Skip to main content

Classification of Melanoma Presence and Thickness Based on Computational Image Analysis

  • Conference paper
  • First Online:
Book cover Hybrid Artificial Intelligent Systems (HAIS 2016)

Abstract

Melanoma is a type of cancer that occurs on the skin. Only in the US, 50,000–100,000 patients are yearly diagnosed with melanoma. Five year survival rate highly depends on early detection, varying between 99 % and 15 % depending on the melanoma stage. Melanoma is typically identified with a visual inspection and lately confirmed and classified by a biopsy. In this work, we propose a hybrid system combining features which describe melanoma images together with machine learning models that learn to distinguish melanoma lesions. Although previous works distinguish melanoma and non-melanoma images, those works focus only in the binary case. Opposed to this, we propose to consider finer classification levels within a five class learning problem. We evaluate the performance of several nominal and ordinal classifiers using four performance metrics to provide highlights of several aspects of classification performance, achieving promising results.

This work was partly financed by a grant provided by the TIN2014-54583-C2-1-R project of the Spanish Ministry of Economy and Competitively (MINECO), by FEDER Funds and by the P11-TIC-7508 project of the Junta de Andalucía, Spain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/ayrna/orca.

  2. 2.

    http://www.uco.es/grupos/ayrna/en/partitions-and-datasets/#paguitierrez2011ieeetnn.

References

  1. Institute, N.C.:Seer stat fact sheets: melanoma of the skin (2015). http://seer.cancer.gov/statfacts/html/melan.html. Accessed 15 December 2015

  2. For Research on Cancer. World Health Organization, I.A.:Cancer factsheet. Malignant melanoma of skin (2015). http://eco.iarc.fr/eucan/Cancer.aspx?Cancer=20. Accessed 15 Dec 2015

  3. Pizzichetta, M., Argenziano, G., Talamini, R., Piccolo, D., Gatti, A., Trevisan, G., Sasso, G., Veronesi, A., Carbone, A., Peter Soyer, H.: Dermoscopic criteria for melanoma in situ are similar to those for early invasive melanoma. Cancer 91, 992–997 (2001)

    Article  Google Scholar 

  4. Herman, C.: Emerging technologies for the detection of melanoma: achieving better outcomes. Clin. Cosmet. Invest. Dermatol. 5, 195–212 (2012)

    Article  Google Scholar 

  5. Maglogiannis, I., Doukas, C.N.: Overview of advanced computer vision systems for skin lesions characterization. IEEE Trans. Inf.Technol. Biomed. 13, 721–733 (2009)

    Article  Google Scholar 

  6. Garnavi, R., Aldeen, M., Bailey, J.: Computer-aided diagnosis of melanoma using border- and wavelet-based texture analysis. IEEE Trans. Inf. Technol. Biomed. 16, 1239–1252 (2012)

    Article  Google Scholar 

  7. Celebi, M., Kingravi, H., Uddin, B., Iyatomi, H., Aslandogan, Y., Stoecker, W., Moss, R.: A methodological approach to the classification of dermoscopy images. Comput. Med. Imaging Graph. 31, 362–373 (2007)

    Article  Google Scholar 

  8. Rubegni, P., Cevenini, G., Sbano, P., Burroni, M., Zalaudek, I., Risulo, M., Dell’Eva, G., Nami, N., Martino, A., Fimiani, M.: Evaluation of cutaneous melanoma thickness by digital dermoscopy analysis: a retrospective study. Melanoma Res. 20, 212–217 (2010)

    Google Scholar 

  9. Amouroux, M., Blondel, W.: Non-invasive determination of Breslow index. In: Cao, M.Y. (ed.) Current Management of Malignant Melanoma, pp. 29–44. InTech (2011)

    Google Scholar 

  10. Stante, M., De Giorgi, V., Cappugi, P., Giannotti, B., Carli, P.: Non-invasive analysis of melanoma thickness by means of dermoscopy: a retrospective study. Melanoma Res. 11, 147–152 (2001)

    Article  Google Scholar 

  11. Lens, M.B., Nathan, P., Bataille, V.: Excision margins for primary cutaneous melanoma: updated pooled analysis of randomized controlled trials. Arch. Surg. 142, 885–891 (2007)

    Article  Google Scholar 

  12. Argenziano, G., Soyer, H., et al.: Interactive Atlas of Dermoscopy. EDRA-Medical Publishing and New Media, Milan (2000)

    Google Scholar 

  13. Sáez, A., Serrano, C., Acha, B.: Model-based classification methods of global patterns in dermoscopic images. IEEE Trans. Med. Imaging 33, 1137–1147 (2014)

    Article  Google Scholar 

  14. Sáez, A., Mendoza, C.S., Acha, B., Serrano, C.: Development and evaluation of perceptually adapted colour gradients. IET Image Proc. 7, 355–363 (2013)

    Article  MathSciNet  Google Scholar 

  15. Soyer, H., Argenziano, G., Hofmann-Wellenhof, R., Johr, R.: Color Atlas of Melanocytic Lesions of the Skin. Springer, Heidelberg (2010)

    Google Scholar 

  16. Weismann, K., Lorentzen, H.F.: Dermoscopic color perspective. Arch. Dermatol. 142, 1250 (2006)

    Article  Google Scholar 

  17. Seidenari, S., Pellacani, G., Grana, C.: Computer description of colours in dermoscopic melanocytic lesion images reproducing clinical assessment. Br. J. Dermatol. 149, 523–529 (2003)

    Article  Google Scholar 

  18. Argenziano, G., Fabbrocini, G., Carli, P., De Giorgi, V., Delfino, M.: Clinical and dermatoscopic criteria for the preoperative evaluation of cutaneous melanoma thickness. J. Am. Acad. Dermatol. 40, 61–68 (1999)

    Article  Google Scholar 

  19. Lorentzen, H., Weismann, K., Grønhøj Larsen, F.: Dermatoscopic prediction of melanoma thickness using latent trait analysis and likelihood ratios. Acta Derm. Venereol. 81, 38–41 (2001)

    Article  Google Scholar 

  20. da Silva, V., Ikino, J., Sens, M., Nunes, D., Di Giunta, G.: Dermoscopic features of thin melanomas: a comparative study of melanoma in situ and invasive melanomas smaller than or equal to 1mm [características dermatoscópicas de melanomas finos: Estudo comparativo entre melanomas in situ e melanomas invasivos menores ou iguais a 1mm]. Anais Brasileiros de Dermatologia 88, 712–717 (2013)

    Article  Google Scholar 

  21. Otsu, N.: Threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. SMC–9, 62–66 (1979). (cited By 10522)

    Google Scholar 

  22. Sadeghi, M., Razmara, M., Lee, T., Atkins, M.: A novel method for detection of pigment network in dermoscopic images using graphs. Comput. Med. Imaging Graph. 35, 137–143 (2011)

    Article  Google Scholar 

  23. Haralick, R., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. SMC3, 610–621 (1973)

    Article  Google Scholar 

  24. Landwehr, N., Hall, M., Frank, E.: Logistic model trees. Mach. Learn. 59, 161–205 (2005)

    Article  MATH  Google Scholar 

  25. Hervás-Martínez, C., Martínez-Estudillo, F.J., Carbonero-Ruz, M.: Multilogistic regression by means of evolutionary product-unit neural networks. Neural Netw. 21, 951–961 (2008)

    Article  MATH  Google Scholar 

  26. Hervás-Martínez, C., Martínez-Estudillo, F.: Logistic regression using covariates obtained by product-unit neural network models. Pattern Recogn. 40, 52–64 (2007)

    Article  MATH  Google Scholar 

  27. Gutiérrez, P.A., Hervás-Martínez, C., Martínez-Estudillo, F.J.: Logistic regression by means of evolutionary radial basis function neural networks. IEEE Trans. Neural Networks 22, 246–263 (2011)

    Article  Google Scholar 

  28. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011)

    Article  Google Scholar 

  29. Chu, W., Keerthi, S.S.: Support vector ordinal regression. Neural Comput. 19, 792–815 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gutiérrez, P., Pérez-Ortiz, M., Sánchez-Monedero, J., Fernandez-Navarro, F., Hervás-Martínez, C.: Ordinal regression methods: survey and experimental study. IEEE Trans. Knowl. Data Eng. 28, 127–146 (2016)

    Article  Google Scholar 

  31. Lin, H.T., Li, L.: Reduction from cost-sensitive ordinal ranking to weighted binary classification. Neural Comput. 24, 1329–1367 (2012)

    Article  MATH  Google Scholar 

  32. Sun, B.Y., Li, J., Wu, D.D., Zhang, X.M., Li, W.B.: Kernel discriminant learning for ordinal regression. IEEE Trans. Knowl. Data Eng. 22, 906–910 (2010)

    Article  Google Scholar 

  33. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. Spec. Interest Group Knowl. Discov. Data Min. Explorer Newsl. 11, 10–18 (2009)

    Google Scholar 

  34. Fernández-Caballero, J.C., Martínez-Estudillo, F.J., Hervás-Martínez, C., Gutiérrez, P.A.: Sensitivity versus accuracy in multiclass problems using memetic pareto evolutionary neural networks. IEEE Trans. Neural Networks 21, 750–770 (2010)

    Article  Google Scholar 

  35. Kubat, M., Matwin, S.: Addressing the curse of imbalanced training sets: one-sided selection. In: Proceedings of the 14th International Conference on Machine Learning, pp. 179–186. Morgan Kaufmann (1997)

    Google Scholar 

  36. Baccianella, S., Esuli, A., Sebastiani, F.: Evaluation measures for ordinal regression. In: Proceedings of the Ninth International Conference on Intelligent Systems Design and Applications (ISDA 2009), pp. 283–287. IEEE Computer Society, San Mateo, CA (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Sánchez-Monedero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Sánchez-Monedero, J., Sáez, A., Pérez-Ortiz, ., Gutiérrez, P.A., Hervás-Martínez, C. (2016). Classification of Melanoma Presence and Thickness Based on Computational Image Analysis. In: Martínez-Álvarez, F., Troncoso, A., Quintián, H., Corchado, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2016. Lecture Notes in Computer Science(), vol 9648. Springer, Cham. https://doi.org/10.1007/978-3-319-32034-2_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32034-2_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32033-5

  • Online ISBN: 978-3-319-32034-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics