Skip to main content

Accuracy Assessment of CBCT-Based Volumetric Brain Shift Field

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9401))

Abstract

The displacement of the brain parenchyma during open brain surgery, known as ‘brain shift’, affects the applicability of pre-operative planning and affects the outcome of the surgery. In this article we investigated the accuracy of a novel method to intra-operatively determine the brain shift displacement field throughout the whole brain volume. The brain shift displacement was determined by acquiring contrast enhanced cone-beam CT before and during the surgery. The respective datasets were pre-processed, landmark enhanced, and elastically registered to find the displacement field. The accuracy of this method was evaluated by artificially creating post-operative data with a known ground truth deformation. The artificial post-operative data was obtained by applying the deformation field from one patient on the pre-operative data of another patient, which was repeated for three patients. The mean error that was found with this method ranged from 1 to 2 mm, while the standard deviation was about 1 mm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hartkens, T., Hill, D.L.G., Castellano-Smith, A.D., Hawkes, D.J., Maurer Jr., C.R., Martin, A.J., Hall, W.A., Liu, H., Truwit, C.L.: Measurement and analysis of brain deformation during neurosurgery. IEEE Trans. Med. Imaging 22(1), 82–92 (2003)

    Article  Google Scholar 

  2. Archip, N., Clatz, O., Whalen, S., Kacher, D., Fedorov, A., Kot, A., Chrisochoides, N., Jolesz, F., Golby, A., Black, P.M., Warfield, S.K.: Non-rigid alignment of pre-operative MRI, fMRI, and DT-MRI with intra-operative MRI for enhanced visualization and navigation in imageguided neurosurgery. NeuroImage 35, 609–624 (2007)

    Article  Google Scholar 

  3. Nabavi, A., Black, P., Gering, D., et al.: Serial intraoperative magnetic resonance imaging of brain shift. Neurosurgery 48(4), 787–798 (2001)

    Google Scholar 

  4. Hastreiter, P., Rezk-Salama, C., Soza, G., Bauer, M., Greiner, G., Fahlbusch, R., Ganslandt, O., Nimsky, C.: Strategies for brain shift evaluation. Med. Image Anal. 4, 447–464 (2004)

    Article  MATH  Google Scholar 

  5. Mostayed, A., Garlapati, R.R., Joldes, G.R., Wittek, A., Roy, A., Kikinis, R., Warfield, S.K., Miller, K.: Biomechanical model as a registration tool for image-guided neurosurgery: evaluation against BSpline registration. Ann. Biomed. Eng. 41(11), 2409–2425 (2013)

    Article  Google Scholar 

  6. Nimsky, C., Ganslandt, O., von Keller, B., Romstock, J., Fahlbusch, R.: Intraoperative High-Field-Strength MR imaging: implementation and experience in 200 patients 1. Radiology 233(1), 67–78 (2004)

    Article  Google Scholar 

  7. Jolesz, F.A.: Future perspectives for intraoperative MRI. Neurosurg. Clin. N. Am. 16(1), 201–213 (2005)

    Article  Google Scholar 

  8. Comeau, R., Sadikot, A., Fenster, A., Peters, T.: Intraoperative ultrasound for guidance and tissue shift correction in image-guided neurosurgery. Med. Phys. 27(4), 787–800 (2000)

    Article  Google Scholar 

  9. Letteboer, M., Willems, P., Viergever, M., Niessen, W.: Brain shift estimation in image-guided neurosurgery using 3-D ultrasound. IEEE Trans. Biomed. Eng. 52(2), 268–276 (2005)

    Article  Google Scholar 

  10. Reinertsen, I., Descoteaux, M., Siddiqi, K., Collins, D.: Validation of vessel-based registration for correction of brain shift. Med. Image Anal. 11(4), 374–388 (2007)

    Article  Google Scholar 

  11. Bucki, M., Palombi, O., Bailet, M., Payan, Y.: Doppler ultrasound driven biomechanical model of the brain for intraoperative brain-shift compensation: a proof of concept in clinical conditions. Stud. Mechanobiol. Tissue Eng. Biomater. 11, 135–165 (2012)

    Article  Google Scholar 

  12. Wein, W., Ladikos, A., Fuerst, B., Shah, A., Sharma, K., Navab, N.: Global registration of ultrasound to MRI using the LC2 metric for enabling neurosurgical guidance. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part I. LNCS, vol. 8149, pp. 34–41. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  13. Rivaz, H., Jy-Shyang Chen, S., Collins, D.L.: Automatic deformable MR-ultrasound registration for image-guided neurosurgery. IEEE Trans. Med. Imaging 34(2), 366–380 (2015)

    Article  Google Scholar 

  14. Robben, D., Smeets, D., Ruijters, D., Hoffmann, M., Antanas, L., Maes, F., Suetens, P.: Intra-patient non-rigid registration of 3D vascular cerebral images. In: Drechsler, K., Erdt, M., Linguraru, M.G., Oyarzun Laura, C., Sharma, K., Shekhar, R., Wesarg, S. (eds.) CLIP 2012. LNCS, vol. 7761, pp. 106–113. Springer, Heidelberg (2013)

    Google Scholar 

  15. Mendes Pereira, V., Smit-Ockeloen, I., Brina, O., Babic, D., Breeuwer, M., Schaller, K., Lovblad, K.-O., Ruijters, D.: Volumetric Measurements of Brain Shift Using Intra-Operative Cone-Beam CT: Preliminary Study. Operative Neurosurgery (in press 2015)

    Google Scholar 

  16. Smith, S.: Fast robust automated brain extraction. Hum. Brain Mapp. 17(3), 143–155 (2002)

    Article  Google Scholar 

  17. Powell, M.: An efficient method for finding the minimum of a function of several variables without calculating derivatives. Comput. J. 7(2), 155–162 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  18. van der Bom, I., Hou, S., Puri, A., Spilberg, G., Ruijters, D., van de Haar, P., Carelsen, B., Vedantham, S., Gounis, M., Wakhloo, A.: Reduction of coil mass artifacts in high-resolution at detector conebeam CT of cerebral stent-assisted coiling. AJNR Am. J. Neuroradiol. 34(11), 2163–2170 (2013)

    Article  Google Scholar 

  19. Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Colchester, A., Wells, W., Delp, S. (eds.) Medical Image Computing and Computer-Assisted Interventation, pp. 130–137. Springer, Berlin (1998)

    Chapter  Google Scholar 

  20. Ruijters, D., ter Haar Romeny, B.M., Suetens, P.: GPU-accelerated elastic 3D image registration for intra-surgical applications. Comput. Meth. Prog. Bio. 103(2), 104–112 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Ruijters .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Smit-Ockeloen, I., Ruijters, D., Breeuwer, M., Babic, D., Brina, O., Pereira, V.M. (2016). Accuracy Assessment of CBCT-Based Volumetric Brain Shift Field. In: Oyarzun Laura, C., et al. Clinical Image-Based Procedures. Translational Research in Medical Imaging. CLIP 2015. Lecture Notes in Computer Science(), vol 9401. Springer, Cham. https://doi.org/10.1007/978-3-319-31808-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31808-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31807-3

  • Online ISBN: 978-3-319-31808-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics