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Abstract. This work proposes a methodology to identify genes highly
related with cancer. In particular, a multi-objective evolutionary algo-
rithm named CANGAR is applied to obtain quantitative association
rules. This kind of rules are used to identify dependencies between genes
and their expression levels. Hierarchical cluster analysis, fold-change and
review of the literature have been considered to validate the relevance
of the results obtained. The results show that the reported genes are
consistent with prior knowledge and able to characterize cancer colon
patients.
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1 Introduction

The word cancer refers to a set of different complex diseases, characterized by
an uncontrolled and pathogenic growth of cells as a tumor, driving to death
without medical treatment. Due to the increase of life expectancy, cancer can be
considered as the 21st century’s disease. In fact, around one third of the total
population will develop cancer during their lifetime [1]. This high percentage
shows the importance of the development of adequate techniques for diagnosis
and treatment of the different cancers.

The origin of cancer is mainly genetic, due to the accumulation of mutations
in cells during lifetime. This enables them to become independent of the extra-
cellular matrix, losing adherent properties and allowing them to metastasize to
other tissues. During the period 1989–2008, around 15 % of all deaths due to
malignant tumours were caused by colorectal cancer [2].

Data Mining has been used in cancer context for the diagnosis and prognosis
of breast cancer [3]. This technique can help to detect it earlier reducing the
mortality risk in patients. Indeed, data mining has been used in breast cancer



to predict the survival rate of patients [4]. This allows that patients with lower
survival rate may change their habits in order to increase it. Association Rules
(hereafter AR) mining is a popular methodology in the field of Data Mining
to discover significant and apparently hidden relations among attributes in a
subspace of the dataset instances. In fact, the work presented in [5] proposes the
application of fuzzy AR to find potential associations among prognostic factors
in breast cancer. The well-known Apriori algorithm was applied to mine the AR
between clinical factors and good survival outcomes in operation in [6].

The expression microarray technology [7] is composed of chips that show us
the expression of a large number of genes of the patient, being impossible to
perform a particular and individual study and statistical analysis. The goal of
bioinformatics is to find genes involved in cancer progression. This is achieved
by using normal and cancerous tissue samples.

In this work we propose a study to identify gene expression patterns in colon
cancer microarray data using Quantitative Association rules (hereafter QAR). In
particular, we have applied a multi-objective genetic algorithm, henceforth called
CANGAR, to discover QAR with the aim to find genes probably associated with
cancer according to their expression levels. The resulting genes of CANGAR may
be studied in order to find out if they are implied or related in any way with a
specific type of cancer.

The rest of the paper is structured as follows. Section 2 summarizes the main
concepts of AR and quality measures in addition to the fold-change measures
used to select the genes to be analyzed. Section 3 thoroughly describes the CAN-
GAR approach to identify genes highly related to colon cancer patients. Section 4
presents and discuss the results obtained in the analysis proposed. Finally, Sect. 5
summarizes the conclusions drawn from the analysis performed.

2 Preliminaries

This section provides a brief description of QARs and quality measures, in addi-
tion to the fold-change measure commonly used in microarray analysis.

2.1 Quantitative Association Rules and Quality Measures

AR are implications like X ⇒ Y where X
⋂
Y = ∅. But there are a subtype of

AR that allows also to set an interval of membership for the attributes, those
are called QAR [8]. For example, a QAR could be numerically expressed as:

GeneA ∈ [1, 2] and GeneB ∈ [3, 4] ⇒ GeneC ∈ [2, 3]

The left-side and the right-side of an AR are known as antecedent and conse-
quent, respectively. In this example, GeneA and GeneB belong to the antecedent
and GeneC belongs to the consequent.

Several probability-based measures exist to evaluate the generality and reli-
ability of AR (and QAR) [9]. The most frequently measures used are support



and confidence [10]. Table 1 summarizes the description and the mathematical
definition of measures used in this work [11]. Note that the classical algorithms
need to obtain some frequent item-sets before generating AR that satisfy min-
imum support and confidence thresholds. This is undoubtedly the most costly
task in seeking AR. One of the most important algorithms for generating fre-
quent item-sets, is the Apriori algorithm [12], which is based on the fact that if
a set is frequent, all of it subsets will be frequent too, and the same in the other
way.

The CANGAR algorithm does not require the generation of frequent item-
set, since the intervals of QAR are evolved through the evolutionary process of
CANGAR until those rules with best measures are obtained. Note that n(AB)
is the number of occurrences of the rule A ⇒ B in the dataset and |D| is the
total number of instances in the dataset.

Table 1. QAR quality measures

Measure Equation

Sup(A ⇒ B) n(AB)
|D|

Conf(A ⇒ B) Sup(A⇒B)
Sup(A)

Lift(A ⇒ B) Sup(A⇒B)
Sup(A)Sup(B)

Conviction(A ⇒ B) 1−Sup(B)
1−Conf(A⇒B)

Gain(A ⇒ B) Conf(A ⇒ B) − Sup(B)

Certainty factor(A ⇒ B) • If Conf(A ⇒ B) ≥ Sup(B): Gain(A⇒B)
1−Sup(B)

• If Conf(A ⇒ B) < Sup(B): Gain(A⇒B)
Sup(B)

Leverage(A ⇒ B) Sup(A ⇒ B) − Sup(A)Sup(B)

Accuracy(A ⇒ B) Sup(A ⇒ B) + Sup(A ⇒ B)

Coverage(A ⇒ B) Sup(A⇒B)
Sup(B)

Netconf(A ⇒ B) Sup(A⇒B)−Sup(A)Sup(B)
Sup(A)(1−Sup(A))

Y ule′sQ(A ⇒ B) x−y
x+y

s.t

x = Sup(A ⇒ B)(1 − Sup(B))

−Sup(A) + Sup(A ⇒ B)

y = (Sup(A) − Sup(A ⇒ B))(Sup(B)

−Sup(A ⇒ B))

2.2 Differentially Expressed Genes in Microarray Data

In order to know if the change of expression of a specific gene is significant, cancer
samples must be compared with normal samples using a parameter called fold
change (FC). In that way, at least two different microarrays experiments must
be performed. For the dataset used in this work, normal (control) samples come
from the same patient, but from healthy tissue close to tumoral tissue. Expression



of up to 20000 genes is determined by the mRNA level of each gene and measured
by fluorescence differences. These differences must be translate from fluorescence
intensity to real values, using some housekeeping genes (genes that are supposed
to have a constant expression) to normalize the expression.

Higher mRNA expression are connected with a higher hybridization and,
consequently, to a higher fluorescence that show higher expression values. In
order to estimate the FC we have applied the following function:

FC = log2(average(C)) − log2(average(N)) (1)

Where C is the expression gene set in cancer samples and N refers to the
expression gene set in control samples.

Depending on FC value, we have two different gene behaviors in cancer:

– If FC>0, a gene is up-regulated, showing a higher expression in cancer cells
– If FC<0, a gene is down-regulated, showing a lower expression in cancer cells.

FC values can be analyzed using statistic inference or descriptive statistics.
The first simply selects the genes with highest FC and with statistical signifi-
cance. Descriptive statistics groups genes with similar expression patterns, allow-
ing selecting a parameter to group genes with same behavior. Both due to the
experiment and cancer biology, the previous analysis can be inappropriate to
extract rules for this disease. In that way, small changes in gene expression of a
specific gene can produce a great impact in cancer evolution. This makes nec-
essary to use different parameters to define the role of genes in cancer. As con-
sequence, we have designed a parametrized genetic algorithm to discover QAR
able to deal with the expression levels of the genes.

3 Description of CANGAR Algorithm

This section describes the CANGAR algorithm used to mine QAR from microar-
ray data of colon cancer patients. CANGAR is a multi-objective algorithm based
on the well-known NSGA-II [13] that discovers QAR in continuous datasets.
CANGAR provides rules with adaptive intervals, whereas the classical algo-
rithms, such Apriori, requires a previous discretization of data. The search of
the most suitable intervals is addressed by an evolutionary process in which the
intervals are evolved to discover high quality QAR according to the objectives
optimized.

The main features of CANGAR algorithm are presented in the following
sections. Section 3.1 shows the pseudocode of CANGAR algorithm based on the
NSGA-II algorithm. Section 3.2 describes the codification of the individuals of
the population to represent a QAR. Section 3.3 details the genetic operators used
to deal with the aforementioned individual representation.



3.1 Algorithm Pseudocode

In this section the pseudocode of CANGAR algorithm to obtain QAR is pre-
sented in Algorithm 1. Although the evolutionary scheme is based on the NSGA-
II algorithm, the inherit scheme has been modified and new features have been
added. For instance, an external population (PE) is considered to include all the
non-dominated solutions found. Furthermore, the population is restarted when
the percentage of evolved individuals is lesser than a minimum threshold (Et).

The pseudocode is divided in four procedures. The main procedure is Algo-
rithm (lines 7 – 17). This procedure performs a number of executions (numex),
in which a set of Re rules are obtained to compose the final set of best rules (Bc)
found by the algorithm. Evolve procedure (lines 18 – 31) represents the evolving
process of the population. This procedure obtains the external population (PE)
when the generations limit (Gl) is reached. In each generation, the new popu-
lation obtained is sorted and ranked according to the level of non-domination.
Then, the external population (PE) is updated with the non-dominated solutions
that compose the first Pareto Front (Pr0).

Procedure Next-generation (lines 32 – 47) is devoted to build the next genera-
tion of the population. To fulfil this goal, the offspring population (D) is obtained
by genetics operators. After that, these individuals and the current population
(Pg) are merged into a new population (T ). This new population (T ) is sorted
and ranked to obtain different fronts according to the level of non-domination
of the individuals (F ). The next generation (Pg+1) is composed of the N best
individuals selected from F . Finally, the procedure Update-external-population
(lines 48 – 51) updated the external population (PE) taking into account the
non-dominated solutions after performing the union between R and PE .

3.2 Individual Representation

As the implemented algorithm seeks to do data mining with QAR, the chromo-
somes must represent those rules. To achieve that, the chromosomes include the
following properties:

– Antecedent: Set of genes representing the rule antecedents.
– Consequent: Depending on the desired rules to be reported, two type of

consequents have been considered.
Type 1 Set of genes representing the rule consequent.
Type 2 Fixed class. This can be used to fix, for example, if the patient has

cancer or not. When the consequent is a gene or a set of them, this
property is not used.

In this work, consequent type 1 can be used to find relationships among genes
and consequent type 2 can be used to find which genes are related with a type
of patient.

In the context of this work, the genes, referring to the indivisible part of the
chromosome, correspond to real genes. Due to the algorithm seeks to find genes
implied in cancer, the chromosome genes would be real ones. Each gene has the
following properties:



Algorithm 1. CANGAR pseudocode
1: Input 1: Number of executions (num ex)

2: Input 2: Population size (N)
3: Input 3: Generations Limit (Gl)

4: Input 4: Rules per execution (Re)
5: Input 5: Evolve threshold (Et)

6: Output: Best rules found

7: procedure Algorithm(num ex, N, Gl, Re, Et)
8: Bc ← ∅
9: while Executions ≤ num ex do
10: P0 ← initial-population(N)
11: Fp ← ∅
12: Fp ← evolve(P0, Gl, Et)
13: I ←sort-by-distance(individuals(Fp))

14: Bc ← Bc ∪ I[1 : Re]

15: end while
16: return Bc

17: end procedure

18: procedure evolve(Pg , Gl, Et)
19: PE ← ∅
20: while not Gl do

21: Pg ← next-generation(Pg, Et)
22: Pr = (Pr0, P r1, ...) ←non-dominated-sort(Pg)

23: PE ← update-external-population(Pr0)
24: if percentage-evolved(Pg) < Et then

25: Pg ← initial-population(N)

26: end if

27: end while
28: PE ← filter(PE)
29: PE ← rankings(PE)

30: return PE

31: end procedure

32: procedure next-generation(Pg , Et)

33: D ← descendants(Pg)
34: T ← D ∪ Pg

35: F = (F0, F1, ...) ←non-dominated-sort(T )

36: i ← 0
37: Pg+1 ← ∅
38: while |Pg+1| + |Fi| < N do

39: Pg+1 ← Pg+1 ∪ Fi

40: i ← i+ 1

41: end while
42: if |Pg+1| < N then

43: Fi ← sort-by-distance(Fi)

44: Pg+1 ← Pg+1 ∪ Fi[1 : |Pg+1 − N |]
45: end if

46: return Pg+1

47: end procedure



48: procedure update-external-population(R)
49: PE ← PE ∪ R
50: filter-dominated(PE)
51: end procedure

– Attribute: Index referring to the column of this gene in the original dataset.
This index is used for not to have to deal with strings, and get the gene name
only once, at the end.

– Lower Limit: Real number showing the lower limit of the expression interval
of the gene.

– Upper Limit: Real number showing the upper limit of the expression interval
of the gene.

The lower and upper limits turns the AR into QAR, because they do not only
link a gene with a state (normal or cancer) or other genes but also they link
genes and their expression interval, with a state or with other genes and their
expression interval.

3.3 Genetic Operators

Genetic operators are devoted to evolve the population for, starting with par-
ents, generate better children. There are selection mechanisms to filter those
individuals who are not good enough and apply the operators only to the best
ones. In this work, two genetic operators, the mutation and crossover operator,
have been defined to deal with the aforementioned individual representation.

Mutation Operator. Three mutation policies have been implemented.

– Generalisation of rules. The first one is for generalise rules. The policy remove
a gene from the antecedent or consequent as long as the condition for minimum
number of antecedents or consequents is satisfied.

– Specialisation of rules. The second one is a policy to specialise rules. It works
the same way as the generalise policy, but adding a gene to the antecedent or
consequent.

– Interval bounds. The last one do not add nor remove any gene from the rule,
but takes one (in either the antecedent or the consequent) and mutates it’s
interval. This is made by taking a random point inside the current interval
and generating a new one around this point.

Crossover Operator. The chosen crossover operator is based on taking a gene of
each parent and give it to one child alternatively. To do that, the limit is taken
as the number of genes of the biggest parent. Then, the genes are iterated one
by one. In the first iteration, the gene of the first parent is given to the first child
and the gene of the second parent is given to the second child. In the next one,
the gene of the first parent is given to the second child and the gene of the second
parent is given to the first child. The same process is done in every iteration.



If a gene can not be given to the corresponding child in one of those iterations
(because that child already has that gene, for example) this iteration would be
marked as invalid. Thus, the assignment regulation will not be reversed in the
next iteration. Note that the interval bounds of the individuals are taken from
the inherited gene of the parents in the crossover operator.

4 Experimentation

This section presents and analyzes the results obtained by CANGAR to dis-
cover relationships among set of genes related with patient that suffer colon
cancer according to their expression levels. The cancer colon dataset used in
the experimentation is presented in Sect. 4.1. Then, the parametrization of the
algorithm is also described in Sect. 4.2. The results obtained in the experimental
study are provided in Sect. 4.3.

4.1 Cancer Dataset

This work has used a public microarray gene expression dataset of patients
with colon cancer referred as GSE21510 in the National Center for Biotech-
nology Information repository (NCBI) [14], using Robust Multi-Array Average
(RMA) algorithm to standardize microarray data. The dataset is composed of
148 patients and 54675 genes expression profiles per patient. In order to check if
the behavior of the database is the expected, we analyzed several known genes
connected with colon cancer such as KLF4 [15] and BMI1 [16]. Once validated,
we used this dataset applying the CANGAR algorithm to obtain QARs with
genes highly related with cancer patients.

4.2 Parameter Settings

The CANGAR algorithm has several parameters to satisfy the user needs that
are described as follows. The rule size can be controlled by the maximum number
of attributes in the antecedents and the consequents. In this work, the minimum
and maximum number of attributes in antecedents and consequents have been
1 and 4, respectively. The consequent can be a fixed class (typically normal or
cancer) or a set of genes (type 1 and 2, respectively). Consequent type 1 have
been used in this work. The rules obtained by CANGAR can be also filtered
by setting minimum thresholds for several quality measures. For instance, a
minimum support threshold of 0.1 and a minimum confidence threshold of 0.8
have been considered.

Other parameters are the maximum population size (100), the number of
generations (100), the mutation rate (0.15) according to the three mutation
policies (0.5 for the generalizing mutation, 0.1 for the specializing mutation and
0.4 for the interval bounds mutation) and the crossover rate (0.6). There is an
option to avoid the algorithm stagnating using a threshold to set the minimum
share of the population that have to evolve. In this case, a minimum percentage



of individuals to evolve of 0.1 has been used. The objectives to be optimized
by CANGAR regarding other previous studies [17] are Leverage, Netconf and
Certainty Factor. Finally, the algorithm has be executed 5 times and the number
of rules selected per execution has been 10.

4.3 Results

Several experiments have been performed using the aforementioned dataset and
parameter settings to obtain a potential set of genes related with colon cancer.
The CANGAR algorithm has been applied to obtain a set of QAR being fixed
patient type (healthy or cancer) as consequent part. We are highly interested
in those rules in which the patients type refers to patients suffering from colon
cancer disease. Then, we have selected the top 100 of the most frequent genes that
appear more than 20 % in the rules obtained by CANGAR. The selected genes
have been validated by hierarchical cluster analysis, statistical and biological
significance validation techniques and literature mining.

Hierarchical Cluster Analysis. A hierarchical cluster analysis has been con-
ducted to cluster patients and genes with similar behaviour. This method is
applied to assess the capability of the genes obtained by CANGAR to classify
between healthy and cancer patients according to the changes in the expression
levels (down-regulated or up-regulated). Alternatively, this hierarchical cluster
analysis can be used to validate the changes of the expression levels detected by
the intervals of the rules obtained by CANGAR.

Figure 1 displays the heatmap of control and cancer patients according to the
top genes under study after applying the hierarchical cluster analysis. Note that
data have been scaled and centered. The results are plotted as dendrograms.
Spearman correlation and Pearson correlation have been used to cluster the
columns (patients) and rows (genes), respectively. The resulting tree has been
cut at specific height (1.5) with its corresponding clusters highlighted in the
heatmap color bar.

In general, four groups can be observed according to the patient type and gene
expression levels. Control and cancer patients are separated in different groups
as can be observed in the X-axis of the heatmap (from left to right, respectively).
The down-regulated genes and up-regulated genes for cancer patients are con-
centrated at the top-right and bottom-right parts of the heatmap, respectively.
The more differences exist between the groups of genes and patients, the higher
is its importance in cancer.

Biological Relevance. Using CANGAR algorithm we have found more than
90 altered genes in colon cancer samples. These genes have been classified in
different groups regarding its main function in cancer [18] as can be observed in
Table 2. The aforementioned functions are described as follows:

– Cellular Proliferation/Death: This is the main function involved in tumor
transformation, thus these genes have been deeply studied in cancer. Here we



Fig. 1. Hierarchical cluster analysis of top genes.

find genes that take action in the cell cycle, like APC (Anaphase Promoter
Complex) which is essential for mitosis.

– Metastasis: Invasion is one of the main characteristics of cancer cells, becom-
ing independent from its environment and entering in blood circulation to
reach other tissues. Here we can find genes related with cytoskeleton or matrix
stabilization, like ACTN1 or ITIH2.

– Angiogenesis: cancer cells require high levels of glucose and oxygen, making
necessary the develop of new blood vessels. Two genes (MED28 and TNFSF15)
involved in angiogenesis have been identified using CANGAR algorithm.

– Gene Expression Regulators: cancer progression is characterized by
important changes in gene expression, due to alterations in ribosome syn-
thesis (RPL13A) or histone modification (PRDM9, HIST1H3H). In that way,
we found downregulation of histone HIST1H3H, involved in heterochromati-
zation, a process that turn-off gene transcription.

– Other Component: Many genes of the list are unknown or poorly charac-
terized. In this way, the lack of information about the role in cancer of many
of the found genes converts them in potential targets for new research.



Table 2. Functional classification of the genes found by CANGAR

5 Conclusions

In this work, we have presented the discovery of quantitative association rules
in gene expression microarrays of cancer. In particular, the multi-objective evo-
lutionary algorithm named CANGAR has been applied to discover hidden rela-
tions among genes according to their expression levels. Then, we identified the
most frequent genes appearing in the rules in order to provide a subset of genes
with potencial prognosis role in cancer. To validate the results, a hierarchical
cluster analysis has been applied using the reported set of genes to validate
the capability of characterization between control and cancer patients of them.
Furthermore, the genes have been classified according their main function. As
a future work, we intend to improve the validation of the results, to test the
implication of the reported set of genes in different types of cancer and apply
the CANGAR algorithm in other microarray datasets.
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