Skip to main content

Computationally Efficient Design Optimization of Compact Microwave and Antenna Structures

  • Chapter
  • First Online:
  • 1155 Accesses

Part of the book series: Studies in Computational Intelligence ((SCI,volume 645))

Abstract

Miniaturization is one of the important concerns of contemporary wireless communication systems, especially regarding their passive microwave components, such as filters, couplers, power dividers, etc., as well as antennas. It is also very challenging, because adequate performance evaluation of such components requires full-wave electromagnetic (EM) simulation, which is computationally expensive. Although high-fidelity EM analysis is not a problem for design verification, it becomes a serious bottleneck when it comes to automated design optimization. Conventional optimization algorithms (both gradient-based and derivative-free ones such as genetic algorithms) normally require large number of simulations of the structure under design, which may be prohibitive. Considerable design speedup can be achieved by means of surrogate-based optimization (SBO) where a direct handling of the expensive high-fidelity model is replaced by iterative construction and re-optimization of its faster representation, a surrogate model. In this chapter, we review some of the recent advances and applications of SBO techniques for the design of compact microwave and antenna structures. Most of these methods are tailored for a design problem at hand, and attempt to utilize its particular aspects such as a possibility of decomposing the structure. Each of the methods exploits an underlying low-fidelity model, which might be an equivalent circuit, coarse-discretization EM simulation data, and approximation model, or a combination of the above. The common feature of the presented techniques is that a final design can be obtained at the cost of a few evaluations of the high-fidelity EM-simulated model of the optimized structure.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Pozar, D.M.: Microwave Engineering, 4th edn. Wiley, Hoboken (2012)

    Google Scholar 

  2. Bekasiewicz, A., Kurgan, P., Kitlinski, M.: A new approach to a fast and accurate design of microwave circuits with complex topologies. IET Microw. Antennas Propag. 6, 1616–1622 (2012)

    Article  Google Scholar 

  3. Smierzchalski, M., Kurgan, P., Kitlinski, M.: Improved selectivity compact band-stop filter with Gosper fractal-shaped defected ground structures. Microw. Opt. Technol. Lett. 52, 227–232 (2010)

    Article  Google Scholar 

  4. Kurgan, P., Kitlinski, M.: Novel microstrip low-pass filters with fractal defected ground structures. Microw. Opt. Technol. Lett. 51, 2473–2477 (2009)

    Article  Google Scholar 

  5. Aznar, F., Velez, A., Duran-Sindreu, M., Bonache, J., Martin, F.: Elliptic-function CPW low-pass filters implemented by means of open complementary split ring resonators (OCSRRs). IEEE Microw. Wirel. Compon. Lett. 19, 689–691 (2009)

    Article  Google Scholar 

  6. Kurgan, P., Bekasiewicz, A., Pietras, M., Kitlinski, M.: Novel topology of compact coplanar waveguide resonant cell low-pass filter. Microw. Opt. Technol. Lett. 54, 732–735 (2012)

    Article  Google Scholar 

  7. Bekasiewicz, A., Kurgan, P.: A compact microstrip rat-race coupler constituted by nonuniform transmission lines. Microw. Opt. Technol. Lett. 56, 970–974 (2014)

    Article  Google Scholar 

  8. Opozda, S., Kurgan, P., Kitlinski, M.: A compact seven-section rat-race hybrid coupler incorporating PBG cells. Microw. Opt. Technol. Lett. 51, 2910–2913 (2009)

    Article  Google Scholar 

  9. Kurgan, P., Kitlinski, M.: Novel doubly perforated broadband microstrip branch-line couplers. Microw. Opt. Technol. Lett. 51, 2149–2152 (2009)

    Article  Google Scholar 

  10. Kurgan, P., Bekasiewicz, A.: A robust design of a numerically demanding compact rat-race coupler. Microw. Opt. Technol. Lett. 56, 1259–1263 (2014)

    Article  Google Scholar 

  11. Wu, Y., Liu, Y., Xue, Q., Li, S., Yu, C.: Analytical design method of multiway dual-band planar power dividers with arbitrary power division. IEEE Trans. Microw. Theory Tech. 58, 3832–3841 (2010)

    Google Scholar 

  12. Chiu, L., Xue, Q.: A parallel-strip ring power divider with high isolation and arbitrary power-dividing ratio. IEEE Trans. Microw. Theory Tech. 55, 2419–2426 (2007)

    Article  Google Scholar 

  13. Bekasiewicz, A., Koziel, S., Ogurtsov, S., Zieniutycz, W.: Design of microstrip antenna subarrays: a simulation-driven surrogate-based approach. In: International Conference Microwaves, Radar and Wireless Communications (2014)

    Google Scholar 

  14. Wang, X., Wu, K.-L., Yin, W.-Y.: A compact gysel power divider with unequal power-dividing ratio using one resistor. IEEE Trans. Microw. Theory Tech. 62, 1480–1486 (2014)

    Article  Google Scholar 

  15. Koziel, S., Ogurtsow, S., Zieniutycz, W., Bekasiewicz, A.: Design of a planar UWB dipole antenna with an integrated balun using surrogate-based optimization. IEEE Antennas Wirel. Propag. Lett. (2014)

    Google Scholar 

  16. Shao, J., Fang, G., Ji, Y., Tan, K., Yin, H.: A novel compact tapered-slot antenna for GPR applications. IEEE Antennas Wirel. Propag. Lett. 12, 972–975 (2013)

    Article  Google Scholar 

  17. Koziel, S., Bekasiewicz, A.: Novel structure and EM-Driven design of small UWB monople antenna. In: International Symposium on Antenna Technology and Applied Electromagnetics (2014)

    Google Scholar 

  18. Quan, X., Li, R., Cui, Y., Tentzeris, M.M.: Analysis and design of a compact dual-band directional antenna. IEEE Antennas Wirel. Propag. Lett. 11, 547–550 (2012)

    Article  Google Scholar 

  19. Koziel, S., Ogurtsov, S.: Multi-objective design of antennas using variable-fidelity simulations and surrogate models. IEEE Trans. Antennas Propag. 61, 5931–5939 (2013)

    Article  Google Scholar 

  20. Yeung, S.H., Man, K.F.: Multiobjective Optimization. IEEE Microw. Mag. 12, 120–133 (2011)

    Article  Google Scholar 

  21. Kuwahara, Y.: Multiobjective optimization design of Yagi-Uda antenna. IEEE Trans. Antennas Propag. 53, 1984–1992 (2005)

    Article  Google Scholar 

  22. Koziel, S., Bekasiewicz, A., Couckuyt, I., Dhaene, T.: Efficient multi-objective simulation-driven antenna design using Co-Kriging. IEEE Trans. Antennas Propag. 62, 5900–5905 (2014)

    Article  MathSciNet  Google Scholar 

  23. Kurgan, P., Filipcewicz, J., Kitlinski, M.: Design considerations for compact microstrip resonant cells dedicated to efficient branch-line miniaturization. Microw. Opt. Technol. Lett. 54, 1949–1954 (2012)

    Article  Google Scholar 

  24. Bekasiewicz, A., Koziel, S., Pankiewicz, B.: Accelerated simulation-driven design optimization of compact couplers by means of two-level space mapping. IET Microw. Antennas Propag. (2014)

    Google Scholar 

  25. Koziel, S., Bekasiewicz, A., Kurgan, P.: Nested space mapping technique for design and optimization of complex microwave structures with enhanced functionality. In: Koziel, S., Leifsson, L., Yang, X.S. (eds.) Solving Computationally Expensive Engineering Problems: Methods and Applications, pp. 53–86. Springer, Switzerland (2014)

    Google Scholar 

  26. Kurgan, P., Bekasiewicz, A.: Atomistic surrogate-based optimization for simulation-driven design of computationally expensive microwave circuits with compact footprints. In: Koziel, S., Leifsson, L., Yang, X.S. (eds.) Solving Computationally Expensive Engineering Problems: Methods and Applications, pp. 195–218. Springer, Switzerland (2014)

    Google Scholar 

  27. Li, J.-F., Chu, Q.-X., Li, Z.-H., Xia, X.-X.: Compact dual band-notched UWB MIMO antenna with high isolation. IEEE Trans. Antennas Propag. 61, 4759–4766 (2013)

    Article  Google Scholar 

  28. Koziel, S., Bekasiewicz, A.: Small antenna design using surrogate-based optimization. In: IEEE International Symposium on Antennas Propagation (2014)

    Google Scholar 

  29. Liu, Y.-F., Wang, P., Qin, H.: Compact ACS-fed UWB monopole antenna with extra Bluetooth band. Electron. Lett. 50, 1263–1264 (2014)

    Article  Google Scholar 

  30. Koziel, S., Kurgan, P.: Low-cost optimization of compact branch-line couplers and its application to miniaturized Butler matrix design. In: European Microwave Conference (2014)

    Google Scholar 

  31. Nocedal, J., Wright, S.: Numerical Optimization, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  32. Koziel, S., Yang X.S. (eds.): Computational optimization, methods and algorithms. Studies in Computational Intelligence, vol. 356, Springer, New York (2011)

    Google Scholar 

  33. Kolda, T.G., Lewis, R.M., Torczon, V.: Optimization by direct search: new perspectives on some classical and modern methods. SIAM Rev. 45, 385–482 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, Chichester (2001)

    MATH  Google Scholar 

  35. Talbi, E.-G.: Metaheuristics—From Design to Implementation. Wiley, Chichester (2009)

    MATH  Google Scholar 

  36. Koziel, S., Bekasiewicz, A., Zieniutycz, W.: Expedite EM-driven multi-objective antenna design in highly-dimensional parameter spaces. IEEE Antennas Wirel. Propag. Lett. 13, 631–634 (2014)

    Article  Google Scholar 

  37. Bekasiewicz, A., Koziel, S.: Efficient multi-fidelity design optimization of microwave filters using adjoint sensitivity. Int. J. RF Microw. Comput. Aided Eng. (2014)

    Google Scholar 

  38. Koziel, S., Ogurtsov, S., Cheng, Q.S., Bandler, J.W.: Rapid EM-based microwave design optimization exploiting shape-preserving response prediction and adjoint sensitivities. IET Microw. Antennas Propag. (2014)

    Google Scholar 

  39. CST Microwave Studio: CST AG, Bad Nauheimer Str. 19, D-64289 Darmstadt, Germany (2011)

    Google Scholar 

  40. Ansys HFSS: ver. 14.0, ANSYS, Inc., Southpointe 275 Technology Dr., Canonsburg, PA (2012)

    Google Scholar 

  41. Bandler, J.W., Cheng, Q.S., Dakroury, S.A., Mohamed, A.S., Bakr, M.H., Madsen, K., Sondergaard, J.: Space mapping: the state of the art. IEEE Trans. Microw. Theory Tech. 52, 337–361 (2004)

    Article  Google Scholar 

  42. Koziel, S., Bandler, J.W., Madsen, K.: Towards a rigorous formulation of the space mapping technique for engineering design. In: Proceedings International Symposium Circuits and Systems (2005)

    Google Scholar 

  43. Queipo, N.V., Haftka, R.T., Shyy, W., Goel, T., Vaidynathan, R., Tucker, P.K.: Surrogatebased analysis and optimization. Prog. Aerosp. Sci. 41, 1–28 (2005)

    Article  Google Scholar 

  44. El Zooghby, A.H., Christodoulou, C.G., Georgiopoulos, M.: A neural network-based smart antenna for multiple source tracking. IEEE Trans. Antennas Propag. 48, 768–776 (2000)

    Article  Google Scholar 

  45. Siah, E.S., Sasena, M., Volakis, J.L., Papalambros, P.Y., Wiese, R.W.: Fast parameter optimization of large-scale electromagnetic objects using DIRECT with Kriging metamodeling. IEEE Trans. Microw. Theory Tech. 52, 276–285 (2004)

    Article  Google Scholar 

  46. Xia, L., Meng, J., Xu, R., Yan, B., Guo, Y.: Modeling of 3-D vertical interconnect using support vector machine regression. IEEE Microw. Wirel. Compon. Lett. 16, 639–641 (2006)

    Article  Google Scholar 

  47. Kabir, H., Wang, Y., Yu, M., Zhang, Q.J.: Neural network inverse modeling and applications to microwave filter design. IEEE Trans. Microw. Theory Tech. 56, 867–879 (2008)

    Article  Google Scholar 

  48. Tighilt, Y., Bouttout, F., Khellaf, A.: Modeling and design of printed antennas using neural networks. Int. J. RF Microw. Comput. Aided Eng. 21, 228–233 (2011)

    Article  Google Scholar 

  49. Koziel, S., Bandler, J.W.: Space mapping with multiple coarse models for optimization of microwave components. IEEE Microw. Wirel. Compon. Lett. 18, 1–3 (2008)

    Article  Google Scholar 

  50. Koziel, S., Bandler, J.W., Cheng, Q.S.: Robust trust-region space-mapping algorithms for microwave design optimization. IEEE Trans. Microw. Theory Tech. 58, 2166–2174 (2010)

    Article  Google Scholar 

  51. Alexandrov, N.M., Lewis, R.M.: An overview of first-order model management for engineering optimization. Optim. Eng. 2, 413–430 (2001)

    Article  MATH  Google Scholar 

  52. Amineh, R.K., Koziel, S., Nikolova, N.K., Bandler, J.W., Reilly, J.P.: A space mapping methodology for defect characterization. In: International Review of Progress in Applied Computational Electromagnetics (2008)

    Google Scholar 

  53. Koziel, S., Bandler, J.W.: SMF: a user-friendly software engine for space-mapping-based engineering design optimization. In: International Symposium Signals Systems Electronics (2007)

    Google Scholar 

  54. Koziel, S., Leifsson, L., Ogurtsov, S.: Reliable EM-driven microwave design optimization using manifold mapping and adjoint sensitivity. Microw. Opt. Technol. Lett. 55, 809–813 (2013)

    Article  Google Scholar 

  55. Echeverria, D., Lahaye, D., Encica, L., Lomonova, E.A., Hemker, P.W., Vandenput, A.J.A.: Manifold-mapping optimization applied to linear actuator design. IEEE Trans. Mangetics 42, 1183–1186 (2006)

    Google Scholar 

  56. Cheng, Q.S., Rautio, J.C., Bandler, J.W., Koziel, S.: Progress in simulator-based tuning–the art of tuning space mapping. IEEE Microw. Mag. 11, 96–110 (2010)

    Article  Google Scholar 

  57. Rautio, J.C.: Perfectly calibrated internal ports in EM analysis of planar circuits. In: International Microwave Symposium Digest (2008)

    Google Scholar 

  58. Gilmore, R., Besser, L.: Practical RF Circuit Design for Modern Wireless Systems. Artech House, Norwood (2003)

    Google Scholar 

  59. Xu, H.-X., Wang, G.-M., Lu, K.: Microstrip rat-race couplers. IEEE Microw. Mag. 12, 117–129 (2011)

    Article  Google Scholar 

  60. Ahn, H.-R., Bumman, K.: Toward integrated circuit size reduction. IEEE Microw. Mag. 9, 65–75 (2008)

    Google Scholar 

  61. Liao, S.-S., Sun, P.-T., Chin, N.-C., Peng, J.-T.: A novel compact-size branch-line coupler. IEEE Microw. Wirel. Compon. Lett. 15, 588–590 (2005)

    Article  Google Scholar 

  62. Liao, S.-S., Peng, J.-T.: Compact planar microstrip branch-line couplers using the quasi-lumped elements approach with nonsymmetrical and symmetrical T-shaped structure. IEEE Trans. Microw. Theory Tech. 54, 3508–3514 (2006)

    Article  Google Scholar 

  63. Tang, C.-W., Chen, M.-G.: Synthesizing microstrip branch-line couplers with predetermined compact size and bandwidth. IEEE Trans. Microw. Theory Tech. 55, 1926–1934 (2007)

    Article  Google Scholar 

  64. Jung, S.-C., Negra, R., Ghannouchi, F.M.: A design methodology for miniaturized 3-dB branch-line hybrid couplers using distributed capacitors printed in the inner area. IEEE Trans. Microw. Theory Tech. 56, 2950–2953 (2008)

    Article  Google Scholar 

  65. Ahn, H.-R.: Modified asymmetric impedance transformers (MCCTs and MCVTs) and their application to impedance-transforming three-port 3-dB power dividers. IEEE Trans. Microw. Theory Tech. 59, 3312–3321 (2011)

    Article  Google Scholar 

  66. Tseng, C.-H., Chang, C.-L.: A rigorous design methodology for compact planar branch-line and rat-race couplers with asymmetrical T-structures. IEEE Trans. Microw. Theory Tech. 60, 2085–2092 (2012)

    Article  Google Scholar 

  67. Ahn, H.-R., Nam, S.: Compact microstrip 3-dB coupled-line ring and branch-line hybrids with new symmetric equivalent circuits. IEEE Trans. Microw. Theory Tech. 61, 1067–1078 (2013)

    Article  Google Scholar 

  68. Eccleston, K.W., Ong, S.H.M.: Compact planar microstripline branch-line and rat-race couplers. IEEE Trans. Microw. Theory Tech. 51, 2119–2125 (2003)

    Article  Google Scholar 

  69. Chuang, M.-L.: Miniaturized ring coupler of arbitrary reduced size. IEEE Microw. Wirel. Compon. Lett. 15, 16–18 (2005)

    Article  Google Scholar 

  70. Chun, Y.-H., Hong, J.-S.: Compact wide-band branch-line hybrids. IEEE Trans. Microw. Theory Tech. 54, 704–709 (2006)

    Article  Google Scholar 

  71. Kuo, J.-T., Wu, J.-S., Chiou, Y.-C.: Miniaturized rat race coupler with suppression of spurious passband. IEEE Microw. Wirel. Compon. Lett. 17, 46–48 (2007)

    Article  Google Scholar 

  72. Mondal, P., Chakrabarty, A.: Design of miniaturised branch-line and rat-race hybrid couplers with harmonics suppression. IET Microw. Antennas Propag. 3, 109–116 (2009)

    Article  Google Scholar 

  73. Ahn, H.-R., Kim, B.: Small wideband coupled-line ring hybrids with no restriction on coupling power. IEEE Trans. Microw. Theory Tech. 57, 1806–1817 (2009)

    Article  Google Scholar 

  74. Sun, K.-O., Ho, S.-J., Yen, C.-C., van der Weide, D.: A compact branch-line coupler using discontinuous microstrip lines. IEEE Microw. Wirel. Compon. Lett. 15, 501–503 (2005)

    Google Scholar 

  75. Lee, H.-S., Choi, K., Hwang, H.-Y.: A harmonic and size reduced ring hybrid using coupled lines. IEEE Microw. Wirel. Compon. Lett. 17, 259–261 (2005)

    Article  Google Scholar 

  76. Tseng, C.-H., Chen, H.-J.: Compact rat-race coupler using shunt-stub-based artificial transmission lines. IEEE Microw. Wirel. Compon. Lett. 18, 734–736 (2008)

    Article  Google Scholar 

  77. Wang, C.-W., Ma, T.-G., Yang, C.-F.: A new planar artificial transmission line and its applications to a miniaturized butler matrix. IEEE Trans. Microw. Theory Tech. 55, 2792–2801 (2007)

    Article  Google Scholar 

  78. Ahn, H.-R., Nam, S.: Wideband microstrip coupled-line ring hybrids for high power-division ratios. IEEE Trans. Microw. Theory Tech. 61, 1768–1780 (2013)

    Article  Google Scholar 

  79. Tsai, K.-Y., Yang, H.-S., Chen, J.-H., Chen, Y.-J.: A miniaturized 3 dB branch-line hybrid coupler with harmonics suppression. IEEE Microw. Wirel. Compon. Lett. 21, 537–539 (2011)

    Article  Google Scholar 

  80. Collin, R.E.: Foundations for Microwave Engineering. Wiley, New York (2001)

    Book  Google Scholar 

  81. Gu, J., Sun, X.: Miniaturization and harmonic suppression rat-race coupler using C-SCMRC resonators with distributive equivalent circuit. IEEE Microw. Wirel. Compon. Lett. 15, 880–882 (2005)

    Article  Google Scholar 

  82. Kurgan, P., Filipcewicz, J., Kitlinski, M.: Development of a compact microstrip resonant cell aimed at efficient microwave component size reduction. IET Microw. Antennas Propag. 6, 1291–1298 (2012)

    Article  Google Scholar 

  83. Kurgan, P., Kitlinski, M.: Doubly miniaturized rat-race hybrid coupler. Mirow. Opt. Technol. Lett. 53, 1242–1244 (2011)

    Article  Google Scholar 

  84. Bekasiewicz, A., Koziel, S., Zieniutycz, W.: Design space reduction for expedited multi-objective design optimization of antennas in highly-dimensional spaces. In: Koziel, S., Leifsson, L., Yang, X.S. (eds.) Solving Computationally Expensive Engineering Problems: Methods and Applications, pp. 113–147. Springer, Switzerland (2014)

    Google Scholar 

  85. Koziel, S., Ogurtsov, S.: Rapid optimization of omnidirectional antennas using adaptively adjusted design specifications and kriging surrogates. IET Microw. Antennas Propag. 7, 1194–1200 (2013)

    Article  Google Scholar 

  86. Hong, J.-S., Lancaster, M.J.: Microstrip filters for RF/microwave applications. Wiley, New York (2001)

    Book  Google Scholar 

  87. Koziel, S., Bekasiewicz, A.: Simulation-driven design of planar filters using response surface approximations and space mapping. In: European Microwave Conference (2014)

    Google Scholar 

  88. Lai, M.-I., Jeng, S.-K.: A microstrip three-port and four-channel multiplexer for WLAN and UWB coexistence. IEEE Trans. Microw. Theory Tech. 53, 3244–3250 (2005)

    Article  Google Scholar 

  89. Balanis, C.A.: Antenna Theory: Analysis and Design, 2nd edn. Wiley, New York (1997)

    Google Scholar 

  90. Milligan, T.A.: Modern Antenna Design, 2nd edn. Wiley, New York (2005)

    Book  Google Scholar 

  91. Koziel, S., Ogurtsov, S.: Computational-budget-driven automated microwave design optimization using variable-fidelity electromagnetic simulations. Int. J. RF Microw. Comput. Aided Eng. 23, 349–356 (2013)

    Article  Google Scholar 

  92. Koziel, S., Cheng, Q.S., Bandler, J.W.: Space mapping. IEEE Microw. Mag. 9, 105–122 (2008)

    Article  Google Scholar 

  93. Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust Region Methods. MPS-SIAM Series on Optimization (2000)

    Google Scholar 

  94. Koziel, S., Kurgan, P.: Rapid design of miniaturized branch-line couplers through concurrent cell optimization and surrogate-assisted fine-tuning. IET Microw. Antennas Propag. 9, 957–963 (2015)

    Google Scholar 

  95. Mongia, R., Bahl, I., Bhartia, P.: RF and Microwave Coupler-line Circuits. Artech House, Norwood (1999)

    Google Scholar 

  96. Sonnet: version 14.54. Sonnet Software, North Syracuse, NY, Unites States (2013)

    Google Scholar 

  97. Rautio, J.C., Rautio, B.J., Arvas, S., Horn, A.F., Reynolds, J.W.: The effect of dielectric anisotropy and metal surface roughness. In: Proceedings Asia-Pacific Microwave Conference (2010)

    Google Scholar 

  98. Koziel, S., Bekasiewicz, A., Kurgan, P.: Rapid EM-driven design of compact RF circuits by means of nested space mapping. IEEE Microw. Wirel. Compon. Lett. 24, 364–366 (2014)

    Article  Google Scholar 

  99. Agilent, A.D.S.: Version 2011 Agilent Technologies, 1400 Fountaingrove Parkway, Santa Rosa, CA 95403-1799 (2011)

    Google Scholar 

  100. Bandler, J.W., Cheng, Q.S., Nikolova, N.K., Ismail, M.A.: Implicit space mapping optimization exploiting preassigned parameters. IEEE Trans. Microw. Theory Tech. 52, 378–385 (2004)

    Article  Google Scholar 

  101. Liang, J., Chiau, C.C., Chen, X., Parini, C.G.: Printed circular disc monopole antenna for ultra-wideband applications. Electron. Letters. 40, 1246–1247 (2004)

    Article  Google Scholar 

  102. Li, T., Zhai, H., Li, G., Li, L., Liang, C.: Compact UWB band-notched antenna design using interdigital capacitance loading loop resonator. IEEE Antennas Wirel. Propag. Lett. 11, 724–727 (2012)

    Article  Google Scholar 

  103. Li, L., Cheung, S.W., Yuk, T.I.: Compact MIMO antenna for portable devices in UWB applications. IEEE Trans. Antennas Propag. 61, 4257–4264 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slawomir Koziel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Koziel, S., Kurgan, P., Bekasiewicz, A. (2016). Computationally Efficient Design Optimization of Compact Microwave and Antenna Structures. In: Lässig, J., Kersting, K., Morik, K. (eds) Computational Sustainability. Studies in Computational Intelligence, vol 645. Springer, Cham. https://doi.org/10.1007/978-3-319-31858-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31858-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31856-1

  • Online ISBN: 978-3-319-31858-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics