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Abstract. In an eigenvalue problem defined by one or two matrices with
block-tridiagonal structure, if only a few eigenpairs are required it is in-
teresting to consider iterative methods based on Krylov subspaces, even
if matrix blocks are dense. In this context, using the GPU for the asso-
ciated dense linear algebra may provide high performance. We analyze
this in an implementation done in the context of SLEPc, the Scalable Li-
brary for Eigenvalue Problem Computations. In the case of a generalized
eigenproblem or when interior eigenvalues are computed with shift-and-
invert, the main computational kernel is the solution of linear systems
with a block-tridiagonal matrix. We explore possible implementations of
this operation on the GPU, including a block cyclic reduction algorithm.

Keywords: GPU computing, eigenvalue computation, Krylov methods,
block-tridiagonal linear solvers

1 Introduction

This paper is concerned with the computation of a few eigenpairs of an eigen-
value problem defined by one or two matrices with block-tridiagonal structure,
using graphic processing units (GPU). We focus on Krylov methods, that will
be competitive with respect to other methods when the percentage of wanted
eigenvalues is small. We remark that our solvers are not restricted to symmetric
matrices, but can work also in the non-symmetric case.
Given an n X n real matrix A, the standard eigenvalue problem is formulated
as
Az = Az, (1)

where X is a scalar (eigenvalue) and x # 0 is an n-vector (eigenvector). There
are n eigenpairs (z, A) satisfying (1). If matrix A is symmetric, then all eigen-
values are real, otherwise eigenvalues are complex in general. In the generalized
eigenvalue problem there are two intervening matrices,

Az = A\Bx. (2)
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There are two major strategies for solving the above eigenproblems. One class
of methods first reduce the matrices to a condensed form from which eigenvalues
can be recovered more easily. These methods are generally more appropriate
when all eigenvalues are required. In contrast, a second class of methods based
on projecting the eigenproblem on a low-dimensional subspace are usually better
suited for computing only a few eigenpairs. For large, sparse matrices, projection
methods are the only viable strategy because they preserve sparsity, as opposed
to transformation methods that produce fill-in during reduction to condensed
form. In this work, we are targeting problems where matrices have a block-
tridiagonal structure, whose blocks are not necessarily sparse, in which case
transformation methods are in principle well suited, but we take the projection
route since we are interested in just a few eigenvalues.

Consider first the standard eigenproblem (1). Transformation methods be-
gin by reducing matrix A to either tridiagonal or upper Hessenberg form, in
the symmetric or non-symmetric case, respectively. In terms of computational
effort, this step is more expensive than the actual computation of eigenvalues,
and hence many research efforts have been dedicated to improve its arithmetic
intensity, specifically on GPUs [2],[14]. Once the problem has been reduced to
condensed form, various algorithms can be applied to compute the eigenvalues,
such as the QR iteration, or specific iterations for symmetric tridiagonals, such
as divide-and-conquer. Some of these algorithms are difficult to implement and
have modest arithmetic intensity, and hence a hybrid CPU-GPU approach is
often pursued [15]. In order to increase arithmetic intensity, some authors ex-
tend the algorithms to operate directly on a symmetric band matrix [3]. These
methods compute all eigenvalues, which may be wasteful in some applications,
and, optionally, all eigenvectors (requiring an additional computation).

One example of the projection methods is the Arnoldi algorithm: starting
with vy, ||v1]2 = 1, the Arnoldi basis generation process can be expressed by the
recurrence

J
vjyihjpr; = w; = Avj — E i i, (3)
i=1

where h; ; are the scalar coefficients obtained in the Gram-Schmidt orthogonal-
ization of Av; with respect towv;, i =1,2,...,j,and hj1,; = ||wj||2. The columns
of V; span the Krylov subspace K; (A, v1) = span{vy, Avy, A%vy, ..., A7 vy} and
Az = Az is projected into H;s = @s, where H; is an upper Hessenberg matrix
with elements h; ; (h;; = 0 for i > j + 2). If the solutions of the projected
eigenproblem are assumed to be (6;,s;), ¢ = 1,2,...,7, then the approximate
eigenpairs (Z;, 5\1) of the original problem are obtained as \; = 6;, &; = Vis;.
Regarding the implementation of projection methods for eigenvalue problems
on the GPU, particularly Krylov methods, the challenge is to reach high Gflops
rate in the sparse matrix-vector product operation, see e.g. [10], since the rest of
operations are quite simple as will be discussed in Section 3. In our case, we will
not deal with sparse matrices, and the goal will be to implement highly efficient
computational kernels for the block-tridiagonal matrix-vector product.



When addressing the generalized eigenproblem (2), a possible approach is
to transform it to the standard form and apply the methods discussed above,
for instance solve B~'Az = Az (provided B is non-singular). In the context of
projection methods, where only a few eigenvalues are computed, the shift-and-
invert transformation is commonly used,

(A—oB) 'Bx = 0z, (4)
where largest magnitude § = (A — o)~! correspond to eigenvalues A closest to
a given target value 0. Rather than computing matrix (A — o B)~!B explicitly,
Krylov methods normally operate implicitly by solving linear systems with A —
0 B when necessary. In our case, we need an efficient kernel to solve linear systems
with a block-tridiagonal coefficient matrix on the GPU.

The rest of the paper is organized as follows. In section 2 we describe the
SLEPc library, in which we have developed our solvers, focusing on the support
for GPU computing. Section 3 provides details of our implementation, paying
special attention to the kernels for matrix-vector products and linear system
solves with block-tridiagonals. Results of some computational experiments are
shown in section 4. Finally, we close with some concluding remarks.

2 SLEPc solvers on GPU

SLEPc, the Scalable Library for Eigenvalue Problem Computations [5], is a
software package for the solution of large-scale eigenvalue problems on parallel
computers. It can be used to solve standard and generalized eigenproblems,
(1) and (2), as well as other related problems. It can work with either real or
complex arithmetic, in single or double precision. SLEPc provides a collection
of eigensolvers, most of which are based on the subspace projection paradigm
described in the previous section. In particular, it includes a robust and efficient
parallel implementation of a restarted Krylov solver. It also supports the shift-
and-invert transformation (4) with which interior eigenvalues can be computed
making use of the linear solvers provided by PETSc!.

In the development version, PETSc incorporates support for NVIDIA GPUs
by means of Thrust and CUSP?, performing vector operations and matrix-vector
products through VECCUSP, a special vector class whose array is mirrored in
the GPU, and a matrix class MATAIJCUSP, where data generated on the host
is then copied to the device on demand. Later, support was extended for sparse
matrix operations via CUSPARSE. The GPU model considered in PETSc uses
MPI for communication between different processes, each of them having access
to a single GPU [7]. The implementation includes mechanisms to guarantee
coherence of the mirrored data-structures in the host and the device.

! http://www.mcs.anl.gov/petsc

2 Thrust is a C++ template library included in the CUDA software development
toolkit that makes common CUDA operations concise and readable. CUSP is an
open source library based on Thrust that targets sparse linear algebra.



In a previous work [11], preliminary support for GPU computing on SLEPc
was analyzed in the context of an application arising from an integral equation.
In this work, we extend the developments to general block-tridiagonal matrices
including shift-and-invert.

3 Krylov methods for block-tridiagonal matrices

Krylov algorithms for eigenvalue computations are based on building an orthogo-
nal basis of the Krylov subspace ,,, (4, v1) and then performing a Rayleigh-Ritz
projection to extract approximate eigenpairs. Since convergence may be slow, it
is necessary to restart the method, that is, discard part of the information con-
tained in the subspace and extend the subspace again. We use the Krylov-Schur
restart [13]. We will not describe the algorithm in detail here, just enumerate
the main computational kernels:

1. Basis expansion. To obtain a new candidate vector for the Krylov subspace,
a previous vector must be multiplied by A. In the generalized eigenproblem
(2) the multiplication is by B~!A or, alternatively, by (A — oB)~ !B and
hence linear system solves are required as discussed previously.

2. Orthogonalization and normalization of vectors. The jth vector of the Krylov
basis must be orthogonalized against the previous j — 1 vectors. This can be
done with the (iterated) modified or classical Gram-Schmidt procedure.

3. Solution of projected eigenproblem. A small eigenvalue problem of size m
must be solved at each restart, for matrix H = VT AV (already available
from previous steps).

4. Restart. The associated computation is V' Z, where the columns of V' span
the Krylov subspace and Z is a small matrix of order m x r, with r < m,
formed by the Schur vectors of H (calculated on the previous step).

We assume that m is very small compared to the size of the matrices, n, and
we can have for instance m = 30, n = 100000. The cost of item 3 in the above
list is negligible compared to the rest, and hence it is not worth performing it on
the GPU. Regarding items 2 and 4, they are currently done as vector operations
(BLAS1) on the GPU. We plan to optimize these operations in the future so
that they use BLAS level 2 (or even level 3 in some cases), but this is not very
relevant in this paper because the dominant cost is by far the one associated
with item 1. Next we discuss in detail the operations related to basis expansion.

3.1 Kernel: matrix-vector product

Consider a block-tridiagonal matrix T" of order n, with ¢ blocks of size k,

Bl Cl O Bl Cl
A By O A By Cy
T = Az B3 Cs , rep(T) = A3 B3 Cs | (5)

Ay By A, B, O



where rep(T) stands for the memory representation of T' (the O symbols indicate
blocks with memory allocated but not being used).
The matrix-vector product y = T'v can be computed by blocks as

Vi—1
yi=[A; B; Cy] | v |, 1=2,...,0—1, (6)
Vi+1

with analog expressions for the first and last block row. Due to the arrangement
of blocks in rep(T"), it is possible to do the computation with a single call to BLAS
_gemv per each block row. Similarly, a possible GPU implementation would call
the corresponding CUBLAS [8] subroutine. We remark that when allocating
memory for rep(7T") on the GPU we use appropriate 2D padding for each block,
to guarantee alignment of columns. Apart from the CUBLAS version, we have
also implemented a customized kernel that performs the whole computation with
a single kernel invocation.

3.2 Kernel: linear system solves

We now turn our attention to the solution of linear systems of equations
Tz =b. (7)

This problem could be approached with LAPACK’s general band factorization
subroutines, but this is not available on the GPU. Hence, we focus on algorithms
that operate specifically on the block-tridiagonal structure and are feasible to
implement with CUDA. The (scalar) tridiagonal case was analyzed in [16], where
the authors compare GPU implementations of several algorithms. We have ex-
tended two of the algorithms to the block case: Thomas and cyclic reduction.
Gaussian elimination on a tridiagonal matrix is sometimes referred to as the
Thomas algorithm. We have implemented the block version of this method just
for reference, because it is an inherently serial algorithm, with little opportu-
nity of parallelism except for computations within one block. In the forward
elimination phase, the algorithm computes C; + BflCl and by < Bflbl, and

B; < B; — AiCi 1, (8)

Ci < Bi_lCi, (9)

bi « B (b — Agbiy), (10)

for i« = 2,...,¢; the backward substitution starts with x; < b; and runs for
i=0—-1,...,1

x; +— b; — Ci(Ei+1. (11)

Steps (8)—(9) perform a block LU factorization, that needs to be computed only
once. Subsequent right-hand sides only require steps (10)—(11). Note that the
factorization is destructive, but we assume that the original matrix 7" is no
longer needed. Factorization can be accomplished with a few calls to _gemm



and LAPACK’s _getrf/_getrs. With _getrf we compute the LU factorization with
partial pivoting of the diagonal block B;. We remark that since pivoting is limited
to the diagonal block, this algorithm is numerically less robust than a full LU
factorization, although in our tests the computed result was always accurate
enough.

There are several alternative algorithms that try to increase the number of
concurrent tasks and hence reduce the length of the critical path, although the
cost in flops is increased. The cyclic reduction scheme [4] consists of log, ¢ stages,
where in every stage j all even blocks are eliminated in terms of the odd blocks,
resulting in a system with a similar form but with halved number of unknowns.
Matrix blocks of consecutive levels are related by

AT = —AP(BS) ) tAY) (12)
BYY =B — AP (B ) ros) - o (B ) AY,, (13)
Cij+ ) = _Cz(g)(Bg)ﬂ) 102(3)“, (14)

and analog recurrences for the right-hand side bgj b during forward elimination,
and the solution vector xl(.J +1) during backward substitution. This algorithm also
requires more memory, since (Béz)_l)*lAéji)_l and (Béﬁ_l)*lCégi_l are necessary
also during backward substitution. The other computed quantities can be stored
in-place, so the storage requirements are at least 66% higher than Thomas.

The GPU implementation requires a version of CUBLAS that provides the
_getrf and _getrs operations, and more precisely batched versions of them that
allow launching several factorizations/triangular solves simultaneously in order
to increase potential parallelism. In this sense, the Thomas algorithm is very
poor, since only one factorization or triangular solve can be done at a time.

An MPI parallel implementation of the cyclic reduction for block-tridiagonals
was considered in [6],[12]. A block cyclic reduction solver on GPU was used in [1]
in the context of a CFD applications, with block sizes up to 32. We are interested
in the case of much larger blocks, as was done in [9] in the context of a hybrid
CPU-GPU solver based on MAGMA for the LU factorization.

4 Computational results

The tests have been run on two computers:

Fermi 2 Intel Xeon E5649 processor (6 cores) at 2.53 GHz, 24 GB of main
memory; 2 GPUs NVIDIA Tesla M2090, 512 cores and 6 GB GDDR per
GPU. The operating system is RHEL 6.0, with GCC 4.6.1 and MKL 11.1.

Kepler 2 Intel Core i7 3820 processor (2 cores) at 3,60 GHz with 16 GB of main
memory; 2 GPUs NVIDIA Tesla K20c, with 2496 cores and 5 GB GDDR
per GPU. The operating system is CentOS 6.6, with GCC 4.4.7 and MKL
11.0.2.
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Fig. 1. Left y axis: Performance of the matrix-vector product operation for a fixed
block size k = 960 and varying number of blocks ¢ for both CPU and GPU on the
Fermi (left) and Kepler (right) machine, in single and double precision arithmetic.
Right y axis: Eigensolve operation time for double precision arithmetic.

In both cases, the other software used is PETSc 3.6, SLEPc 3.6, CUDA 7.0 and
CUSP 0.5.0.

Computational experiments have been conducted on random matrices, where
we have varied the number of blocks ¢ and the block size k, up to the maximum
storage space available on the GPU card. The matrices were generated in all
cases on the CPU to use the exact same matrix on both runs (GPU/CPU).

We start discussing the matrix-vector product operation, implemented in the
CPU with calls to BLAS and in the GPU with the ad-hoc CUDA kernel. We
have computed the largest magnitude eigenvalue of random matrices, where the
computation requires about 100 matrix-vector products. Figures 1 and 2 show
the Mflop/s rate (left y axis) for our code running either on the CPU (with MKL
and multi-thread enabled) or the GPU, and the total eigensolve operation time
(right y axis). With a large block size (Figure 1), we can see that performance
does not depend too much on the number of blocks. In contrast, when we fix
the number of blocks (Figure 2) the performance is significantly lower for small
block sizes. In any case, the benefit of using the GPU is evident since we are
able to reach about 1 Tflop/s.

For assessing the performance of the shift-and-invert computation using the
block oriented cyclic reduction algorithm, we have computed one eigenvalue clos-
est to the origin (¢ = 0) of random matrices of varying size. Results are shown
in Figures 3 and 4. In this case, the GPU version does not beat the CPU com-
putation (using as many threads as computational cores in MKL operations).
Nevertheless we can appreciate the sensitiveness of the GPU to the data size, as
its performance improves when the number of blocks is increased for a large block
size as well as when the block size is increased, while the CPU is only affected
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Fig. 2. Left y axis: Performance of the matrix-vector product operation for varying
block size k and a fixed number of blocks ¢ = 130 for both CPU and GPU on the
Fermi (left) and Kepler (right) machine, in single and double precision arithmetic.
Right y axis: Eigensolve operation time for double precision arithmetic.
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Fig. 3. Shift-and-invert case. Left y axis: Performance of factorization for a fixed block
size k and varying number of blocks ¢ for both CPU and GPU on the Fermi (left)
and Kepler (right) machine, in double precision arithmetic. Right y axis: Eigensolve
operation time for double precision arithmetic.

by the block size. The reported Mflop/s rate correspond to the LU factoriza-
tion on double precision arithmetic, whereas the triangular solves only achieve
a performance around 2.5-4 Gflop/s, both on CPU and GPU, and the single
precision tests provided inaccurate results. The time shown corresponds to the
total eigensolve operation, using the same number of restarts on both GPU and
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CPU runs. All in all, the performance is much worse than in the matrix-vector
product case, as expected.

5 Conclusions

Computing a few eigenpairs of a block-tridiagonal matrix (or matrix pencil) is a
computational problem that arises in different applications, e.g. in certain con-
figurations of magnetohydrodynamic equilibrium solvers in the field of plasma
physics [6]. We have explored GPU implementations in the context of the SLEPc
library to compute either exterior or interior eigenvalues. In the former case,
the main computational kernel is the matrix-vector product, that can be im-
plemented with high Gflops rate. In the latter, it is necessary to perform a
factorization of the matrix and then linear solves in each iteration of the eigen-
solver. The cyclic reduction algorithm on the GPU yields good performance for
the factorization, but poorer in the case of triangular solves, as expected. Other
algorithms for block-tridiagonal solves, such as those based on prefix sums, could
be worth investigating to try to harness the full capability of the GPU.

In order to be able to address larger problems by exploiting several GPUs,
either in the same node or in a compute cluster, we are currently developing
MPI-based multi-GPU versions of the kernels, where each of the p MPI processes
stores part of T and the local computations are carried out in the GPU. Hybrid
CPU-GPU version could also be of interest. Also as a future work, we must
optimize the orthogonalization of vectors on the GPU, since this cost becomes
dominant once the time associated with the rest of operations has been reduced.
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