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Abstract. Machine learning processes consist in collecting data, ob-
taining a model and applying it to a given task. Given a new task, the
standard approach is to restart the learning process and obtain a new
model. However, previous learning experience can be exploited to as-
sist the new learning process. The two most studied approaches for this
are metalearning and transfer learning. Metalearning can be used for se-
lecting the predictive model to use on a new dataset. Transfer learning
allows the reuse of knowledge from previous tasks. However, when mul-
tiple heterogeneous tasks are available as potential sources for transfer,
the question is which one to use. One approach to address this problem
is metalearning. In this paper we investigate the feasibility of this ap-
proach. We propose a method to transfer weights from a source trained
neural network to initialize a network that models a potentially very dif-
ferent target dataset. Our experiments with 14 datasets indicate that this
method enables faster convergence without significant difference in accu-
racy provided that the source task is adequately chosen. This means that
there is potential for applying metalearning to support transfer between
heterogeneous datasets.

1 Introduction

Machine learning processes consist of 1) collecting training data for the new
task; 2) obtaining a model; 3) applying the model to new data. This is done
even when the new task is related to previously solved tasks, for example, when
there are relationships between variables or between the processes used to obtain
the models.

There are two approaches to using previous learning experience in new tasks:
metalearning and transfer learning. Both use information about a domain to
learn efficiently and effectively in a new one. Metalearning typically focuses on
the choice of a learning algorithm while transfer learning tries to reuse the mod-
els obtained from previous tasks. This suggests that transfer learning and met-
alearning may be used together.



Our ultimate aim is to investigate if metalearning can be used to support
transfer learning in tasks consisting of heterogeneous data, reducing computa-
tional cost without loss in predictive performance and, eventually, cutting down
the time data scientists need to invest in the process.

The method for using metalearning to support transfer learning is illustrated
id Figure 1 and has three steps:

1. Source selection step: finding the best source problem for approaching
our new target problem;

2. Transfer step: adapting the source model and use some of its components
(or characteristics) in the target model;

3. Learning step: training the target model (adapted from the source model)
on the target data.

Performance

D

Source Selection Step

Transfer Step

Learning Step

DT

DSjDSi

Fig. 1. Method for using metalearning

In this paper we propose a method for the transfer step. We show that if we
find a good solution for the meta step, the transfer step can improve the learning
speed, even with very simple methods. Future work is to develop a process for
the meta step.

2 Metalearning and transfer learning

This section presents the basic concepts related with our work. First we describe
metalearning, some of its methods and examples of use. After that, we present
transfer learning, its motivation, operation mode and some techniques used.
Finally, we describe some examples of the combination of metalearning and
transfer learning.



2.1 Metalearning

Metalearning is typically used for algorithm recommendation: helping in the
process of selecting a predictive algorithm to use on a new dataset. It also aims
at taking advantage of the repetitive use of a given method over a set of similar
tasks.

There are several applications of metalearning: combining base learners,
namely using several learners together to create a composite model that bet-
ter predicts the result; bias management, mostly used for data streams that
require context adaptation due to the fact that the domain is not static; and
transferring metaknowledge across tasks. But metalearning is mostly used for
the algorithm recommendation, as described next.

Algorithm Recommendation Choosing the best algorithm for processing a
given dataset is a difficult process. Besides, algorithms normally have parameters
that affect its efficiency and tuning them can be a difficult and slow task. This
constitutes the motivation for the Algorithm Selection Problem [?], originally
formulated by Rice [?].

This problem consists in determining the best algorithm to use for a certain
dataset. The metalearning approach takes advantage of information previously
obtained on several datasets and also on several algorithms. This knowledge is
used to build a metamodel that, given a new dataset, predicts which is(are) the
most suitable algorithm(s).

Earlier applications of metalearning addressed the most common tasks - clas-
sification [?], regression [?] and time series [?]. These approaches were then ex-
tended to selecting parameter settings for a single algorithm [?], the whole data
mining process [?] and also to problems from domains other than machine learn-
ing, e.g.: different optimization problems [?,?]. More recently, they were also used
to deal with new problems in data mining: data streams [?].

2.2 Transfer Learning

A definition of transfer learning is: given a source domain DS and a learning
task TS , a target domain DT and a learning task TT , transfer learning aims to
improve the process of learning of the target predictive function fT (.) in DT

using the knowledge in DS and TS , where DS 6= DT , or TS 6= TT [?].
Transfer learning allows algorithms to adapt to new tasks based on the knowl-

edge obtained in previous ones. The three main research issues in this topic are
related to what, how and when to transfer.

What to transfer? This question concerns the type of information transferred
between problems: instance-transfer, where instances from the source domain are
used together with the ones on the target domain, to use more training data for
the target model, as in the TrAdaBoost [?] algorithm; feature-representation-
transfer, where a set of feature representations is extracted from the source



domain and is transferred to become a new feature representation of the target
domain [?]; parameter-transfer that consists of transferring some of the param-
eters of the source to the target model, assuming that the models for related
tasks share some parameters [?]; and relational-knowledge-transfer, that con-
sists in trying to transfer the knowledge about data between the domains, as is
the case of TAMAR [?], that maps a source Markov Logic Network to the target
domain and revises only its incorrect portions.

How to transfer? After knowing what to transfer, the focus is on how to
transfer?, that is, on the development of learning algorithms to perform the
transfer. Approaches to this question can be characterized in two dimensions: the
type of algorithm and the type of data used. As for the algorithm the approaches
were based, for example, in neural networks [?, ?], naive bayes [?] or decision
trees [?,?]. In what concerns the data some consider propositional data [?,?,?,?],
while others use more complex types, such as graphs [?].

When to transfer? The last question is concerned with the situations in which
the transfer should be performed. Ultimately, the objective is to avoid nega-
tive transfer, i.e. when, instead of improving the performance, the transfer can
even harm the learning process in the target task. Some approaches have been
proposed to identify when transfer learning will hurt the performance of the
algorithm instead of improving it (e.g. [?]).

2.3 Metalearning and Transfer Learning

Some work has been performed in using metalearning together with transfer
learning.

Metafeatures are used in [?] for calculating similarities between the datasets.
The algorithms used for this task is the k-nearest neighbors. The best configura-
tions for the selected source domain are then transferred for the target domain.

In [?], metalearning is used to find matrix transformations capable of pro-
ducing good kernel matrices for the source tasks. These transformations can be
used to compute the kernel matrix for new related tasks. Another example is [?],
where metalearning is used to construct a new classification algorithm that will
be applied to new problems.

The results are evaluated by performance measures as accuracy [?] and more
precisely by the area under the ROC curve in [?,?].

The transferred objects found on the studied papers are SVM parameter set-
tings in [?], the kernel matrices in [?] and the parameter function (responsible for
mapping statistics to parameters in “bag-of-words” text classification problems)
in [?].

3 Weight transfer in neural networks

In this section we propose a method, with four variants, for transferring weights
from a source neural network, specifically a Multilayer Perceptron, to a target



one. As explained above, the aim is to reduce the computational time needed
for the target network to converge.

We start by revisiting the concept of neural network and then describe the
weight transfer method and also the mapping method used for the weight trans-
fer.

3.1 Neural Networks

Neural networks have been used for problems in diverse areas, such as: pattern
recognition, prediction, optimization, associative memory, and control [?].

The neural networks considered in this work are composed by three layers
of neurons: input, hidden and output. Figure 2 shows an example of a neural
network with this structure designed for a dataset with three input and one
output variables.
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Fig. 2. Example of a neural network

The neurons in the input layer correspond to the independent variables of
the dataset (x1, x2 and x3) and there is an extra neuron for the bias (b′). The
number of neurons in the hidden layer can vary and it is one of the parameters
of the algorithm. In the example the neural network has two hidden neurons: h1

and h2. This layer also has an additional bias neuron (b′′). The neuron on the
output layer (y) corresponds to the dependent variable of the dataset.

There are connections between input and hidden layers and, also, between the
latter and the output layer. The connections have associated weights, which are
adjusted in each iteration of the network to better predict the output variable. A
neural network is initialized with a set of weights and, after converging or reach-
ing the (parametrized) maximum number of iterations, outputs the adjusted set
of weights.

3.2 Weight transfer method

In our method, we transfer the weights from a (source) network to another
(target) network according to Algorithm 1.



Input: DS , DT , NS

Output: NT←S

1 Map vars(DS) into vars(DT )
2 foreach xj ∈ vars(DT ) do
3 wxj ,hp = wMF

xj
,hp

4 end
5 foreach hidden node h of NT do
6 whp,yT = whp,yS

7 end
8 foreach bias node b of NT do
9 wb′

T
,hp

= wb′
S
,hp

10 wb′′
T
,yT

= wb′′
S
,yS

11 end
Algorithm 1: Transfer algorithm

The input DS corresponds to the source dataset that is composed by the
independent variables xi : i ∈ {1, . . . , n} and the dependent variable yS . DT is
the target dataset and consists of xj : j ∈ {1, . . . , n} as independent and yT as
dependent variables. NS is the neural network learned from the source dataset
with a randomly generated initial set of weights.

The first step of the algorithm consists in mapping the variables from the
source to the ones on the target datasets. The mapping process is explained
in 3.3.

After this, for each mapping MF
xj

= xi, we transfer every weight originating
in the neuron corresponding to xi in NS to the connections with origin in xj in
NT (line 3 in the algorithm).

The weights of the connections with origin in hidden (hp) and bias (b′ and
b′′) neurons are directly transferred, since NS and NT have the same hidden
layer configuration (lines 6, 9 and 10 in the algorithm, respectively).

3.3 Mapping method

The mapping process is performed independently of the transfer step and uses
the entire dataset. The mapping method is represented by the generic mapping

MF
xj

= xi

that assigns to each target variable the most adequate source variable.
This generic mapping can be instantiated with different specific mapping

functions (F ):

– Kullback-Leibler (KL) divergence

MKL
xj

= argmini{KL(xj , xi)},∀i ∈ {1...n}, j ∈ {1...m}

– Pearson, Spearman and Kendall correlations

MC
xj

= argmini{|corr(xj , yT )− corr(xi, yS)|},∀i ∈ {1...n}, j ∈ {1...m}



We also use random mapping and compare the improvement of the result-
ing neural networks with the ones obtained when using the mapping functions
mentioned above.

4 Experiment

Now that we have described the weight transfer method, we will perform an
exhaustive experiment using 14 datasets. Our hypothesis is that a neural net-
work algorithm can converge faster on a target dataset if the initial weights are
transferred from a source network trained on a well chosen source dataset.

For that purpose, we test the methods proposed here on all source/target
combinations (the source is always different from the target) and pick, for each
target, the best source.

We assess the results of our methods against the usual random weight initial-
ization method. If the best source/target pairing shortens the convergence time
when compared to the baseline, then we have evidence to support our hypothesis.

The experiment was performed using datasets retrieved from UCI [?] (Ta-
ble 1). Most of the datasets are heterogeneous, i.e. generated from very different
processes (i.e. they are represented by very different sets of variables). How-
ever, some of the problems used have more than one target variable, and, thus,
originate more than one dataset.

This means that these datasets are related, as they share the same indepen-
dent variables, with the same values.

4.1 Experiment Description

We performed the experiment using neural networks with ten neurons in the
hidden layer. Our objective is to assess the potential improvement that the right
transfer of weights brings to the learning time of a target neural network.

This improvement is calculated by comparing the time needed for the network
to converge when using:

– randomly generated initial weights
– weights transferred from another neural network

The experiment is performed for every possible combination of source/target
datasets.

It is organized into two steps as illustrated by the boxes in Figure 3: the
source learning step and the target learning step.

The source learning step (top of the figure) consists in learning a neural
network with standard randomly generated initial weights (WS) for each dataset
(DS) considered. After the learning process we store the error (MSES), duration
of the process (durationS) and the best set of weights found (WL

S ).
This is repeated twenty times to outwit the effect of using random values to

initialize the network. Thus, we get twenty sets of weights for transfer. Although



Table 1. Datasets used for the experiment

Problem Derived Dataset

Concrete Compressive Strength concreteCompressiveStrength
Wine Quality - Red wineQuality-red
Wine Quality - White wineQuality-white
Challenger USA Space Shuttle O-Ring - Erosion
only

o-ring-erosion-only

Challenger USA Space Shuttle O-Ring - Erosion
or blowby

o-ring-erosion-or-blowby

Concrete Slump Test
slumpTestSLUMP
slumpTestFLOW
slumpTestCompressiveStrength

Parkinsons Telemonitoring
parkinsonsMotorUPDRS
parkinsonsTotalUPDRS

Airfoil Self-Noise airfoilSelfNoise

Energy efficiency
ENB2012-Y1
ENB2012-Y2

Yacht Hydrodynamics yachtHydrodynamics

Weight
Generator

Weight
Transfer

DT

WT←S

Learn

Learn

MSES

WL
S

MSET←S

WL
T←S

WS

DS

durationS

durationT←
S

Fig. 3. Experiment workflow



this is performed for all the datasets considered, to simplify, we only represent
one dataset.

We call it source dataset (DS) because the weights used for the transfer in
the second part will be the ones learned here.

The target learning step (bottom of the figure) consists of learning a neural
network for the dataset considered (target dataset - DT ), by initializing it with
weights transferred from one of the other datasets instead of randomly generated
ones.

4.2 Results

In our experiment we measure the improvement achieved by transferring weights
from another neural network – the source network –, considering the time needed
for a neural network to converge (duration). We consider that an improvement
has occurred when durationr > durationt, where durationr refers to the network
with randomly generated initial weights and durationt refers to the network with
initial weights transferred the source network.

The heat map on the left of Figure 4 shows the percentage of improvements of
the best transfer for each target dataset (y axis) when using each of the mapping
methods (x axis).

A red (dark) square corresponds to having almost 100% probability of im-
provement in the target dataset Y when using the mapping method X. The
lighter the square, the closest this probability is to 0%. Grey squares correspond
to the cases where the transfer worsened the result instead of improving it. The
histogram on the right shows the frequency with which the percentage of im-
provements occur, using the same color code. The mapping methods correspond
to the ones shown in Table 2.

Table 2. Average percentage of improvements by mapping method

Mapping Measure Average

1 Random 40.25%
2 KL-divergence 56.43%
3 Pearson Correlation 57.86%
4 Spearman Correlation 65.00%
5 Kendall Correlation 58.57%

As discussed earlier, our goal is to assess whether the right choice of source
dataset could lead to improvements in the learning process of the target datasets.
To investigate this, we analyze the best possible transfer observed for each
dataset, instead of all the transferences, as in the previous paragraph. This ap-
proach simulates the situation where the source problem is optimally chosen.
Table 2 shows the average percentage of improvement of the best transfer for
each of the methods considered.
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Fig. 4. Percentage of improvements for the best results

Here we can see that the proportion of improvements for the proposed map-
ping methods are clearly higher than for the random mapping. While random
mapping of variables can improve the time of convergence of the network in
around 40% of the times, a similarity-based mapping can improve it in up to
65% of the times, with the mapping functions considered. This suggests that we
can benefit from the transfer of weights from a network previously trained on a
different problem to a new network.

However, this benefit only occurs if the source problem is well chosen. One
approach that can be used for that purpose is metalearning. Given a new target
problem for which we want to train a network, a metalearning approach aims to
select the most adequate source dataset based on characteristics of the datasets,
usually referred to as metafeatures. The next step in our work is to investigate
a metalearning approach for that purpose.

5 Conclusions and Future Work

In this paper we have proposed one specific method for transferring weights from
a source network to another. This method has four variants based on different
similarity measures between dataset variables: KL divergence and the Pearson,
Spearman and Kendall correlation coefficients. In our experiments we have shown
that transferring weights can accelerate the learning of the target network as long



as the source network is well chosen. This suggests that we can benefit from a
metalearning approach that is able to select a good source problem given a
new one. In other words, it indicates that metalearning can be used to support
transfer learning.

As future work, we wish to identify the appropriate problem characteristics
(metafeatures) to be used for selecting the best variable (and dataset) to use as
source in the transfer to a target network. The similarity between datasets will
be used to determine the dataset whose network will be the best one to transfer
the weights from. The similarity between variables will be used to determine the
mapping to be used when transferring the weights between neural networks.
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