q.

Proof. Suppose thatM |=X NE, that is,X 6= /0, and lets∈ X. Then for allm∈ M,
s[m/q] ∈ X[M/v], and thusX[M/q](q) = M, and thusM |=X ∀qAll1q as required.

However, ifX = /0 we have thatX[M/q] = /0 too, and thusX[M/q](q) = /0 6= M,
and finallyM 6|=X ∀qAll1q.

Definition 14. For all k∈ N and all variablesv, we define the following formulas:

φ≤k(v) = ∃p1 . . . pk(
∧

i

=(pi)∧
k∨

i=1

v= pi);

φ≥k(v) = ∃p1 . . . pk(
∧

i

=(pi)∧
∧

i 6= j

pi 6= p j ∧
∧

i

(NE↾ v= pi));

ψ≤k(v) = [∃≤kx(x= x)]⊔∃p1 . . . pk(
∧

i

=(pi)∧∃q(All1(q)∧ (
∨

i

q= pi ∨q= v);

ψ≥k(v) = (⊥∧ [∃≥kx(x= x)])⊔ (NE∧∃p1 . . . pk(
∧

i

=(p1)∧
∧

i 6= j

pi 6= p j ∧
k∧

i=1

v 6= pi))

Proposition 10.For all k∈N, all variables v, all modelsM and all nonempty teams
X whose domain contains v,

• M |=X φ≤k(v) if and only if|X(v)| ≤ k;
• M |=X φ≥k(v) if and only if|X(v)| ≥ k;
• M |=X ψ≤k(v) if and only if|M\X(v)| ≤ k;
• M |=X ψ≥k(v) if and only if|M\X(v)| ≥ k.
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Proof.

• Suppose thatM |=X φ≤k(v) and X is nonempty: then there exist elements
m1 . . .mk such that forY = X[m1 . . .mk/p1 . . . pk], M |=Y

∨k
i=1v = pi . But then

X(v) ⊆ {m1 . . .mk}, and thus|X(v)| ≤ k. If insteadX is empty then trivially
|X(v)|= 0≤ k.
Conversely, suppose thatX(v) = {m1, . . .mk′} for k′ ≤ k. Then for
Y = X[m1 . . .mk′ . . .mk′/p1 . . . pk] we have thatM |=Y

∨k
i=1v = pi. ThusM |=X

φ≤k(v), as required.
• Suppose thatM |=X φ≥k(v). Then there exist distinct elementsm1 . . .mk such that

for Y = X[m1 . . .mk/p1 . . . pk] and for alli ∈ 1. . .k, M |=Y NE↾ v= pi . Thus for
all suchi there exists as∈Y with s(v) = s(pi) =mi , and thus|X(v)|= |Y(v)| ≥ k.
Conversely, suppose that{m1 . . .mk} ⊆ X(v), where allmi are distinct. Now take
Y = X[m1 . . .mk/p1 . . . pk]: clearlyM |=Y

∧
i =(pi)∧

∧
i 6= j pi 6= p j , and it remains

to show that for alli M |=Y NE↾ v= pi . ButY ↾ (v= pi) = {s∈Y : s(v) = s(pi) =
mi} is nonempty by hypothesis, and this concludes the proof.

• Suppose thatM |=X ψ≤k(v). If M |=X [∃≤kx(x = x)] we have that|M| ≤ k,
from which it follows at once that|M\X(v)| ≤ |M| ≤ k. Otherwise, we can
find elementsm1 . . .mk such that, forY = X[m1 . . .mk/p1 . . . pk], there exists
a choice functionF for which M |=Y[F/q] All1(q)∧ (

∨
i q = pi ∨ q = v). Then

M\X(v) must be contained in{m1 . . .mk}, sinceq takes all possible values and
s(q) 6∈ {m1 . . .mk}⇒ s(q) = s(v).
Conversely, suppose thatM\X(v)⊆ {m1 . . .mk}. If X 6= /0, letY be
X[m1 . . .mk/p1 . . . pk], and for alls∈ Y let F(s) = {m1 . . .mk} ∪ {s(v)}. Then
Y[F/q] |= All1q: indeed, if m∈ {m1 . . .mk} then m∈ F(s) for all s∈ Y, and
otherwisem= s(x) for somes∈ Y (and hencem∈ F(s) for this choice ofs).
Furthermore, for allh∈ Y[F/q], if h(q) 6∈ {m1 . . .mk} then we have thath(q) =
h(v), as required. If insteadX = /0 then|M| = |M\X(v)| ≤ k, and henceM |=X

∃≤kx(x= x).
• Suppose thatM |=X ψ≥k(v) and X 6= /0. Then there exist distinct elements

m1 . . .mk such that forY = X[m1 . . .mk/p1 . . . pk], M |=Y
∧k

i=1v 6= pi . There-
fore {m1 . . .mk} ∈ M\X, and thus|M\X| ≥ k. If instead X = /0 thenM |=
⊥∧ [∃≥kx(x= x)] and hence|M|= |M\X(v)| ≥ k as required.
Conversely, suppose that|M\X(v)| ≥ k. If X is nonempty we can choose ele-
mentsm1 . . .mk ∈ M\X(v) and verify thatM |=X[m1...mk/p1...pk]

∧
i 6= j pi 6= p j ∧∧

i v 6= pi ; and if X is empty then it follows at once that|M| ≥ k and hence that
M |=X ⊥∧ [∃≥kx(x= x)], as required.

Corollary 7. For all k ∈ N, the atoms|v|= k, |v| 6= k, |M− v| = k and|M− v| 6= k
are all definable inFO(=(·),All1,⊔).

Proof. Observe that

• M |=X |v|= k iff M |=X φ≤k(v)∧φ≥kφ ;
• M |=X |v| 6= k iff M |=X φ≤k−1(v)⊔φ≥k+1(v);
• M |=X |M− v|= k iff M |=X ψ≤k(v)∧ψ≥k(v);
• M |=X |M− v| 6= k iff M |=X ψ≤k−1(v)⊔ψ≥k+1(v)
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where we letφ≤−1 = ψ≤−1 =⊥.

Putting everything together, we have that

Theorem 9.Every unary first-order dependency is definable inFO(=(·),All1,⊔).

Proof. Let D be a unary first-order dependency and letv be a first-order variable.
By definition,M |=X Dv if and only if (M,X(v)) |= D∗(P), whereD∗(P) is a first-
order formula in the vocabulary{P} (P unary). But thenD∗(P) is equivalent to a
Boolean combination of sentences of the form∃=kxPxand∃=kx¬Pk; and thus, we
may assume thatD∗(P) is of the form

∨
i
∧

j θi j , where eachθi j is∃=kxPx, ∃=kx¬Px,
or a negation of a formula of this kind. But thenDv is logically equivalent to

⊔

i

∧

j

θ ′
i j ,

where

• If θi j is ∃=kxPx, θ ′
i j is |v|= k;

• If θi j is¬∃=kxPx, θ ′
i j is |v| 6= k;

• If θi j is ∃=kx¬Px, θ ′
i j is |M− v|= k;

• If θi j is¬∃=kx¬Px, θ ′
i j is |M− v| 6= k.

Finally, we need to show that every sentence ofFO(=(·), [·],All1,⊔) is equivalent
to some first-order sentence. But this is straightforward:

Theorem 10.Letφ ∈ FO(=(·),All1,⊔, [·]) be a sentence. Thenφ is logically equiv-
alent to some first-order sentence.

Proof. By Proposition 5,φ is equivalent to some sentence of the form⊔iψi , for
ψi ∈ FO(=(·),All1, [·]). Observe further that all expressions[θ ] which occur in our
formulas are such thatθ is a first-order sentence over the empty vocabulary; and
therefore, these expressions are trivially upwards-closed first-order dependencies,
since for any fixed model they either hold in all teams or in none of them.3 Then by
Theorem 2 and Proposition 9 every such sentence is equivalent to some first-order
sentenceψ ′

i and thusφ is equivalent to
∨

i ψ ′
i .

Putting everything together, we have that

Corollary 8. LetD be a unary first-order dependency. Then it is strongly first-order
and definable inFO(=(·), [·],All1,⊔).

We conclude this section by mentioning an open problem.

Question: Let k > 1. Are there any strongly first-orderk-ary dependencies which
are not definable inFO(=(·), [·],Allk,⊔)?

3 On the other hand, ifθ were a first-order sentence over the non-empty vocabulary then it would
not be a dependency.
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7 Conclusion

Much of the team semantics research has so far focused on formalisms which are
greatly more expressive than first-order logic. However, the study of weaker exten-
sions of first-order logic, which do not rise above it insofaras the definability of
classes of models is concerned, promises to be also of significant value: not only
this investigation offers an opportunity of examining the nature of the boundary
between first- and second-order logic, but it also provides us with (comparatively)
computationally “safe” classes of dependencies and operators to use in applications.

This work builds on the results of [9] and can only be an initial attempt of mak-
ing sense of the wealth of these “weak” extensions of first-order logic with team
semantics. Much of course remains to be done; but a few distinctive characteristics
of this line of investigation may be gleaned already.

• The totality atomsAllk seem to have a role of particular relevance in the theory
of strongly first-order dependencies. It remains to be seen whether this role will
be preserved by the further developments of the theory; but in any case, the fact
that these atoms are the “maximally unbounded” (in the senseof Definition 12)
ones for their arities is certainly suggestive, as is the existence of a strict defin-
ability hierarchy based on their arities and the fact that all monadic first-order
dependencies are definable in terms of theAll1 atom.

• The logic FO(∼) = FO(NE,⊔), as the simplest extension of first-order logic
with team semantics which is closed under contradictory negation, is also an
item of particular interest. As we saw, it suffices to add to itcomparatively harm-
less dependencies such as constancy atoms to obtain the fullexpressive power of
second-order logic; thus, despite its simplicity, this logics appears to be a natu-
ral “stopping point” in the family of dependency-based extensions of first-order
logic, deserving of a more in-depth study of its properties.

• When working with classes of strongly first-order dependencies, different choices
of connectives and operators emerge to the foreground. In particular, the role of
the classical disjunctionφ ⊔ψ in the study of dependence logic and its extensions
has been relatively marginal so far; but nonetheless, this connective proved itself
of fundamental importance for many of the results of this work. More in general,
it appears now that a fully satisfactory account of dependencies and definability
cannot be developed if not by integrating it with a general theory of operators
anduniform definabilityin team semantics. The work of [4, 5, 17] on general-
ized quantifiers in team semantics seems to be the most natural starting point for
such an enterprise; in particular, it would be worthwhile tobe able to charac-
terize general families of dependenciesand operatorswhich do not increase the
expressive power of first-order logic (wrt sentences).

Acknowledgements This research was supported by the Deutsche Forschungsgemeinschaft (project
number DI 561/6-1).
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