Skip to main content

Evaluation of Decision Trees Algorithms for Position Reconstruction in Argon Dark Matter Experiment

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2016)

Abstract

Nowadays, Dark Matter search constitutes one of the most challenging scientific activity. During the last decades several detectors have been developed to evidence the signal of interactions between Dark Matter and ordinary matter. The Argon Dark Matter detector, placed in the Canfranc Underground Laboratory in Spain is the first ton-scale liquid-Ar experiment in operation for Dark Matter direct detection. In parallel to the development of other engineering issues, computational methods are being applied to maximize the exploitation of generated data. In this work, two algorithms based on decision trees —Generalized Boosted Regression Models and Random Forests— are employed to reconstruct the position of the interaction in Argon Dark Matter detector. These two algorithms are confronted to a Montecarlo data set reproducing the physical behaviour of Argon Dark Matter detector. In this work, an in-depth study of the position reconstruction of the interaction is performed for both algorithms, including a study of the distribution of errors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The use of 24 neurons in the input and hidden layers is due to the fact that the ArDM experiment holds 24 photomultipliers. See Sect. 3.1 for further details.

  2. 2.

    In the case of GBM the origin of the patter in the errors is more controversial. Effectively it is associated to the use of this type of decision tree for this dataset. Further research is necessary to explain the origin of pattern shown in Fig. 4

References

  1. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29, 1189–1232 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kuncheva, L.I.: Ensemble methods. In: Combining Pattern Classifiers: Methods and Algorithms, 2nd edn, pp. 186–229. John Wiley & Sons, Inc. (2014). doi:10.1002/9781118914564.ch6

  5. Pardo, C., Rodríguez, J.J., Díez-Pastor, J.F., García-Osorio, C.: Random oracles for regression ensembles. In: Okun, O., Valentini, G., Re, M. (eds.) Ensembles in Machine Learning Applications. SCI, vol. 373, pp. 181–199. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)

    MathSciNet  MATH  Google Scholar 

  7. Ho, T.K.: The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 832–844 (1998)

    Article  Google Scholar 

  8. Montes Nuñez, B.R.: Data Analysis of the Argon Dark Matter Experiment and Background Studies. Ph.D. thesis, Facultad de Ciencias Físicas, Universidad Complutense de Madrid. (2015)

    Google Scholar 

  9. Aprile, E., Angle, J., Arneodo, F., Baudis, L., Bernstein, A., Bolozdynya, A., Brusov, P., Coelho, L., Dahl, C., DeViveiros, L., Ferella, A., Fernandes, L., Fiorucci, S., Gaitskell, R., Giboni, K., Gomez, R., Hasty, R., Kastens, L., Kwong, J., Lopes, J., Madden, N., Manalaysay, A., Manzur, A., McKinsey, D., Monzani, M., Ni, K., Oberlack, U., Orboeck, J., Orlandi, D., Plante, G., Santorelli, R., dos Santos, J., Shagin, P., Shutt, T., Sorensen, P., Schulte, S., Tatananni, E., Winant, C., Yamashita, M.: Design and performance of the XENON10 dark matter experiment. Astropart. Phys. 34(9), 679–698 (2011)

    Article  Google Scholar 

  10. Aprile, E., Arisaka, K., Arneodo, F., Askin, A., Baudis, L., Behrens, A., Brown, E., Cardoso, J., Choi, B., Cline, D., Fattori, S., Ferella, A., Giboni, K., Kish, A., Lam, C., Lang, R., Lim, K., Lopes, J., Undagoitia, T.M., Mei, Y., Fernandez, A.M., Ni, K., Oberlack, U., Orrigo, S., Pantic, E., Plante, G., Ribeiro, A., Santorelli, R., dos Santos, J., Schumann, M., Shagin, P., Teymourian, A., Tziaferi, E., Wang, H., Yamashita, M.: The XENON100 dark matter experiment. Astropart. Phys. 35(9), 573–590 (2012)

    Article  Google Scholar 

  11. Regenfus, C.: The ArDM collaboration: the argon dark matter experiment ArDM. J. Phys.: Conf. Ser. 203(1), 012024 (2010)

    Google Scholar 

  12. Marchionni, A., Amsler, C., Badertscher, A., Boccone, V., Bueno, A., Carmona-Benitez, M.C., Coleman, J., Creus, W., Curioni, A., Daniel, M., Dawe, E.J., Degunda, U., Gendotti, A., Epprecht, L., Horikawa, S., Kaufmann, L., Knecht, L., Laffranchi, M., Lazzaro, C., Lightfoot, P.K., Lussi, D., Lozano, J., Mavrokoridis, K., Melgarejo, A., Mijakowski, P., Natterer, G., Navas-Concha, S., Otyugova, P., de Prado, M., Przewlocki, P., Regenfus, C., Resnati, F., Robinson, M., Rochet, J., Romero, L., Rondio, E., Rubbia, A., Scotto-Lavina, L., Spooner, N.J.C., Strauss, T., Touramanis, C., Ulbricht, J., Viant, T.: ArDM: a ton-scale LAr detector for direct dark matter searches. J. Phys.: Conf. Ser. 308(1), 012006 (2011)

    Google Scholar 

  13. Badertscher, A., et al.: Status of the ArDM Experiment: first results from gaseous argon operation in deep underground environment (2013)

    Google Scholar 

  14. Boccone, V.: The ArDM collaboration: the ArDM project: a liquid argon TPC for dark matter detection. J. Phys.: Conf. Ser. 160(1), 012032 (2009)

    Google Scholar 

  15. Zell, A.: Java Neural Network Simulator (JavaNNS) (2013). http://www.ra.cs.uni-tuebingen.de/software/JavaNNS/

  16. Ridgeway, G.: Generalized boosted models: a guide to the GBM package (2005)

    Google Scholar 

  17. Liaw, A., Wiener, M.: Classification and regression by randomForest. R News 2(3), 18–22 (2002)

    Google Scholar 

Download references

Acknowledgment

The research leading to these results has received funding by the Spanish Ministry of Economy and Competitiveness (MINECO) for funding support through the grants FPA2012-30811, FPA2013-47804-C2-1-R, and “Unidad de Excelencia María de Maeztu”: CIEMAT - FÍSICA DE PARTÍCULAS through the grant MDM-2015-0509. The authors acknowledge the kind support of the whole ArDM collaboration by making available the Monte Carlo simulation.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Miguel Cárdenas-Montes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Cárdenas-Montes, M., Montes, B., Santorelli, R., Romero, L., on behalf of Argon Dark Matter Collaboration. (2016). Evaluation of Decision Trees Algorithms for Position Reconstruction in Argon Dark Matter Experiment. In: Martínez-Álvarez, F., Troncoso, A., Quintián, H., Corchado, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2016. Lecture Notes in Computer Science(), vol 9648. Springer, Cham. https://doi.org/10.1007/978-3-319-32034-2_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32034-2_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32033-5

  • Online ISBN: 978-3-319-32034-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics