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ABSTRACT

Using a sequence’s k-mer content rather than the full sequence directly has enabled significant
performance improvements in several sequencing applications, such as metagenomic species
identification, estimation of transcript abundances, and alignment-free comparison of sequencing
data. As k-mer sets often reach hundreds of millions of elements, traditional data structures are
often impractical for k-mer set storage, and Bloom filters (BFs) and their variants are used instead.
BFs reduce the memory footprint required to store millions of k-mers while allowing for fast set
containment queries, at the cost of a low false positive rate (FPR). We show that, because k-mers
are derived from sequencing reads, the information about k-mer overlap in the original sequence
can be used to reduce the FPR up to 30 · with little or no additional memory and with set
containment queries that are only 1:3 - 1:6 times slower. Alternatively, we can leverage k-mer
overlap information to store k-mer sets in about half the space while maintaining the original FPR.
We consider several variants of such k-mer Bloom filters (kBFs), derive theoretical upper bounds
for their FPR, and discuss their range of applications and limitations.

Keywords: efficient data structures, genomics, string algorithms, Bloom fitters, k-mers.

1. INTRODUCTION

Many algorithms central to biological sequence analysis rely, at their core, on k-mers—short sub-

strings of equal length derived from the sequencing reads. For example, sequence assembly algorithms

use k-mers as nodes in the de Bruijn graph (Zerbino and Birney, 2008; Pell et al., 2012), metagenomic sample

diversity can be quantified by comparing the sample’s k-mer content against a database (Wood and Salzberg,

2014), k-mer content derived from RNA-seq reads can inform gene expression estimation procedures
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(Patro et al., 2014), and k-mer-based algorithms can dramatically improve compression of sequence (Rozov

et al., 2014; Benoit et al., 2015) and quality values (Yu et al., 2014).

A single sequencing data set could generate hundreds of millions of k-mers making k-mer storage a

challenging problem. Bloom filters (BFs) (Bloom, 1970) are often used to store sets of k-mers because they

require much less space than hash tables or vectors to represent the same k-mer set while retaining the

ability to quickly test for the presence of a specific k-mer at the cost of a low false positive rate (FPR)

(Malde and O’Sullivan, 2009; Shi et al., 2009; Stranneheim et al., 2010; Marçais and Kingsford, 2011; Pell

et al., 2012; Chikhi and Rizk, 2013; Heo et al., 2014; Rozov et al., 2014; Salikhov et al., 2014; Song et al.,

2014; Holley et al., 2015; Solomon and Kingsford, 2016). For example, BFs allow for efficient k-mer

counting (Marçais and Kingsford, 2011), can be used to represent de Buijn graphs in considerably less

space (Pell et al., 2012), and can enable novel applications like inexact sequence search over very large

collections of reads (Solomon and Kingsford, 2016).

The small size of BFs has allowed algorithms to efficiently process large amounts of sequencing data.

However, smaller BF sizes have to be traded off against higher FPRs: a smaller BF will incorrectly report

the presence of a k-mer more often. Sequencing errors and natural variation noticeably increase k-mer set

sizes, with recent long read data driving k-mer set sizes even higher because of these data’s lower overall

quality profiles. To support large k-mer sets, researchers can increase the BF size, choose a more costly

function to compute set containment, or attempt to reduce the FPR through other means.

To eliminate the effects of BF’s false positives when representing a probabilistic de Bruijn graph (Pell et al.,

2012)—where two adjacent k-mers represent an implicit graph edge—one can precompute the false edges in

the graph and store them separately (Chikhi and Rizk, 2013). The results of querying the BF for a k-mer are

modified such that a positive answer is returned only if the k-mer is not in the critical false positive set. The size

of the set of critical false positives is estimated to be 6N f , where N is the number of nodes in the graph (and the

number of k-mers inserted into the BF) and f is the FPR of the BF (Salikhov et al., 2014). Cascading BFs lower

the FPR by storing a series of smaller nested BFs that represent subsets of critical k-mers (Salikhov et al., 2014).

Although specific BF applications achieved improved false positive performance by using additional data

structures, these applications assume the FPR of general-purpose BFs derived in the article that presented

them originally (Bloom, 1970). This FPR is calculated based on the assumption that elements inserted into the

BF are independent. In biological sequencing applications that store k-mers, the elements are not independent:

if all k-mers of a sequence are stored, then there is a k - 1 character overlap between adjacent k-mers. The

information about the presence of the k-mer’s neighbors can be used to infer that the k-mer itself is part of the

set—without the use of additional storage.

We use k-mer nonindependence to develop k-mer Bloom filters (kBFs) with provably lower FPRs. We first

consider a kBF variant in which we are able to achieve more than threefold decrease in FPR with no increase in

required storage and only a modest delay in set containment queries (1:2–1:3 · slower when compared with

classic BF). We then consider a kBF with a stricter set containment criterion that results in more than 30-fold

decrease in FPR with a modest increase in required storage and up to 1:9 · delay in set containment queries.

As the existence of k-mers in the BF can be inferred from the presence of neighboring k-mers, we can

also drop certain k-mers entirely, sparsifying the BF input set. We implement sparsifying kBFs and achieve

k-mer sets that are 51–60% the size of the original set with a slightly lower FPR at the cost of slower set

containment queries.

The space and speed requirements vary between different kBF variants, allowing for a multitude of

applications. In memory-critical algorithms, such as sequence assembly (Pell et al., 2012) and search

(Solomon and Kingsford, 2016), sparse kBF can lower memory requirements, allowing to process larger

read collections. Applications relying on k-mers for error correction (Song et al., 2014) or classification

(Wood and Salzberg, 2014) may benefit from using kBF with guaranteed lower FPRs to confidently identify

sequencing errors and to distinguish between related organisms in the same clade.

2. REDUCING FALSE POSITIVE RATE USING NEIGHBORING k-MERS

When testing a BF for the presence of the query k-mer q, for example, AATCCCT (Fig. 1), the BF will

return a positive answer—which could be a true or a false positive. However, if we query for the presence

of neighboring k-mers xAATCCC k-mers (where x is one of fA‚ C‚ G‚ Tg) and receive at least one positive

answer, we could be more confident that AATCCCT was indeed present in the BF. There is a nonzero
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chance that q is a false positive and its neighbor is itself a true positive; however, this is less likely than the

chances of q being a false positive and thus lowers the FPR. We formally introduce the kBF and derive the

probabilities of such false positive events hereunder.

2.1. One-sided k-mer Bloom filter

We define a kBF that only checks for the presence of a single overlapping neighbor when answering a set

containment query as a one-sided kBF (1-kBF). Each k-mer q observed in the sequence or collection of

sequencing reads is inserted into a BF B independently in the standard way. To test for q’s membership in a

1-kBF, the BF B is first queried for q. If the query is successful, then q is either in the true set of k-mers U or

is a false positive. If q 2 U and all k-mers in U were added to the BF, then the set containment query for q’s

neighbor should return ‘‘true.’’ We generate all eight potential left and right neighbors for q and test

whether B returns true for any of them (Algorithm 1). Under the assumption that every read or sequence is

longer than k, every k-mer will have at least one neighbor in the right or left direction.

Algorithm 1 One-sided kBF contains functions

1: function One-sided_kBF_contains(query)

2: if BF. contains(query) then

3: return contains_set(NEIGHBOR_SET(query))

4: return false

5: function contains_set(set)

6: for kmer ˛ set do

7: if BF. contains(kmer) then return true

8: return false

2.2. Theoretical false positive rate for a one-sided k-mer Bloom filter

We show that the theoretical upper bound for the FPR of a 1-kBF is lower than that for the classic BF

(Bloom, 1970). Suppose we inserted n unique k-mers into a BF of length m using h hash functions. Then the

expected proportion of bits that are still 0 is E = 1 - 1=mð Þhn
and the actual proportion of zeros, p, is

concentrated around this mean with high probability (Broder and Mitzenmacher, 2004). The FPR f is

f = (1 - p)h � (1 - E)h = 1 - 1 - 1=mð Þhn
� �h

: (1)

Let q0 be q’s neighbor that overlaps q by k - 1 characters on either the left or the right side, and let tk be a

probability that a random k-mer is a true positive (i.e., present in the set U). We assume further that the

FIG. 1. The k-mers from a sequence are stored in a Bloom filter. False positives could occur when the bits corresponding

to a random k-mer not in the sequence are set because of other k-mers that are in the Bloom filter. The true k-mers from the

sequence all share sequence overlaps with other true k-mers from the sequence. We show how this overlap can be used to

reduce the false positive rate and sparsify the set of k-mers stored in the kBF. kBFs, k-mer Bloom filters.
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events ‘‘q is a false positive’’ and ‘‘q0 is a false positive’’ are independent because the false positives result

from bits being set by uniform random hashes of other k-mers inserted into the BF. Then the chance that we

get a false positive when testing for the presence of a random k-mer q and one of its eight neighbors q0 is

f 0 = f � Pr(BF returns }True} for at least one of the adjacent k-mers) (2)

= f � 1 - Pr(BF returns }False} for every adjacent k-mer)ð Þ (3)

= f � 1 - Pr(BF returns }False} for an adjacent k-mer)8
� �

(4)

= f � 1 - (1 - Pr(BF returns }True} for an adjacent k-mer))8
� �

(5)

= f � 1 - (1 - (f + tk))8
� �

: (6)

Assuming that k-mers are uniformly distributed, we can estimate tk as the chance of drawing a k-mer

from the set U giving the set of all possible k-mers of length k, or tk = jUj=4k. For reasonably large values of

k � 20, tk will be much smaller than f, allowing us to estimate an upper bound on f 0:

f 0 < f � 1 - (1 - 2f )8
� �

‚ (7)

quantifying how much lower f 0 is than the FPR f for the classic BF.

2.3. Two-sided k-mer Bloom filter

The FPR could be lowered even more by requiring that there is a neighboring k-mer extending

the query k-mer in both directions to return a positive result. This is a two-sided k-mer Bloom filter

(2-kBF). However, this requires dealing with k-mers at the boundary of the input string. In Figure 1, it

can be seen that the first k-mer (TAATCCC) only has a right neighbor and no left neighboring k-mers.

We call this an edge k-mer, which must be handled specially, otherwise the 2-kBF would return a

false negative.

To avoid this, 2-kBF maintains a separate list that contains these edge k-mers. We augment the BF with a

hash table EDGE_k-mer_set that stores the first and last k-mers of every sequence to handle edge cases.

When constructing the kBF from a set of sequence reads, the first and last k-mers of each read are stored. As

reads can overlap, many of the read edge k-mers will not be true edges of the sequence. After all the reads

have been inserted into the BF, each of the stored k-mers is checked to see whether it is an edge k-mer of

the sequence, and if it is, then it is saved in the final table of edge k-mers. The only k-mers that will be

stored in the final edge table are those at the beginning and end of the sequence, or those adjacent to regions

of zero coverage. Pseudocode for querying a 2-kBF is given in Algorithm 2.

Algorithm 2 Two-sided kBF contains function

1: function two-sided_kBF_contains(query)

2: if BF.contains(query) then

3: Contains_left ) contains_set(LEFT_NEIGHBOR_SET(query))

4: Contains_right ) contains_set(RIGHT_NEIGHBOR_SET(query))

5: if Contains_right = = true and Contains_left = = true then

6: return true

7: if Contains_right = = true or Contains_left = = true then

8: if EDGE_k-mer_SET.contains(query) then

9: return true

10: return FALSE

2.4. Theoretical false positive rate for a two-sided k-mer Bloom filter

Ignoring edge k-mers for simplicity and following the same assumptions and derivation as in Sec-

tion 2.2., the FPR for 2-kBF, f 0, is

f 0 = f � Pr (BF returns}True} for at least one of the left adjacent k-mers)�
Pr (BF returns}True} for at least one of the right adjacent k-mers):

(8)
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This leads to

f 0 = f � 1 - (1 - (f + tk))4
� �2

: (9)

An upper bound for this expression can be estimated as

f 0 < f � 1 - (1 - 2f )4
� �2

: (10)

3. USING SEQUENCE OVERLAPS TO SPARSIFY k-MER SETS

We can use the assumption that the set of k-mers to be stored, U, contains k-mers derived from an

underlying string T to reduce the number of k-mers that must be stored in B without compromising the FPR.

If we want to store a set U, we can choose a subset K � U that will be stored in B. The idea is that every

k-mer u 2 U will have some neighbors that precede it and some that follow it in the string T.

Let Lu � U be a set of k-mers that occur before u in T, and let Ru � U be a set of k-mers that occur after

u in T. If we can guarantee that there is at least one k-mer of Lu and at least one k-mer of Ru that are close to

u stored in B, then we can infer the presence of u from the presence of v 2 Lu and w 2 Ru without having to

store u 2 B. By reducing the k-mers that must be kept in B, we can maintain the set U using a smaller filter

B. For example, in Figure 1 the k-mer AATCCCT is preceded by TAATCCC and followed by

ATCCCTT. If these two k-mers are stored in B then the presence of the middle k-mer AATCCCT in the

sequence can be inferred without having to store it in the BF.

More formally, define Pvu to be the set of positions of k-mer v occurring before u in T, and let Auw be the

set of positions of k-mer w occurring after u in T. We then define, for v 2 Lu and w 2 Ru, the set of all

distances between occurrences of these k-mers that span u:

Su(v‚ w) = fiw - ivjiv 2 Pvu; iw 2 Auwg:

For some skip length s, if we can guarantee that min Su(v‚ w) � s for some v‚ w 2 K, then we can infer

the presence of u without storing it in the BF by searching for neighboring k-mers that satisfy

min Su(v‚ w) � s. This leads to the following k-mer sparsification problem.

Problem 1 (Relaxed k-mer sparsification) Given a set of k-mers U, find a small subset K � U such that

for all u 2 U, either u 2 K or there is a k-mer v 2 K \ Lu and w 2 K \ Ru with min Su(v‚ w) � s.

We call this problem the relaxed k-mer sparsification problem. When we require exactly s skipped

k-mers between those k-mers chosen for K, we have the strict k-mer sparsification problem.

Problem 2 (Strict k-mer sparsification) Given a set of k-mers U, find a small subset K � U such that

for all u 2 U, either u 2 K or there is a k-mer v 2 K \ Lu and w 2 K \ Ru with s 2 Su(v‚ w).

In practice, s should be a small integer because the FPR and running time are expected to increase

quickly as s increases.

These sparsification problems would be easy if we could observe T—a solution would be to select every

sth k-mer (Approach 3 hereunder). However, we assume that we see only short reads from T and must

select K as best as possible. Hereunder, we propose three solutions to the k-mer sparsification problem that

are appropriate in different settings.

Approach 1: Best index match per read sparsification (k-mers come from reads; arbitrary s). K will

be built greedily by choosing k-mers from each read. Given a read r, we choose every sth k-mer starting

from a particular index ir, choosing ir such that the set of k-mers Kr chosen for this read has the largest

intersection with the set of k-mers K chosen so far.

Approach 2: Sparsification through approximate hitting set (k-mers come from reads; s = 1). When

s = 1, the relaxed k-mer set sparsification problem can also be formulated as a minimal hitting set problem:

For each k-mer k 2 U, create a set Lk that includes k and every k-mer that immediately preceded it in some

read, and a set Rk that includes k and every k-mer that immediately followed it in some read. Let

L = fLk : k 2 Ug and R = fRk : k 2 Ug. A solution to the minimal hitting problem chooses a minimum size

set K such that at least one k-mer from K is in every set in R and L: 8N 2 fR [ Lg 9k 2 K s:t: k 2 N and

jKj is minimized. We use a greedy approximation for the hitting set problem to choose K, the sparse set of

k-mers. In each step of the greedy approximation, we add the k-mer that hits the most sets in L [ R to K.
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Approach 3: Single sequence sparsification (k-mers come from a known sequence T; arbitrary s). In

the special case in which input sequences are nonoverlapping (e.g., a genome or exome) rather than

multiple overlapping sequences (e.g., the results of a sequencing experiment), we solve the strict k-mer

sparsification problem by taking each k-mer starting from the beginning of the sequence and then skipping s

k-mers. This is a simple and fast way to choose the sparse set K, but restricted only to this special case, and

will not work for sparsifying the k-mers from a set of reads generated in a sequencing experiment. It is

useful, for example, if the input sequences are a reference genome that will be queried against.

Once K has been chosen, a sparse kBF can be queried for k-mers from U using Algorithm 3. Two different

query functions are given: relaxed-contains for when K satisfies the conditions of Problem 1 and strict-

contains for when K satisfies the conditions of Problem 2. We call two k-mers with s skipped k-mers between

them s-distant neighbors. The helper function contains_neighbors determines whether k-mers neighboring

the query k-mer at specified distances to the left and right are present and decide_present determines whether

the query is present depending on whether it has neighboring k-mers or is an edge. The sparse kBF also

maintains a set of edge k-mers that is queried when a k-mer has neighbors in one direction but not the other.

4. RESULTS AND DISCUSSION

We test the performance of the proposed kBFs on a variety of sequencing experiments and compare with

classic BFs. For each test, we store the k-mers from the input file in the kBF and create a query set by mutating

Algorithm 3 Sparse kBF contains functions

1: function decide_present(query‚ Contains left‚ Contains right)

2: if Contains_right = = true and Contains_left = = true then

3: return true

4: If Contains_right = = true or Contains_left = = true then

5: if EDGE_k-mer_SET.contains(query) then

6: return true

7: return false

8: function strict-contains_neighbors(query‚ left dist‚ right dist)

9: Contains_left ) contains_set(s_distant_left_neighbor_set(query‚ left dist))

10: Contains_right ) contains_set(s_distant_right_neighbor_set(query‚ right dist))

11: return decide_present(query, Contains left, Contains right)

12: function relaxed-contains_neighbors(query‚ l dist‚ r dist)

13: Contains_left ) contains_set(
S

i�l dist

s_distant_left_neighbor_set(query‚ i))

14: Contains_right ) contains_set(
S

i�r dist

s_distant_right_neighbor_set(query‚ i))

15: return decide_present(query, Contains left, Contains right)

16: function strict-contains(query‚ s)

17: if BF.contains(query) then

18: if strict-contains_neighbors(query‚ s; s) then

19: return true

20: for i)0 to s - 1 do

21: if strict-contains_neighbors(query‚ i‚ s - (i + 1)) then

22: return true

23: return false

24: function relaxed-contains(query‚ s)

25: if BF.contains(query) then

26: if relaxed-contains_neighbors(query‚ s; s) then

27: return true

28: else

29: for i)0 ! s - 1 do

30: if relaxed-contains_neighbors(query‚ i‚ s - (i + 1)) then

31: return true

32: return false
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k-mers from the input. We test on multiple species and types of experiments that could typically be used in

applications that require BFs over a range of input file sizes. The different data sets are summarized in Table 1.

For all tests, we used a k-mer length of k = 20 and two hash functions in the underlying BF. This choice

of k is long enough that only a fraction of all possible k-mers are present in reasonably large data sets and

shorter than all read lengths and is representative of k-mer lengths used in practice. The BF length is

10 times the number of k-mers inserted into it for each of the input files. For 1-kBF and 2-kBF, the

underlying BF will be exactly the same as the classic BF it is compared to. For sparse kBF, the smaller

sparse k-mer set is stored, so the underlying BF is smaller. The sparse kBFs use a skip length of s = 1. The

implementations of the kBF variants described wrap around the basic BF implementation from libbf (http://

mavam.github.io/libbf), which is used for the classic BF.

To create a query k-mer set for testing, we randomly select (uniformly, with replacement) 1 million

k-mers from the input file and mutate one random base. This creates a set of k-mers that are close to the real

set, and will, therefore, have realistic nucleotide sequences while still providing many negative queries to

test the FPR. For one experiment (SRR1031159), we also query with 1 million true queries (not mutated) to

determine the worst-case impact on query time.

4.1. One-sided and two-sided k-mer Bloom filter performance

The 1-kBF and 2-kBF implementations achieve substantially better FPRs than the classic BF (Table 2) at

the cost of some query time overhead (Fig. 2). For the 1 million mutated queries, only about one-quarter of

the queries are true positives, and 1-kBF and 2-kBF take 1.3 and 1.6 times as long to perform the queries,

respectively. In the worst case, when all of the queries are true positives (SRR1031159 TP), 1-kBF and

2-kBF are 3.3 and 5.8 times slower, respectively, whereas the speed of the classic BF does not change.

1-kBF has an FPR less than one-third of the classic BF FPR at a cost of an extra one-third the query

time. Query times are extremely low, and this extra cost totals less than half a second to perform 1 million

queries.

Table 1. Read Sets on Which k-mer Bloom Filter Variants Were Tested

Accession Type Read count Read length

ERR233214_1 WGS of Pseudomonas aeruginosa 7,571,879 92

SRR1031159_1 Metagenomic, WGS 674,989 101

SRR514250_1 Metagenomic, WGS 44,758,957 100

SRR553460 Human RNA-seq 66,396,200 49

chr15 Human chromosome (hg19) 1 81Mbp

Only reads without ‘‘N’’ bases were included.

kBFs, k-mer Bloom filters; WGS, whole-genome sequencing.

Table 2. False Positive Rates

Accession Classic 1-kBF 2-kBF

Sparse

Best match hitting set

ERR233214_1 0.0329 0.0104 0.0009 0.0284 0.0311

SRR1031159_1 0.0329 0.0104 0.0009 0.0279 0.0306

SRR514250_1 0.0329 0.0106 0.0010 0.0290 —

SRR553460 0.0329 0.0104 0.0009 0.0285 0.0314

Chr15 0.0328 0.0104 0.0009 0.0284 0.0309

Theoretical FPR 0.0328 <0.0138 <0.0019 — —

Comparison of FPRs for classic Bloom filters and the different kBF implementations. The

theoretical FPRs are also shown in the last row [calculated according to Eqs. (1), (7), and

(10)]. Hitting set sparsification uses the relaxed contains function, whereas best match uses

the strict contains function. The sparse hitting set results for SRR514250_1 are missing

because the method never completed on this data set.

FPR, false positive rate.
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The 2-kBF requires a special data structure that stores the set of edge k-mers that may not be found

because there is no adjacent k-mer on one side. The total number of k-mers and the number of k-mers in the

edge set of each file are compared in Table 3. There is also extra memory and speed overhead during the

2-kBF creation: as the sequence file is read in and split into k-mers, a set of k-mers at the edges of all reads

(which could potentially be sequence edges that need to be stored separately) is maintained. After k-mers

are inserted into the BF, the edges are checked, and only the true sequence edges, which do not have

neighboring k-mers on both sides, are stored. We do not optimize the kBF implementations for the one-time

cost of creating the k-mer set and populating the BF, but note that the potential edge set could be pruned on

the fly, keeping it smaller than the maximum size achieved here. We report the number of potential edge

k-mers stored in the edge set and the amount of extra time to check the edges in Table 3. In all tested cases,

the number of edge k-mers stored is a small fraction of the total number of k-mers, reaching at most 6% of

the total. It is smallest when there are very few true sequence edges (in the single chromosome) and can be

large if there are many reads with errors in the edge k-mers or many areas with zero coverage. If this

overhead can be tolerated, applications could use 2-kBF to achieve significantly lower FPRs.

2-kBF provides an FPR that is 30 · smaller than classic BFs with a small query time penalty. 2-kBF also

has a one-time cost of initialization to keep track of all potential edge k-mers and then determine the true

edges. The extra time for this is only a small fraction of the total initialization cost. However, a large

FIG. 2. Query times. Comparison of the time to query 1 million k-mers in classic BF and the different kBF implementations

(average of 10 runs).

Table 3. Two-Sided k-mer Bloom Filter Overhead

Accession No. of k-mers

No. of

edge k-mers

No. of potential

edge k-mers

Initialization

time (fold change)

ERR233214_1 41,766,273 1,134,617 6,310,923 1.632 ·
SRR1031159_1 29,937,099 632,996 1,088,645 1.162 ·
SRR514250_1 442,498,904 6,656,205 53,063,633 1.813 ·
SRR553460 196,863,538 12,271,956 38,806,654 2.453 ·
Chr15 70,240,374 1 2 0.909 ·

The number of extra edge k-mers that are stored for two-sided kBF (2-kBF) is compared with the total

number of k-mers. The one-time initialization overhead includes keeping track of all potential edge k-mers

and extra time to query which are the true edge k-mers. The number of potential edge k-mers is compared

with the number of true edge k-mers and with the total number of k-mers. The initialization time for 2-kBF

is shown as a fold-change over populating the classic Bloom filter with the k-mer set (average of 10 runs).
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number of potential edge k-mers are stored during initialization. This number depends on the number of

unique reads, and for the data sets with few long reads, that is, the single chromosome, there is very little

overhead, whereas when there are many reads, the first and last k-mers of each read could be stored.

4.2. Sparse k-mer Bloom filter performance

The sparse kBF implementations achieve slightly better FPRs than the classic BFs while using a smaller

filter. We report the FPRs for the best index match and hitting set implementations of sparse kBF in

Table 2. We do not report specific results for single sequence sparsification (Approach 3) because we found

in practice the results are the same as for best match sparsification in the cases in which it is relevant. When

a sparse set of k-mers is used, sparse kBF is able to use the sequence overlap to recover a similar FPR for

this smaller set of k-mers.

The sparsification performance of the different implementations is compared in Table 4. The sparsifi-

cation methods perform well, with the best match achieving close to the ideal size of one half the number of

k-mers. The hitting set sparsification method does not perform as well, choosing a k-mer set that is roughly

10% larger than the best match method.

Sparse kBF queries are significantly slower than classic BF queries. The speeds to perform 1 million queries

for the classic BF and the different sparse kBF implementations are shown in Figure 2. The time overhead of

querying neighboring k-mers is about 10 times that for a classic BF, but is still only around 1–2 seconds for 1

million queries. In memory-constrained applications, it could be worth paying this time penalty for smaller

k-mer sets. The time overhead will grow exponentially as s is increased, but even very small s (such as s = 1

shown in our experiments) significantly reduces the size of the stored k-mer set. Similarly, as s increases, the

FPR will increase, but as shown here, for small s, the FPR is comparable to the FPR of a classic BF.

The hitting set sparsification implementation has a very large memory footprint and takes a lot of time to

choose the sparse k-mer set. For the largest file (SRR514250), the implementation uses up all available

RAM and does not complete after running for several days. Table 5 compares the total time to split the

input sequences into k-mers, choose the k-mer set, determine the edge k-mers, and populate the BF for the

different sparsification implementations and 2-kBF. We compare with 2-kBF because it also has edge

Table 4. Number of k-mers Selected by Sparse k-mer Bloom Filter

Accession

No. of

k-mers classic

No. of k-mers

best match

No. of k-mers

hitting set

ERR233214_1 41,766,273 21,783,670 23,635,764

SRR1031159_1 29,937,099 15,120,795 16,992,976

SRR514250_1 442,498,904 237,264,629 —

SRR553460 196,863,538 102,224,726 115,593,454

Chr15 70,240,374 36,064,290 39,152,979

Comparison of the number of k-mers in the sparsified k-mer set for the different

implementation methods and for the classic Bloom filter.

Table 5. Sparse k-mer Bloom Filter Overhead

Accession

Initialization memory

overhead (GB)

Initialization time

overhead (sec)

2-kBF Best match Hitting set 2-kBF Best match Hitting set

ERR233214_1 3.45 4.26 42.00 121.9901 192.7540 857.8472

SRR1031159_1 1.62 2.07 28.67 21.7156 21.5318 373.4421

SRR514250_1 29.54 38.41 — 1342.1470 1856.5640 —

SRR553460 17.85 22.55 198.18 699.4796 932.5057 6012.9880

Chr15 3.94 4.49 67.04 43.5708 25.7702 844.1708

Comparison of the one-time overhead for the initialization of the sparse kBF implementations. The

one-time cost of splitting the sequences into k-mers, choosing the k-mer set, checking the edge k-mers,

and inserting them into the Bloom filter is reported. The hitting set implementation for SRR514250_1

used up all available memory and did not complete running. Results are the averages over 10 runs.
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k-mers, making it the most similar nonsparse implementation to the sparse kBF implementations. The

memory overhead of initialization (measured as the maximum resident set size of the process) is also

compared in Table 5.

The relaxed contains function, which must be used when K is selected using the hitting set formulation,

needs to check more possible neighboring k-mers, making the hitting set sparsification queries slower than

the other implementations. The hitting set implementation also does not do as good a job of sparsifying the

original set of k-mers. Hitting set sparsification also takes orders of magnitude more memory and time than

the other methods and the nonsparse kBF implementation.

In contrast to the hitting set sparsification, best match sparsification achieves close to one half of the

original k-mer set with little extra overhead in initialization time or memory. The strict contains function for

sparse kBF also has a better FPR than the relaxed version and takes less time to perform 1 million queries. In

practice, there is little difference between the best match sparsification and single sequence sparsification,

because they will both yield approximately the same k-mer set in a case in which single sequences are being

sparsified. These results mean that best match sparsification is the simplest and best way to sparsify any set of

sequences, without having to determine whether it is a special case of nonoverlapping sequences.

5. CONCLUSION

Together, the possibilities of drastically reducing the FPR or reducing the size of the BF have the potential

to enable continued performance improvements in many applications that use BFs to store k-mers from

sequences. Such performance improvements are necessary to allow biological sequence applications to

continue to scale to larger and many more experiments. One direction for future work is improving the

running time of the sparse variants, which, although still fast, incur a slowdown compared with the nonsparse

versions. We expect that 1-kBF, 2-kBF, and sparse kBF data structures will be useful in genome assembly,

sequence comparison, and sequence search applications, among other genomic analysis problems. See the

first Reference for a reference implementation of kBF (Pellow et al., 2016).
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