Skip to main content

Combining k-Nearest Neighbor and Centroid Neighbor Classifier for Fast and Robust Classification

  • Conference paper
  • First Online:
Book cover Hybrid Artificial Intelligent Systems (HAIS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9648))

Included in the following conference series:

Abstract

The k-NN classifier is one of the most known and widely used nonparametric classifiers. The k-NN rule is optimal in the asymptotic case which means that its classification error aims for Bayes error if the number of the training samples approaches infinity. A lot of alternative extensions of the traditional k-NN have been developed to improve the classification accuracy. However, it is also well-known fact that when the number of the samples grows it can become very inefficient because we have to compute all the distances from the testing sample to every sample from the training data set. In this paper, a simple method which addresses this issue is proposed. Combining k-NN classifier with the centroid neighbor classifier improves the speed of the algorithm without changing the results of the original k-NN. In fact usage confusion matrices and excluding outliers makes the resulting algorithm much faster and robust.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altincay, H.: Improving the k-nearest neighbour rule: using geometrical neighbourhoods and manifold-based metrics. Expert Syst. Wiley Online Libr. 28(4), 391–406 (2011)

    Article  Google Scholar 

  2. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines (2001). Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

  3. Chmielnicki, W., Sta̧por, K.: Protein fold recognition with combined SVM-RDA classifier. In: Graña Romay, M., Corchado, E., Garcia Sebastian, M.T. (eds.) HAIS 2010, Part I. LNCS (LNAI), vol. 6076, pp. 162–169. Springer, Heidelberg (2010)

    Google Scholar 

  4. Chmielnicki, W., Stapor, K.: Investigation of normalization techniques and their impact on a recognition rate in handwritten numeral recognition. Schedae Informaticae 19, 53–77 (2010)

    Article  Google Scholar 

  5. Chmielnicki, W., Stapor, K.: A hybrid discriminative/generative approach to protein fold recognition. Neurocomputing 75(1), 194–198 (2012)

    Article  Google Scholar 

  6. Domeniconi, C., Gunopulos, D., Peng, J.: Large margin nearest neighbor classifiers. IEEE Trans. Neural Netw. 16(4), 899–909 (2005)

    Article  Google Scholar 

  7. Devijver, P.A., Kittler, J.: Pattern Recognition: A Statistical Approach. Prentice Hall, Englewood Cliffs (1982)

    MATH  Google Scholar 

  8. Ding, C.H., Dubchak, I.: Multi-class protein fold recognition using support vector machines and neural networks. Bioinformatics 17, 349–358 (2001)

    Article  Google Scholar 

  9. Dubchak, I., Muchnik, I., Kim, S.H.: Protein folding class predictor for SCOP: approach based on global descriptors. In: Proceedings ISMB (1997)

    Google Scholar 

  10. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley, New York (2000)

    MATH  Google Scholar 

  11. Dudani, S.: The distance-weighted k-nearest neighbor rule. IEEE Trans. Syst. Man Cybern. 6(4), 325–327 (1976)

    Article  Google Scholar 

  12. Gou, J., Xiong, T., Kuang, Y.: A novel weighted voting for k-nearest neighbor rule. J. Comput. 6(5), 833–840 (2011)

    Article  Google Scholar 

  13. Gou, J., Du, L., Xiong, T.: Weighted k-nearest centroid neighbor classification. J. Comput. Inf. Syst. 8(2), 851–860 (2012)

    Google Scholar 

  14. Jiang, Y., Zhou, Z.-H.: Editing training data for kNN classifiers with neural network ensemble. In: Yin, F.-L., Wang, J., Guo, C. (eds.) ISNN 2004. LNCS, vol. 3173, pp. 356–361. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  15. LeCun, Y., et al.: Comparison of learning algorithms for handwritten digit recognition. In: Fogelman-Soulie, F., Gallinari, P. (eds.) Proceedings of the International Conference on Artificial Neural Networks, France, Nanterre, pp. 53–60 (1995)

    Google Scholar 

  16. Liu, Y., Yang, Y., Carbonell, J.: Boosting to correct inductive bias in text classification. In: 11th ACM International Conference on Information and Knowledge Management, pp. 348–355 (2002)

    Google Scholar 

  17. The MNIST database of handwritten digits (2015). http://yann.lecun.com/exdb/mnist/

  18. Petitjean, F., Forestier, G., Webb, G., Nicholson, A., Chen, Y., Keogh, E.: Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowl. Inf. Syst. 1–26 (2015). doi:10.1007/s10115-015-0878-8

    Google Scholar 

  19. Sanchez, J.S., Marques, A.: An LVQ-based adaptive algorithm for learning from very small codebooks. Neurocomputing 69(7–9), 922–927 (2006)

    Article  Google Scholar 

  20. Shalev-Shwartz, S., Singer, Y., Ng, A.: Online and batch learning of pseudo-metrics. In: Proceedings of the 21st International Conference on Machine Learning, Banff, Canada (2004)

    Google Scholar 

  21. Silva, P.F.B., Marçal, A.R.S., Almeida da Silva, R.: Evaluation of features for leaf discrimination. In: Kamel, M., Campilho, A. (eds.) ICIAR 2013. LNCS, vol. 7950, pp. 197–204. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  22. Sun, S., Huang, R.: An adaptive k-nearest neighbor algorithm. In: Proceedings of the 7th International Conference on Fuzzy Systems and Knowledge Discovery, pp. 91–94 (2010)

    Google Scholar 

  23. Sun, S.: Local within-class accuracies for weighting individual outputs in multiple classifier systems. Pattern Recogn. Lett. 31(2), 119–124 (2010)

    Article  Google Scholar 

  24. Tan, S.: An improved centroid classifier for text categorization. Expert Syst. Appl. 35(1), 279–285 (2008)

    Article  Google Scholar 

  25. UCI Machine Learning Repository (2015). http://archive.ics.uci.edu/ml/datasets.html

  26. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    Book  MATH  Google Scholar 

  27. Weinberger, K., Saul, L.: Distance metric learning for large margin nearest neighbor classification. J. Mach. Learn. Res. 10, 207–244 (2009)

    MATH  Google Scholar 

  28. Xi, X., Ueno, K., Keogh, E., Lee, D.: Converting nonparametric distance-based classification to anytime algorithms. Pattern Anal. Appl. 11(3–4), 321–336 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wiesław Chmielnicki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Chmielnicki, W. (2016). Combining k-Nearest Neighbor and Centroid Neighbor Classifier for Fast and Robust Classification. In: Martínez-Álvarez, F., Troncoso, A., Quintián, H., Corchado, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2016. Lecture Notes in Computer Science(), vol 9648. Springer, Cham. https://doi.org/10.1007/978-3-319-32034-2_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32034-2_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32033-5

  • Online ISBN: 978-3-319-32034-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics