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Abstract

Motion planning is an important and well-studied field of robotics. A
typical approach to finding a route is to construct a cell graph representing
a scene and then to find a path in such a graph. In this paper we present
and analyze parallel algorithms for constructing the cell graph on a SIMD-
like GPU processor.

Additionally, we present a new implementation of the dictionary data
type on a GPU device. In the contrary to hash tables, which are common
in GPU algorithms, it uses a search tree in which all values are kept
in leaves. With such a structure we can effectively perform dictionary
operations on a set of long vectors over a limited alphabet.

1 Introduction
Motion planning is a common task in robotics and artificial intelligence. One
of the aims is to find a path, which can be traversed by a rigid body (e.g. a
robot) to get to the destination point and avoid collisions with obstacles [5].
Dobrowolski [3] considered the problem of motion planning in SO(3) space (i.e.
rotations about the origin in the Euclidean 3-space). He presented algorithms
for constructing the cell graph, i.e. a graph representation of the configuration
space. It is worth noting that these algorithms work for any space, not only for
SO(3). Although the algorithms presented by Dobrowolski proved to be signif-
icantly faster than the naive approach, their running time was not acceptable
for complicated scenes. As the main contribution of this paper, we present and
analyze parallel extensions of these algorithms for GPU processors.

One of the parallel algorithms introduced in Section 3 uses some variation
of a binary search tree, in which all elements are kept in leaves. There are
several known implementations of a binary search tree on the GPGPU (see
∗The research funded by National Science Center, decision DEC-2012/07/D/ST6/02483.
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for example [7]). Our implementation allows us for an efficient execution of
dictionary operations on a set of long vectors over an alphabet of a constant size.
As a dictionary is a fundamental data type, widely used in many applications,
we believe that our solution may be interesting and important on its own.

1.1 Definitions and basic properties
Let n, ` ∈ N. By [n] we denote the set {0, 1, . . . , n−1}. By [n]` we denote the set
of all vectors of length ` over the alphabet [n]. The i-th coordinate (for binary
vectors called the i-th bit) of a vector x is denoted by x(i). The coordinates are
indexed in zero-based convention, i.e. x = x(0), x(1), . . . , x(`− 1). For i, j such
that 0 ≤ i < j < `, by x(i; j) we denote the segment x(i), x(i + 1), . . . , x(j − 1).

The Hamming distance of two binary vectors x, y ∈ [2]`, denoted by dist(x, y),
is the number of positions i, such that x(i) 6= y(i). Observe that dist is a metric
function, so it satisfies the triangle inequality: dist(x, y)+dist(y, z) ≥ dist(x, z).
From this it follows that: (?) dist(x, y) ≥ |dist(x, z)− dist(y, z)|.

2 Problem of Cell Graph Construction for Mo-
tion Planning

In this section we describe the notion of the cell graph in motion planning.
Although we use a very simple example, similar methods can be (and actually
are) used in much more complicated settings (see for example [2, 5]).

2.1 Cells and vectors
Let us consider a system of inequalities c0, c1, . . . , c`−1 (constraints), describing
the boundaries (see Figure 1), that partition the space into a number of pairwise
disjoint regions, called cells. We say that two cells are neighboring (a robot can
move directly from one to another) if their boundaries share some arc (one
point is not enough). Our task is to unify the cells and say which of them are
neighbors. Then an obstacle-free route for a robot can be determined using a
graph algorithm (see for example [1]). As the scenes (i.e. the space with the
arrangement of obstacles) in real-life applications tend to be very complicated,
an effective construction of the cell graph is a crucial part of this approach.

c0 c1
c2

A

B C

D

point representation
A 111
B 110
C 100
D 101

Figure 1: The arrangement of lines partitions the space into cells. Our object
is given by three linear inequalities.

We shall represent each point P ∈ R2 by an `-element binary vector vP .
The i-th bit of vP is 1 iff P satisfies the inequality ci (see Figure 1). Observe
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that such a representation identifies all points belonging to the same cell, so it
can be seen as a representation of this cell. The neighboring cells are exactly
the cells whose representants differ on exactly one position, which means that
their Hamming distance is 1. There are several known approaches to parallel
computation of the Hamming distance in various settings [9, 12, 4]. However,
none of them benefits for the specific properties of our task.

Observe that the theoretical bound for the number of different cells in the
scene with ` constraints is 2`. However, due to the arrangement of constraints,
the actual number of non-empty cells is usually much smaller. For example,
there is no point represented by a vector 000 in Figure 1. This is the reason
why detecting all cells for the given scene is a hard task. However, we are usually
satisfied by approximate solutions generated by a randomized procedure called
a sample generator. This procedure generates (and possibly accumulates) some
sequence of random points. The simplest one is the so-called Shoemake’s method
[13], in which the random points are generated uniformly.

2.2 Constructing the cell graph
Let X = {x0, x1, . . . , xn−1} be a set of n binary vectors, each of length `. These
vectors represent the cells and are generated by a sample generator. The cell
graph GX for X is the graph with vertex set X, in which edges are all pairs of
vectors xi, xj (for 0 ≤ i < j < n), such that dist(xi, xj) = 1.

In this paper we are interested in solving the problem of constructing the
cell graph, i.e. finding the edge set of GX for the given set X ⊆ [2]`. Since
the degree of each vertex is at most `, the graph GX has at most n·`

2 edges.
Moreover, the total number of bits in X is n · `. Thus the lower bound for the
complexity of any algorithm constructing the cell graph is Ω(n · `).

It is also worth mentioning that many sample generators used in applica-
tions are not perfect and may output some vector more than once (so X is in
fact a multiset). Observe that in this case the number of pairs i, j such that
dist(xi, xj) = 1 can increase to Θ(n2). A desired property of any algorithm con-
structing the cell graph is to be able to deal with such a situation and output
only unique pairs of neighboring vectors, without increasing the complexity.

When comparing the complexities of the algorithms we will assume that
` � n. This is justified, since in most practical applications n is about a few
million, while ` is about a few hundreds.

3 Parallel algorithms
Parallel algorithms presented in this section are inspired by sequential algo-
rithms for the problem presented by Dobrowolski [3].

3.1 Heuristic algorithm
In the naive approach we compare all pairs of vectors in total time O(n2 · `) [3].
We improve this method by choosing a small constant h ∈ N and computing the
distance between each of vectors x0, x1, . . . , xh−1 and each vector in X. Then,
for each pair of vectors we compare them with each other to determine if their
Hamming distance is 1. We are able to discard some pairs faster, using formula
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(?) and previously computed distances to vectors x0, x1, . . . , xh−1. Observe that
for h = 0 this algorithm reduces to the naive one.

Each pair of vectors xi, xj is considered by one block of w threads. Each
thread from this block considers the pair of corresponding segments of vectors xi

and xj . For simplicity, assume that w divides ` (otherwise the last thread of the
block works on shorter segments). Each thread in the block compares a

(
`
w

)
-

element segment of xi with the corresponding segment of xj . More specifically,
the t-th thread (for t ∈ [w]) of the block operates on segments xi(t · `w ; (t+1) `

w ).
First we compute dist(xi, xj) for i ∈ [h] and j ∈ [n] and store the values

in a shared memory. Each thread writes the number of positions, on which its
segments differ, to a single cell of the shared vector results. Then all those
values are summed in parallel. Algorithm 1 shows the pseudo-code of this step.

Algorithm 1: ComputeDist
Input: X = {x0, x1, . . . , xn−1} ⊆ [2]`, h ∈ N

1 initialize dist(xi, xj) = 0 for all i ∈ [h], j ∈ [n]
2 for i ∈ [h] and j ∈ {i+ 1, . . . , n− 1} do in parallel (blocks)
3 initialize results[t] = 0 for all t ∈ [w]
4 for t ∈ [w] do in parallel (threads)
5 for k ← t · `

w
to (t+ 1) · `

w
− 1 do

6 if xi(k) 6= xj(k) then results[t]← results[t] + 1

7 dist(xi, xj)←
∑

t∈[w] results[t]

The remaining part, shown in Algorithm 2, is analogous. The difference is
that we may stop if we discover that it is greater than 1.

Algorithm 2: ParallelHeuristic
Input: X = {x1, x2, . . . , xn} ⊆ [2]`, h ∈ N

1 dist← ComputeDist(X,h)
2 results← vector of w zeros
3 for h ≤ i ≤ n− 1 and i < j ≤ n− 1 do in parallel (blocks)
4 if | dist(xi, xd)− dist(xj , xd)| > 1 for all d ∈ [h] then
5 for t ∈ [w] do in parallel (threads)
6 c← 0

7 for k ← t · `
w

to (t+ 1) · `
w
− 1 do

8 if xi(k) 6= xj(k) then c← c+ 1 if c ≥ 2 then Break

9 results[t]← c

10 count← 0
11 for t ∈ [w] do
12 count← count+ results(t)
13 if count ≥ 2 then Break

14 if count = 1 then output (xi, xj)

The worst-case time complexity of this algorithm is Θ(n2 · h · `), while the
space complexity is Θ(h ·n), as we need to store the values of dist(xi, xj). Since
h is chosen to be a constant, the time complexity and the space complexity are
Θ(n2 · `) and Θ(n), respectively. Observe that the choice of h strongly affects
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the constants in the bounds for the complexity. However, the experiments show
that even if h is small, the effect on execution time may be significant.

3.2 Tree-based algorithm
The main drawback of the previous approach is that it is not aware of the struc-
ture of the constructed cell graph. Thus Dobrowolski [3] presented an optimized
algorithm, based on a different approach. This algorithm first constructs an aux-
iliary binary tree, storing all vectors in X. Using this tree we can determine if
the particular vector x is in X in time O(`).

In the parallel version of this algorithm, to improve memory accesses (see
Section 4) we use a 2r-ary tree T for r ≥ 1. Let r be fixed and suppose
for simplicity that r divides ` (otherwise the last segment of each vector is
considered in a slightly different way). For x ∈ X, let x̃ denote the vector in
[2r]`/r such that for every i ∈ [`/r] the sequence x(i · `r ; (i + 1) · `r − 1) is the
binary encoding of x̃(i). By X̃ we denote the set {x̃ : x ∈ X}. We can see T

as the representation of the sequences in X̃. The tree T has `/r levels. Each
level of T corresponds to i-th coordinate of x̃. Each node contains 2r pointers
to nodes of the next level, each corresponding to a different element to [2r] (see
Figure 2 for an example). If a particular child does not exist, then there are no
vectors with the particular prefix. If C is a node of T and C ′ is its child node,
corresponding to the value v ∈ [2r], then we say that C ′ is a v-child of C.

0 1 3

0 2 2 1

0 1 3 0 2 3

x x̃

000000 000
001001 021
011011 123
110100 310
110110 312
110111 313

Figure 2: A search tree for r = 2. The search path for x̃ = 021 is marked.

The first step of our algorithm is sorting the vectors in X. As these vectors
are binary, the sorting can clearly be done in O(n · `) time, using the radix sort
algorithm. During this step we also remove all duplicates in X.

Then we proceed to constructing the search tree T . Each level of T is
constructed in parallel, with synchronization of threads after finishing each level.
For each node C and v ∈ [2r] we introduce the set vectors(C, v). Let C be a
node on level h. The set vectors(C, v) consists of vectors x̃ ∈ X̃, such that:
i) x̃(0;h − 1) is represented by C in T (with just a little abuse of notation we
assume that for h = 0 every vector satisfies this condition), and ii) x̃(h) = v.
This means that the vectors from vectors(C, v) are exactly the ones, whose
search path begins with the path from the root to the v-th child of C. Observe
that since the set X (and thus X̃) is sorted, each set vectors(C, v) can be
represented by just two indices – of the first and of the last vector from this
set. The Algorithm 3 shows the pseudo-code for this step. Observe that the
computational complexity of Algorithm 3 is O(n ·`) (recall that r is a constant).

After constructing the search tree, we can proceed to the main step – iden-
tifying neighbors. For every vector in x ∈ X and every possible neighbor x′ of x
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Algorithm 3: ConstructTree
Input: X̃ = {x̃0, x̃1, . . . , x̃n−1} ⊆ [2r]`/r

1 create the root node (on level 0)
2 foreach x̃ ∈ X̃ do add x̃ to the set vectors(root, x̃(0))
3 for h← 1 to `/r − 1 do
4 for node C in level h− 1 and v ∈ [2r] do in parallel (threads)
5 if vectors(C, v) 6= ∅ then
6 create node C′, being the v-child of C
7 foreach x̃ ∈ vectors(C, v) do add x̃ to the set vectors(C′, x̃(h))

we check if x′ ∈ X (in fact we check is x̃′ ∈ X̃). Again, we do it in parallel. For
every vector x̃, each bit of x̃ is considered by a separate thread. Observe that
each bit of x̃ corresponds to a single potential neighbor of x̃. Thus each thread
checks if this potential neighbor exists. The Algorithm 4 shows the pseudo-code
of this procedure.

Algorithm 4: ParallelTreeBased
Input: X = {x0, x1, . . . , xn−1} ⊆ [2]`

1 sort X
2 T ← ConstructTree(X̃)
3 for x ∈ X do in parallel (blocks)
4 for k ∈ [`] do in parallel (threads)
5 x′ ← x with the k-th bit negated
6 C ← the root of T
7 for h← 0 to `/r − 1 do
8 v ← x̃′(h)
9 if there is no v-child of C then Exit thread C ← v-child of C

10 output (x, x′)

Observe that we do not have to keep the vector x′ explicitly. At each step
we need a segment of x′ (corresponding to the current level of T ), which can
be found in constant time. The time complexity of the searching procedure is
O(n · `2) and so is the complexity of the whole algorithm. The space complexity
of the algorithm is determined by the size of the search tree, which is Θ(n · `).

Recall that during the sorting step we remove all duplicates. Thus this
algorithm is robust in the sense that it does not assume that all input vectors
are distinct and the same complexity bound holds even if X is a multiset.

4 GPU Implementation Issues
In this section we discuss the implementation details of parallel algorithms de-
scribed in the previous section. We shall omit an introduction to the compu-
tational model of GPGPU. The readers, who are not familiar with GPGPU
programming, should refer to CUDA C literature [11, 8]. There are several lim-
itations of GPU devices which are important from the algorithmic point of view.
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We are interested in algorithms which are able to: (1) use coalesced memory
access, (2) maximize multiprocessor occupancy, (3) hide memory latency.

4.1 Heuristic algorithm
In order to achieve high processor occupancy we need to define the number of
blocks which is at least three or four times higher than the number of streaming
processors. Memory latency may be hidden if there is sufficient number of
warps assigned to the same processor and memory accessing is interspersed
with computations.

Algorithms 1 and 2 contain two nested loops iterating over an array of results
(it is an upper-triangular square array with zeros on the main diagonal). Using
blocks as the parallel computation units in the outer loop and threads in the
inner one gives us a fair number of blocks and threads achieving good occupancy
and hiding memory latency. Each thread reads parts of two vectors into registers
and then performs comparison. Thus a significant number of computational
instructions are executed between reads and writes.

Coalesced memory access is automatic if each vector is stored as a continuous
array of bytes. Fragmented results of the comparison of two vectors in Algorithm
2 (one array for each block) may be stored in a shared memory and added up
in parallel by threads of this block using classical parallel reduction pattern.

4.2 Tree-based algorithm
Tree construction in Algorithm 3 requires a synchronization after each level.
Such a global synchronization can only be achieved by finishing a kernel and
launching a new one. The number of threads in each kernel execution is equal
to number of tree nodes in the previous level times 2r (in our experiments we
used r = 8, so 2r = 256). All threads run independently and their division into
blocks may be set arbitrarily in order to achieve best processor occupancy.

Algorithm 4 again contains two nested loops. The outer one is executed for
each input vector and the inner one iterates over its coordinates. Similarly as
in Algorithm 2, assigning the outer loop to blocks and the inner one to threads
gives good parallelism properties. Each thread performs tree searching and reads
in random memory locations. Coalesced memory reads are thus not possible.
However, threads may still benefit from the global memory cache since up to
r threads may read the same byte from the memory performing independent
searches.

5 Experimental Results and Discussion
In order to evaluate our parallel algorithms we utilized the sample generator de-
veloped by Dobrowolski [3] and some real-life scenes. The experiment was per-
formed on a professional computation server (Intel Xeon E5-2620 2GHz, 15MB
cache, 6 cores, 32GB RAM) equipped with NVIDIA Tesla K40 computational
unit (2668 cores, 12GB memory).

In all parallel algorithms there are parameters which may influence their
performance, i.e. the number of blocks and threads and the value of h in the
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heuristic algorithm. According to NVIDIA white papers, due to the complica-
tion of the parallel processing model, the only way to find optimal values of these
parameters for different devices and environments is to perform experiments. In
the case of the value of h (for the heuristic algorithm) our tests indicated that
the optimal value for the CPU is 3, while for K40 it is 5. The rest of the exper-
iments for heuristic algorithm were performed with these settings. An analysis
of the size of the kernel grid for the parallel tree-based algorithm (divided into
three stages: sorting, building and searching) is presented in Figure 3. The total
processing time was minimal for 4096 blocks of 32 threads.

64 128 256 512 1024 2048 4096 6000 8192

number of blocks

0

20

40

60

80

100

120

140

160

[m
s]

Search Build Sort

Figure 3: The analysis of different block sizes for the tree-based algorithm.

Figure 4 (left) presents the evaluation of the processing time in three stages
of the tree-based algorithm: sorting, tree building, and neighbor searching. We
can clearly see that searching time is growing faster than building, which is
related to the n2 factor in the complexity bound. However, for 44.000 vectors
it is still smaller than the building part, due to high constants in the latter.
Experiments show that the sorting stage does not influence the total processing
time by more than 30% in case of bigger input sets.
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build search sort

44600148677433446031862478
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CPU Heuristic (h=0) K40 Heuristic (h=0)
CPU Heuristic (h=3) K40 Heuristic (h=5)
CPU Tree-based K40 Tree-based

Figure 4: The processing time of three stages of the tree-based algorithm
(left). The processing time for sequential and parallel algorithms (right, note
the logarithmic scale).

On the right of the Figure 4 a comparison of several solutions is presented.
Let us first analyze the heuristic methods. The sequential solution for the
optimal value of h (equal to 3) is significantly faster than the solution with h
set to 0, which corresponds to the naive solution. Similarly, parallel version with
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h set to the optimal value (5) is much faster than the naive one. Both parallel
and sequential procedures show similar growth of processing time for increasing
size of the input data set. This shows that the algorithm scales well. The best
performance is achieved by the parallel tree-based procedure. Sequential version
behaves similarly but significantly (more than two orders of magnitude) slower.

6 Conclusion and further research directions
We presented two important parallel algorithms for construction of the cell
graph in the motion planning problem. Our experiments show that the parallel
solution based on a search tree is much faster than its sequential counterpart.
This is also one of rare efficient search tree structures for GPU processors. We
show that creating and searching such a structure can be efficient also on a
SIMD-like processors, which were so far identified with vector processing. This
was possible due to proper tree node construction and memory caching available
in modern devices.

As a modification of the tree-based algorithm, Dobrowolski presented an al-
gorithm, constructing the cell graph in O(n · `) time. Using an auxiliary data
structure, the searching step can be performed in O(n · `) time. Unfortunately,
the experiments on the real data (see Section 5) show that constructing the tree
takes the majority of the execution time. Moreover, as this improved searching
procedure requires lots of synchronization, it may actually lead to worse exe-
cution time. A very natural research direction is to design a scalable parallel
algorithm, constructing the cell graph for a given set of vectors in time O(n · `).

As mentioned before, cell graphs are used in motion planning. A path in
the cell graph corresponding to a given scene is equivalent to some approxi-
mate solution of the motion planning problem. There are several approaches to
traversing large graphs using GPGPU (see [10, 6]). An interesting problem is
to design such an algorithm, taking into consideration its structure.
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