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A MAD-Bayes Algorithm for State-Space Inference

and Clustering with Application to Querying Large

Collections of ChIP-Seq Data Sets
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ABSTRACT

Current analytic approaches for querying large collections of chromatin immunoprecipitation
followed by sequencing (ChIP-seq) data from multiple cell types rely on individual analysis of
each data set (i.e., peak calling) independently. This approach discards the fact that functional
elements are frequently shared among related cell types and leads to overestimation of the
extent of divergence between different ChIP-seq samples. Methods geared toward multi-
sample investigations have limited applicability in settings that aim to integrate 100s to 1000s
of ChIP-seq data sets for query loci (e.g., thousands of genomic loci with a specific binding
site). Recently, Zuo et al. developed a hierarchical framework for state-space matrix inference
and clustering, named MBASIC, to enable joint analysis of user-specified loci across multiple
ChIP-seq data sets. Although this versatile framework estimates both the underlying state-
space (e.g., bound vs. unbound) and also groups loci with similar patterns together, its
Expectation-Maximization-based estimation structure hinders its applicability with large
number of loci and samples. We address this limitation by developing MAP-based asymptotic
derivations from Bayes (MAD-Bayes) framework for MBASIC. This results in a K-means-
like optimization algorithm that converges rapidly and hence enables exploring multiple
initialization schemes and flexibility in tuning. Comparison with MBASIC indicates that this
speed comes at a relatively insignificant loss in estimation accuracy. Although MAD-Bayes
MBASIC is specifically designed for the analysis of user-specified loci, it is able to capture
overall patterns of histone marks from multiple ChIP-seq data sets similar to those identified
by genome-wide segmentation methods such as ChromHMM and Spectacle.

Keywords: ChIP-Seq, MAD-Bayes, small-variance asymptotics, unified state-space inference

and clustering.

1. INTRODUCTION

Many large consortia (e.g., ENCODE [The ENCODE Project Consortium, 2012], REMC [Roadmap

Epigenomics Consortium, 2015]) as well as investigator-initiated projects generated large collec-

tions of chromatin immunoprecipitation followed by sequencing (ChIP-seq) data profiling multiple proteins
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and histone modifications across a wide variety of systems. Most current approaches for analyzing data from

multiple cell types perform initial analyses such as peak calling in ChIP-seq independently in each cell/tissue/

treatment type. This approach ignores the fact that functional elements are frequently shared between related

cell types and leads to an overestimation of the extent of functional divergence between the conditions.

Although the uniform processing pipelines developed by data-generating consortia and the resulting analysis of

consortia data enable easy access to these data, joint analysis approaches that take advantage of the inherent

relationships between data sets and cell types are required. Joint inference for ChIP-seq data sets can be

formulated as inferring for each locus whether or not it exhibits ChIP-seq signal in a given condition and also

grouping loci based on their profile similarity across multiple samples.

It is now widely accepted that joint analysis of these types of data can uncover signals that are otherwise

too small to detect from a single experiment (Bardet et al., 2012; Bao et al., 2013). Among the available joint

analysis methods, jMOSAiCS (Zeng et al., 2013) builds on ChIP-seq peak-caller MOSAiCS (Kuan et al.,

2011) and incorporates a multilayer hidden states model that governs the relationship of enrichment among

different samples. Bao et al. (2014 utilize a one-dimensional Markov random field model to account for

spatial dependencies along the genome while modeling individual components by mixtures of Zero Inflated

Poisson or Negative Binomial models. dCaP (Chen et al., 2014) uses a three-step log-likelihood ratio test to

jointly identify binding events in multiple experimental conditions. ChromHMM (Ernst and Kellis, 2010) and

Segway (Hoffman et al., 2012) are two commonly adopted approaches for segmenting the genome into

chromatin states based on histone ChIP-seq and rely on hidden Markov models (HMMs) and Bayesian

Networks, respectively. Recently, Spectacle (Song and Chen, 2015) provided a transformative improvement

of ChromHMM by utilizing spectral learning for parameter estimation in HMMs. hiHMM (Sohn et al., 2015)

uses a Bayesian nonparametric formulation of the HMMs while taking into account species-specific biases.

Overall, available strategies for considering multiple ChIP-seq data sets simultaneously can be broadly

classified based on (i) whether or not they can deal with only transcription factors (TFs) (Liang and Kelesx,

2012; Mahony et al., 2014), only histone modifications (Ernst and Kellis, 2010; Song and Smith, 2011;

Ferguson et al., 2012; Hoffman et al., 2012; Song and Chen, 2015), or both (Bao et al., 2013; Zeng et al.,

2013) types of ChIP-seq data; (ii) whether or not they rely on a priori analysis of individual data sets (Ernst

and Kellis, 2010; Ferguson et al., 2012; Liang and Kelesx, 2012; Mahony et al., 2014; Song and Chen, 2015),

(iii) whether or not they focus on differential occupancy and can handle very few number of conditions

(Taslim et al., 2011; Liang and Kelesx, 2012; Ji et al., 2013), (iv) whether or not they can scale up to 100s to

1000s of data sets. These approaches, with the potential exception of Song and Chen (2015), do not scale up

to 100s to 1000s of data sets because they, to a large extent, utilize variants of hidden Markov models and/or

implement variants of the Expectation-Maximization (EM) algorithm (Dempster et al., 1977) for parameter

estimation. Furthermore, none of these approaches accommodate querying of multiple data sets for selected

loci. Their analysis results serve to ‘‘annotate’’ user-specified loci without any notion of uncertainty.

We recently introduced MBASIC (Zuo et al., 2016) as a probabilistic method for querying multiple ChIP-

seq data sets jointly for user-specified loci. When multiple ChIP-seq data sets (multiple TFs profiled in

different cell/tissue types under a variety of conditions) are available, the key inference encompasses both

identifying peaks in individual data sets (state-space mapping) and identifying groups of loci that cluster

across different experiments (state-space clustering). At the core of MBASIC are biologically validated and

commonly adapted models for measurements from individual experiments (e.g., read data models from Kuan

et al., 2011, and Zuo and Kelesx, 2014 for state-space mapping) and a mixture model for clustering of the loci

with similar state-space mapping. Parameter estimation in this versatile model is based on the EM algorithm

and hence does not scale up with large number of user-specified loci and ChIP-seq data sets.

In this article, we adopt a small-variance asymptotics framework for MBASIC and derive a K-means-like

MAP-based asymptotic derivations from Bayes (MAD-Bayes) algorithm (Broderick et al., 2013). This

alternative estimation framework for MBASIC targets at large-scale data sets and genomic loci. Specifically,

we consider a mixture of Log-normal distributions for state-specific observations with a Chinese Restaurant

Process (CRP) (Blackwell and MacQueen, 1973; Aldous, 1983) as the clustering prior. Small-variance

asymptotics for maximizing the posterior distribution leads to a K-means like objective function with a key

penalty term for the number of clusters. Extensive comparisons with MBASIC indicate that this approach can

significantly speed up model estimation without significant impact on the estimation performance. Although

methods such as ChromHMM and Spectacle inherently have a different purpose than MAD-Bayes MBASIC,

we compared the three on histone ChIP-seq data from GM12878 cells. This comparison indicated that

MAD-Bayes MBASIC can capture the overall patterns that these segmentation methods identify.
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2. METHODS

We begin our exposition with an overall description of the Bayesian MBASIC model (Fig. 1) and then

derive the MAD-Bayes algorithm. Some key aspects of our approach are model initialization and tuning

parameter selection. Although these aspects arise in all of the already mentioned joint analysis methods,

they are typically not well studied because of computational costs.

2.1. The Bayesian MBASIC model

We consider I genomic loci of interest, indexed from i = 1‚ � � � ‚ I, from the reference genome with

observations from K different experimental conditions. We use the notion of loci loosely in the sense that

these loci could correspond to promoter regions of genes (all or members of specific pathways), locations

of genome with a specific TF binding motif, or peaks from a specific ChIP-seq experiment. The K

conditions denote different TFs and cell/tissue types. Then, the key inference concerns analyzing I loci

based on these K experiments.

To further motivate the circumstances this inference problem arises, we consider an example from

GATA-factor biology. In Hewitt et al. (2015), we were interested in an overall analysis of all the E-box-

GATA composite elements based on all the ENCODE ChIP-seq data to identify sites similar to the

functional E-box-GATA composite element at the +9.5 loci that is causal for MonoMAC disease (a rare

genetic disorder associated with myelodysplasia, cytogenetic abnormalities, and myeloid leukemias)

( Johnson et al., 2012). The E-box-GATA composite elements are represented by CANNTGN{6-

14}AGATAA oligonucleotides, where N denotes any nucleotide and N{6-14} denotes any nucleotide

sequence of length 6 to 14 bps, and are found abundantly in the genome, for example, hg19 harbors

*102K of them. Joint analysis of these loci over, for example, all the available ENCODE TF ChIP-seq

data sets (*880 based on www.encodeproject.org) to identify groups of loci that are similar to the +9.5

FIG. 1. Overview of the MBASIC modeling framework. Curves within each panel depict different replicates under

the experimental conditions C1, C2, and C3. Loci A and D are in the same cluster.
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element represents one potential application. In the MBASIC framework, the binding states are gov-

erned by a clustering structure, which groups genomic loci with similar overall binding states across

experiments together. For the E-box-GATA composite elements example, in addition to the binding

states for each candidate loci across experiments, MBASIC also reports a clustering of loci based on the

binding states. The cluster with the +9.5 loci harbors candidate E-box-GATA elements to follow up

Hewitt et al. (2015).

Let nk denote the number of experimental replicates for the k-th condition. We denote the obser-

vation for the i-th locus under condition k for the l-th replicate by Yikl, for 1 � i � I, 1 � k � K, and

1 � l � nk. We assume that a latent state is associated with the i-th locus and the k-th condition. hiks is

the indicator for the state to be s, where s takes values in a discrete state-space f1‚ � � � ‚ Sg. In a ChIP-

seq experiment, we typically have S = f1‚ 2g, where hik1 = 1 or hik2 = 1 indicates that the i-th locus is

unenriched (unbound) or enriched (bound) under condition k, respectively. Our model consists of two

key components. The first component, state-space mapping, assumes the following distribution of Yikl

conditional on hik:

(Yikljhiks = 1) *i:i:d: fs( � jlkls‚ rkls‚ cikls)‚

where fs is a density function. Its parameters lkls, rkls, and cikls denote covariates encoding known infor-

mation for locus i. Note that cikls carries information related to how the counts for unenriched loci arise

(when hik = 0), that is, data from control input experiments, guanine-cytosine (GC) content, and mappability

(Zuo and Kelesx, 2014). In this article, we take fs to be Log-normal distribution to represent ChIP-seq read

counts after potential normalization for mappability and GC content:

( log (Yikl + 1)jhiks = 1) *i:i:d:N (lklscikls‚ r2
kls)‚ (1)

where we utilize conjugate priors lkls*N (n‚ s2) and r2
kls*Gamma(x‚ �).

The second part of the Bayesian MBASIC model is state-space clustering. We assume that the loci can

be clustered into J groups denoted by C1; � � � ‚ CJ , that is, f1‚ 2‚ � � � ‚ Ig = C1 [ � � � [ CJ . Let zij = 1 if the i-th

locus belongs to cluster j and 0 otherwise. The states for the loci within the same cluster follow a product

multinomial distribution:

(hiks)
S
s = 1jzij = 1 *i:i:d: Multinomial 1‚ (wjks)1�s�S

� �
‚
XS

s = 1

wjks = 1‚ (2)

with noninformative prior (wjks)1�s�S*Dir(1‚ 1‚ � � � ‚ 1). We further assume a CRP (Aldous, 1983) as a

prior for the number of clusters J. Let a be a hyperparameter of the model. The first locus forms C1 at the

start and each locus gets assigned to a cluster recursively. Suppose we have assigned loci 1‚ � � � ‚ i - 1 to J0

clusters. The i-th locus is then assigned to Cj0 ; j
0 � J0 with probability proportional to the size of Cj0 . It can

also form a new cluster Cj0 + 1 with probability proportional to a. Then, the prior density for a partition with

J clusters is

f (zij; i = 1‚ � � � ‚ I‚ j = 1‚ � � � ‚ J) = aJ - 1 G(a + 1)

G(a + I)

YJ

j = 1

XI

i = 1

zij - 1

 !
!: (3)

With these specifications, we can derive the posterior density of the model for parameter estimation.

Although the resulting posterior density leads to a Gibbs sampling algorithm, such a Gibbs sampling

scheme requires excessive computational time for mixing (data not shown). Therefore, we derive a MAD-

Bayes algorithm by utilizing small-variance asymptotics.

2.2. MAD-Bayes algorithm

We further make the following small-variance assumptions for the MBASIC model:

Assumption 1. All data sets have equal variance: r2
kls = r2 ! 0.

Assumption 2. For a given cluster and condition, one of the hidden states dominates with wjks 2
f1 - (S - 1)e - kw=r2

; e - kw=r2g for kw > 0.
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Assumption 3. a = e - kwkr=2r2 !r
2!0

0 for kw; kr > 0.

Proposition 1. Under 1, 2, 3, and as r2 ! 0, the posterior density reduces to

- 2r2 log P(h‚ z‚ l‚ r‚ w‚ JjY)

=
PI
i = 1

PK
k = 1

Pnk

l = 1

PS
s = 1

hiks[ log (yikl + 1) - lklscikls]
2

+ kw

PI
i = 1

PJ
j = 1

zij

PK
k = 1

PS
s = 1

(hiks - wjks)
2

� �
+ kwkr(J - 1) + Constant + o(1):

(4)

This proposition implies that the MAP estimate of the MBASIC framework with CRP and Log-

normal mixture model is asymptotically equivalent to the solution of the following optimization

problem:

min
l‚ z‚ h‚ w‚ J

XI

i = 1

XK

k = 1

Xnk

l = 1

XS

s = 1

hiks[ log (yikl + 1) - lklscikls]
2

+ kw

XI

i = 1

XJ

j = 1

zij

XK

k = 1

XS

s = 1

(hiks - wjks)
2

" #
+ kwkr(J - 1)‚

(5)

where the objective function can be viewed as a weighted loss function that integrates the state inference

error from Log-normal density as the first term, the clustering error as the second term, and the cost for

creating new clusters as the third term. Here, kw > 0 and kr > 0 are tuning parameters that ensure that the

cluster assignments are nontrivial. The equal-variance assumption is inherently quite strong for ChIP-seq

data; however, it was recently shown to work well as a first approximation in a differential ChIP-seq

analysis context ( Ji et al., 2013). We next derive the MAD-Bayes algorithm to generate a local solution for

this minimization problem (Algorithm 1).

We note that each step of this algorithm does not increase the objective function in Equation (5), and the

updates for wjks’s and lkls’s minimize the objective function for a fixed configuration of hiks’s and zij’s.

Moreover, there are finite number of combinations for hiks’s and zij’s such that no cluster is empty and all

clusters are distinct from one another. With such observations, we conclude the convergence of this

algorithm.

Proposition 2. Algorithm 1 converges after a finite number of iterations to a local minimum of the

objective function in Equation (5).

2.3. Model initialization

Similar to the EM algorithm variants for HMMs, the MAD-Bayes algorithm for MBASIC also converges

to a local solution and hence can be sensitive to initial starting values. We present a guided two-stage

initialization strategy for the states and clusters to attenuate the impact of initialization. We start from

initialization of the states by minimizing the state inference error [the first term in Eq. (5)], which has a

degenerate form if kw = 0:

min
l‚ h

XI

i = 1

XK

k = 1

Xnk

l = 1

XS

s = 1

hiks[ log (yikl + 1) - lklscikls]
2: (6)

Therefore, we use Algorithm 1 by setting kw = 0 to initialize hiks’s and lkls’s.

We utilize these initial values of hiks’s and consider three options for the cluster initialization (i.e., zij’s

and wiks’s): K-means, K-means++, and Adaptive K-means++, where the first two require a predetermined

number of clusters J, which we discuss in Section 2.4. The K-means option runs hard K-means algorithm

on the hiks’s, whereas the K-means++ option assigns a cluster label to each unit i with probability inversely

proportional to its distance to the current clusters di =
PJ

j = 1 zij

PK
k = 1

PS
s = 1 (hiks - wjks)

2. The adaptive

K-means initialization uses a K-means++ style, but increases the number of clusters from J = 1, until the

value of the function in Equation (7) does not decrease.
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2.4. Selecting the tuning parameters

We note that the CRP prior for the number of clusters and the small-variance asymptotics assumptions

introduce tuning parameters for the MAD-Bayes algorithm (Algorithm 1). Even for the models with one

tuning parameter, Broderick et al. (2013) acknowledged the difficulty in choosing their appropriate values in

practice. Hence, we propose an empirically motivated method for tuning parameter selection. In practice, we

do not expect our small-variance assumption e - kw=r2 ! 0 as r2 ! 0 to hold rigidly for real data; however, we

expect e - kw=r2

to be small since it represents the prior probability of enrichment. To maintain the relative small

value of e - kw=r2

, we set kw as 2r̂2 with r̂2 obtained by optimization of the first term in Equation (5):

r̂2 = min
l‚ h

XI

i = 1

XK

k = 1

Xnk

l = 1

XS

s = 1

hiks[ log (yikl + 1) - lklscikls]
2:

Our computational experiments (data not shown) indicate that varying kw in the order of r̂2 does not

impact model estimation. The kr parameter mediates between the clustering error and the cost of the

number of clusters for fixed kw. We choose a set of candidate kr values by considering the conjugacy

between kr and J. Suppose J is a global minimum of the objective function in Equation (5), then fixing

hiks’s, kw, and kr, J minimizes

XI

i = 1

XJ0

j = 1

zij

XK

k = 1

XS

s = 1

(hiks - wjks)
2

" #
+ kr(J - 1): (7)

Algorithm 1: The MAD-Bayes algorithm for the Bayesian MBASIC model.

repeat

1. Update the cluster labels zij’s. For each i = 1‚ � � � ‚ I, compute the

distance between locus i and each existing cluster j = 1‚ � � � ‚ J as:

tj =
XK

k = 1

XS

s = 1

hiks - wjks

� �2

and find the minimal j0 = arg min tj. If tj0 < kr , assign zij0
= 1.

Otherwise, generate a new cluster J + 1 with a single locus i.

2. Assign the states hiks’s. For i = 1‚ � � � ‚ I, k = 1‚ � � � ‚ K, and s = 1‚ � � � ‚ S,

let

s0) arg min
s

Xnk

l = 1

log (yikl + 1) - lklscikls½ �2

+ kw

XJ

j = 1

zij (1 - wjks)
2 +
X
s06¼s

w2
jks0

" #

and let hiks0
= 1, hiks = 0 for s 6¼ s0.

3. Update the Log-normal mean parameters lkls’s. For k = 1‚ � � � ‚ K,

l = 1‚ � � � ‚ nk, and s = 1‚ � � � ‚ S,

lkls)

PI
i = 1 hiks log (yikl + 1)ciklsPI

i = 1 hikscikls

:

4. Update the multinomial parameters wjks’s. For j = 1‚ � � � ‚ J,

k = 1‚ � � � ‚ K, and s = 1‚ � � � ‚ S,

wjks)

PI
i = 1 zijhiksPI

i = 1 zij

:

until Convergence;
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Therefore, we let

L(J0) = min
z‚ w

XI

i = 1

XJ0

j = 1

zij

XK

k = 1

XS

s = 1

(hiks - wjks)
2

" #( )
;

with L(J) - L(J + 1) � kr � L(J - 1) - L(J) (Appendix Fig. 1). Algorithm 2 applies this idea to choose a list

of candidate kr values up to the square root of total number of instances.

Finally, we use the Silhouette score (Rousseeuw, 1987), which has been successfully used for evaluating

goodness of fit in clustering, across these values of the tuning parameters.

3. RESULTS

3.1. Computational experiments

We designed computational experiments to evaluate MAD-Bayes MBASIC in settings where the un-

derlying truth is known. In our experiments, we considered I user-specified loci (e.g., promoters from I

genes, binding sites of a TF, or peaks from a ChIP-seq experiment). Given multiple simulated ChIP-seq

data sets, there are different ‘‘baseline’’ methods for performing these loci-focused analyses. Therefore, in

addition to MBASIC, we considered such alternative approaches that practitioners might adopt.

- MBASIC: The EM algorithm on the full MBASIC model, where singleton, that is, unclusterable, loci

are also taken into account.

- SE-HC: A two-stage method with first state estimation on individual data sets (i.e., conventional peak

calling), and then combining the results by hierarchical clustering on the posterior probabilities of the

states ~hiks = P(hiks = 1jY) from the first stage.

- SE-MC: A two-stage method with first state estimation on individual data sets (i.e., conventional peak

calling), and then combining the results by mixture clustering on the binarized results h�iks0
= 1, where

s0 = arg maxs P(hiks = 1jY) from the first stage.

- PE-MC: A two-stage method with first parameter estimation on individual data sets to determine the

state-specific observation distributions (e.g., distributions of the read counts), and then combining the

results by simultaneous state inference and mixture clustering. This is essentially similar to MBASIC,

except that state-specific densities are fixed and not updated at every iteration.

The alternatives to MBASIC use two-stage procedures for model estimation, decoupling either the esti-

mation of the state-space variables or the distributional parameters from the mixture modeling of state-space

clustering. For example, SE-HC corresponds to overlapping user-specified loci with the peak sets from the

ENCODE project and generating and clustering the binary overlap or peak confidence profiles of the loci. In

contrast, PE-MC is analogous to estimating the distributional parameters of state-space for each individual

experiment separately and then clustering with these fixed distributions as in Wei et al. (2012) and Zeng et al.

(2013). These benchmark algorithms are in spirit analogous to procedures in many applied genomic data

analyses, where the association between observational units is estimated separately from the estimation of

individual data set-specific parameters (Gerstein et al., 2012; Wei et al., 2012; Wei et al., 2015).

For the MAD-Bayes algorithm, we evaluated all the three clustering initializations: Adaptive K-means,

K-means, and K-means++. The MAD-Bayes algorithm automatically selects the number of clusters. We

used the Silhouette score for SE-HC to accommodate hierarchical clustering and used Bayesian Information

Algorithm 2: Algorithm for choosing m candidate kr values.

1. Compute the surrogate values of L(J0) for 1 � J0 � º
ffiffi
I
p

ß := Jmax.

2. Let k0j = (L(j - 1) - L(j + 1))=2 for 2 � j � Jmax - 1.

3. Choose 1
m + 2

-th, 1
m + 2

-th, � � � ‚ m
m + 2

-th quantile in the fk0rg as candidate

values.

4. Given a selected kr, choose the initial number of clusters as

J) arg minjjk0j - krj.
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Criterion for the other methods. The experiments utilized I = 4000 genomic loci, J = 10 clusters, and K = 20

experimental conditions. For each condition, the number of replicates, nk, was drawn from 1 to 3 with

probabilities (0:3‚ 0:5‚ 0:2). The clustering concentration parameter was simulated from noninformative prior

a*Dir(0:1‚ � � � ‚ 0:1). The state probabilities, wjks’s, were simulated from Dir(1‚ � � � ‚ 1). The Log-normal

parameters were set as follows: the mean was simulated from N(2s; 0:052), where s represented the state

label, and the standard error was set to 0:5. We considered four scenarios by varying the number of states S

between 2 and 4, and the proportion of singleton loci as f = 0‚ 0:4. Here, singletons represented loci with

overall ChIP-seq enrichment profile different than the clusters, that is, unclusterable locus, and introduced

noise to the model. Results for each setting were summarized over 10 simulated data sets. We compared the

algorithms in terms of run time, state-space inference (identifying whether or not each locus is bound), and

also the clustering structure through the adjusted Rand index (Rand, 1971).

Figure 2a displays run-time comparisons of the methods and indicates that all three implementations of

the MAD-Bayes algorithm are about 100 times faster than the EM on full MBASIC and the PE-MC

algorithm, and about 10 times faster than the two-step SE-HC and SE-MC algorithms. This speed im-

provement is significant and makes it possible for the MBASIC framework to scale up. For example, MAD-
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FIG. 2. (a) Run-time comparisons on a 64 bit machine with Intel Xeon 3.0 GHz processor and 64GB of RAM and

eight cores. (b) State-space prediction error. (c) Clustering accuracy based on the adjusted Rand index. (d) Clustering

assignments of the singletons when f = 0:4:
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FIG. 3. (a) Comparison of clusters and state labels between MAD-Bayes, Spectacle, and ChromHMM. (b) Jaccard

index between MAD-Bayes clusters and ChromHMM states. (c) Jaccard index between MAD-Bayes clusters and

Spectacle states. The diagonal blocks indicate agreement between clusters and states; MAD-Bayes clusters and

Spectacle states are ordered according to their overlap with the ChromHMM states. MAD-Bayes, MAP-based as-

ymptotic derivations from Bayes.
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Bayes algorithm can process I = 100‚ 000 and K = 2000 (e.g., 100‚ 000 DNase accessible regions in the

genome across all the available ENCODE ChIP-seq data) in about 6 hours, whereas the EM algorithm on

full MBASIC requires more than a week.

We also observe that speedup in run time does not come at a significant loss in accuracy. Figure 2b

compares state-space prediction errors of the algorithms and indicates that although MAD-Bayes MBASIC

does not perform as accurately as the EM algorithm on full MBASIC and PE-MC, it performs significantly

better than SE-HC and SE-MC algorithms, both of which would be the baseline choices for many prac-

titioners. Existence of singleton genomic loci deteriorates performance of all the algorithms. When there

are no singletons, MAD-Bayes algorithm with varying cluster initializations performs the best (Fig. 2c).

When f = 0:4 indicating that 40% genomic loci do not belong to any cluster, the MAD-Bayes algorithm

tends to generate extra, that is, spurious, clusters for such loci (Fig. 2d) instead of forcing them into other

clusters. As a result, the true clusters are largely preserved and less polluted by singletons (Appendix Fig. 2)

compared with other methods that do not handle singletons (PE-MC, SE-HC, SE-MC).

3.2. Application to histone ChIP-seq data from GM12878 cells

The key inference question for the MBASIC framework is identifying the enrichment patterns for a given

set of user-specified loci across large sets of ChIP-seq data sets and grouping these loci to elucidate

similarities and differences. From this point of view, the MBASIC framework is more loci-focused and not

directly comparable with any of the available joint analysis methods that can handle large data sets.

However, to get a general sense of how MBASIC would compare with ChromHMM (Ernst and Kellis,

2010) and its computationally efficient version Spectacle (Song and Chen, 2015), we analyzed ChIP-seq

data of eight histone marks (H3k4me1, H3k4me2, H3k4me3, H3k9ac, H3k27ac, H3k27me3, H3k36me3,

and H4k20me1 from GM12878 cells) from the ENCODE project. Raw data and peak calls for these marks

are available at (www.encodeproject.org). We used the 9038 peaks on chr 18 from the ENCODE uniform

processing pipeline as the input loci to MAD-Bayes MBASIC and fixed the number of clusters as 20

because Spectacle identified robust number of chromatin states across multiple chromatin modification data

sets as 20. As a result, we also set the number of emission states in chromHMM as 20.

We then performed pairwise comparisons of all the three approaches by matching their clusters/states

through maximizing the sum of Jaccard index (Tan et al., 2005).

We reordered the cluster/state labels of MAD-Bayes and Spectacle according to their agreement with

ChromHMM. For example, MAD-Bayes cluster ‘‘C1’’ and Spectacle emission state ‘‘E1’’ are both mat-

ched to ChromHMM emission state ‘‘E1’’; however, this does not necessarily indicate that these two are

the best matches between MAD-Bayes and Spectacle.

Figure 3a displays that the overall agreements between MAD-Bayes and Spectacle and between MAD-Bayes

and ChromHMM follow the same trend with the degree of agreement between Spectacle and ChromHMM, which

we think of as the baseline agreement because they are both HMM based. In particular, for the emission states with

agreement between Spectacle and ChromHMM, the corresponding MAD-Bayes clusters also have higher

agreement with these. When there is large discrepancy between Spectacle and ChromHMM, the MAD-Bayes

clusters tend to agree with results from one of the methods. For example, MAD-Bayes ‘‘C2’’ agrees better with

Spectacle, and MAD-Bayes ‘‘C18’’ overlaps better with ChromHMM. Figure 3b, c displays comparisons of

MAD-Bayes MBASIC with ChromHMM and Spectacle, respectively. We observe that some of MAD-Bayes

clusters are distributed over multiple clusters of ChromHMM and Spectacle, for example, MAD-Bayes cluster

‘‘C5’’ overlaps with ‘‘E12,’’ ‘‘E13,’’ and ‘‘E14’’ of both ChromHMM and Spectacle. This overall agreement

indicates that the clustering task of MAD-Bayes on the histone marks is reasonable even though it is using selected

loci and is not accounting for local dependencies inherent among genomic loci with broad histone marks.

4. DISCUSSION

In this article, we derived a MAD-Bayes algorithm by developing a Bayesian version of the MBASIC

model. Our evaluations indicated that MAD-Bayes MBASIC significantly improves the computational time

without sacrificing accuracy.

We also observed that even though MAD-Bayes MBASIC does not have a built-in mechanism for

singletons (unclusterable loci), it groups singletons as additional clusters and minimizes their effect on

other more coherent clusters.
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We developed MAD-Bayes MBASIC as a fast method for querying large sets (1000s) of ChIP-seq data with

user-specified large sets of loci. This represents the first application of the MAD-Bayes framework in a large-

scale genome regulation context. From a practical point of view, we showed that this approach is both more

efficient and powerful than using individual analysis of each data set and clustering them with an off-the-shelf

method such as hierarchical clustering or finite mixture models. From an algorithmic point of view, we de-

veloped an empirical method for selecting tuning parameters. This improves the current state of the art for MAD-

Bayes implementations because they lack principled methods for tuning parameter selection.

The MBASIC framework offers flexibility in a number of aspects of experimental design, such as different

number of replicates under individual experimental conditions. This is a relatively important point because

many peak callers will operate separately on individual peaks sets or handle two jointly (Landt et al., 2012),

leaving the reconciliation of peaks over multiple replicates to the user. Our current derivation of the MAD-

Bayes algorithm relied on Log-normal distribution; however, it can be extended to a larger class of expo-

nential family distributions through the Bregman divergence (Banerjee, 2005). Such extensions are likely to

foster its use with other genomic data types such as RNA-seq, DNAse-seq, and methyl-seq, where both state-

space estimation and clustering of similar loci pose significant challenges.

5. APPENDIX
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APPENDIX FIG. 1. A graphical interpretation of the conjugacy between kr and J. We use the K-means initialization to

compute surrogate values for L(J) for a large collection of J � 1. The kr value that can yield J clusters in the global

solution must satisfy supJ0>J
L(J) - L(J0)

J - J0 � kr � infJ0>J
L(J0) - L(J)

J0 - J
: When kr satisfies this condition, a line with slope - kr

passing through (J‚ L(J)) on the graph should be tangent to the trace of all L(J) values. Although using the surrogate L(J)

values can lead to the curve connecting the L(J) values to be non-convex, making the solution for kr not hold for some J,

we can use a convex approximation to the trace of L(J) so that a kr exists for each J. A simpler approach is to order L(J)

from largest to smallest and requires the following condition for kr . L(J) - L(J + 1) � kr � L(J - 1) - L(J). Algorithm 2

essentially applies this idea to select the kr values. Each J corresponds to a kr of value [L(J - 1) - L(J + 1)]=2 that satisfies

the conjugacy inequality. The algorithm essentially tries to identify the range of kr that leads up to
ffiffi
I
p

number of clusters.
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APPENDIX FIG. 2. Comparison of the clustering accuracy with the adjusted Rand index by excluding the sin-

gleton loci.

MAD-BAYES MBASIC FOR QUERYING CHIP-SEQ 483



REFERENCES

Aldous, D.J. 1983. Exchangeability and related topics, 1–198. In École d’Été de Probabilités de Saint-Flour XIII 1983.
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