arXiv:1505.02586v1 [cs.PF] 11 May 2015

Performance analysis of the Kahan-enhanced scalar
product on current multicore processors

J. Hofmann, D. Fey, J. Eitzingef, G. Hagef, and G. WelleiR

1Chair for Computer Architecture, University Erlangen-iuorberg
2Erlangen Regional Computing Center (RRZE), UniversityaBgen-Nuremberg

Abstract. We investigate the performance characteristics of a nwalgrien-
hanced scalar product (dot) kernel loop that uses the Kalgamitam to com-
pensate for numerical errors, and describe efficient SIMBtarized implemen-
tations on recent Intel processors. Using low-level irttam analysis and the
execution-cache-memory (ECM) performance model we pirtpibie relevant
performance bottlenecks for single-core and thread-jghtecution, and pre-
dict performance and saturation behavior. We show that thkak-enhanced
scalar product comes at almost no additional cost comparéaetnaive (non-
Kahan) scalar product if appropriate low-level optimieat, notably SIMD vec-
torization and unrolling, are applied. We also investigatimpact of architec-
tural changes across four generations of Intel Xeon procgess

1 Introduction and related work

Accumulating finite-precision floating-point numbers incalar variable is a common
operation in computational science and engineering. Theamuences in terms of ac-
curacy are inherent to the number representation and haveva| known and studied
for along time [1]. There is a number of summation algoriththa enhance accuracy
while maintaining an acceptable throughput [2, 3], of whiahan [4] is probably the
most popular one. However, the topic is still subject tovactesearch [5-8]. A straight-
forward solution to the inherent accuracy problems is eabjtprecision floating point
arithmetic, which comes at a significant performance pgnblaive summation and
arbitrary precision arithmetic are at opposite ends of athspectrum of options, and
balancing performance vs. accuracy is a key concern wheats®j a specific solution.

Naive summation, which simply adds each successive numbsgquence to an
accumulator, requires appropriate unrolling for SIMD wetation and pipelining.
The necessary code transformations are performed autaitatby modern compil-
ers, which results in optimal in-core performance. Such deaquickly saturates the
memory bandwidth of modern multi-core CPUs when the data memory.

This paper investigates implementations of the scalarymipd kernel which is
relevant in many numerical algorithms. Starting from arirapt naive implementation
it considers scalar and SIMD-vectorized versions of theafadlgorithm using various
SIMD instruction set extensions on a range of current Imatessors. Using an analytic
performance model we point out the conditions under whichatecomes for free, and
we predict the single core performance in all memory hidnatevels as well as the
scaling behavior across the cores of a chip.

http://arxiv.org/abs/1505.02586v1

2 Performance modeling on the core and chip level

The ECM model [9-11] is an extension of the well-known Rawlimodel [12]. It esti-
mates the number of CPU cycles required to execute a numiierationsn;; of a loop
on a single core of a multicore chip. It considers the timeefogcuting the iterations
with data coming from the L1 cache as well as the time for mg¥ie required cache
lines (CLs) through the cache hierarchy. In the followingwitkassume fully inclusive
caches, which is appropriate for current Intel architezgu¥Ve give a brief overview of
the model here; details can be found in [11].

The ECM model considers the time to execute the instructibsloop kernel on
the processor core, assuming that there are no cache masgtthe time to transfer
data between its initial location and the L1 cache. The ire@xecution timeélgre iS
determined by the unit that takes the most cycles to exetatenstructions. Since
data transfers in the memory hierarchy occur in units of edictes (CLs), we always
consider one cache line’s “worth of work.” E.g., with a loogrkel that handles single-
precision floating-point arrays with unit stride, one urfihmrk is niy = 16 iterations.

The time needed for all data transfers required to execuevwonk unit is the “trans-
fer time.” We neglect all latency effects, so the cost for @ietransfer is set by the
maximum bandwidth. E.g., on the Intel IvyBridge architeetwone CL transfer takes
two cycles between adjacent cache levels. Getting a 64@lytfom memory to L3
or back takes 64byted /bs cycles, wheref is the CPU clock speed arg is the
memory bandwidth. Note that in practice we encounter thélpro that the model is
too optimistic for in-memory data sets on some processdris dan be corrected by
introducing a latency penalty. See Sect. 3 for details.

The in-core execution and transfer times must be put togétterrive at a predic-
tion of single-thread execution time. T4 is the transfer timeJp, is the part of the
core execution that overlaps with the transfer time, &qusl is the part that does not,
then

Teore=maxX(ThoL, Tor) and Tecm = maxXThoL + Tdata ToL) - 1)

The model assumes that (i) core cycles in which loads anedetio not overlap with
any other data transfer in the memory hierarchy, but all oifreore cycles (includ-
ing pipeline bubbles) do, and (ii) the transfer times up t® i cache are mutually
non-overlapping. A shorthand notation is used to summatheerelevant informa-
tion about the cycle times that comprise the model for a I&@p:write the model as
{ToL || Thor | TL1r2 | TLors | Tusmem} » whereT oL andTo, are as defined above, and the
other quantities are the data transfer times between adjagemory hierarchy levels.
Cycle predictions for data sets fitting into any given memlexel can be calculated
from this by adding up the appropriate contributions frdgg, and TooL and apply-
ing (1). For instance, if the ECM model reaf|| 4|4|4|9} cy, the prediction for L2
cache will be max2,4+4) cy = 8cy. As a shorthand notation for predictions we use
a similar format but with 1" as the delimiter. For the above example this would read
asTecm = {418]12] 21} cy. Converting from time (cycles) to performance is done
by dividing the workW (e.g., flops) by the runtimé® = W/Tgcm. If Tecwm is given in
clock cycles but the desired unit of performance is F/s, we t@multiply by the clock
speed.

Microarchitecture SandyBridge-EP IlvyBridge-EP Hasvigl- Broadwell-D

Shorthand SNB IVB HSW BDW
Xeon Model E5-2680 E5-2690 v2 E5-2695 v3 D-1540
Year 03/2012 09/2013 09/2014 03/2015
Clock speed (fixed) 2.7GHz 2.2GHz 2.3GHz 1.8GHz
Cores/Threads 8/16 10/20 14/28 8/16
Load/Store throughput per cycle

AVX(2) 1LD&1/2ST 1LD&1/2ST 2LD&1ST 2LD&1ST

SSE/scalar 2LO01LD & 1ST 2LD||1LD&1ST 2LD&1ST 2LD&1ST
L1 port width 2x16+1x16 B 2x16+1x16 B 2x32+1x32B 2x32+1x32B
ADD throughput 1/cy 1/cy 1/cy 1/cy
MUL throughput 1/cy 1/cy 2/cy 2/cy
FMA throughput n/a n/a 2/cy 2/cy
L2-L1 data bus 32B 32B 64B 64B
L3-L2 data bus 32B 32B 32B 32B
LLC size 20 MiB 25MiB 35MiB 12 MiB
Main memory 4<DDR3-1600 4DDR3-1866 4«DDR4-2133 4DDR4-2133
Peak memory BW 51.2GB/s 51.2GB/s 68.3 GB/s 34.1GB/s
Load-only BW 43.6 GB/s (85%) 46.1GB/s (90%) 60.6 GB/s (899@GB/s (95%)
TL3mem per CL 3.96cy 3.05¢cy 2.43cy 3.49cy

Table 1: Test machine specifications and micro-architatfeatures (one socket). The cache line
length is 64 bytes in all cases. The SIMD register width isyiteé&€for SSE and 32 bytesfor AVX.

We assume that the single-core performance scales lingailya bottleneck is hit.
On modern Intel processors the only bottleneck is the meimangwidth, which means
that an upper performance limit is given by the Roofline jr&oin for memory-bound
execution:Psyw = | - bs, wherel is the computational intensity of the loop code. The
performance scaling far cores is thus described IB(n) = min (nNRZ&T | - bs) if PI&T
is the ECM model prediction for data in main memory. The penfance will saturate
atng = [TEmce,\ﬁl“/TLgMem} cores. In the following section we will use the ECM model to
describe performance properties of different dot impletaons.

3 Optimal implementations and performance models for dot

Table 1 gives an overview of the relevant architecturalitbetd the four generations of
Intel Xeon processors used in this work. The CPUs were reteassuccessive years
between 2012 and 2015. Intel Haswell-EP marks the big naccbitectural change,
with a new SIMD instruction set extension (AVX2) and sevetaed multiply-add

instructions (FMA3). There are also notable improvememtthe memory hierarchy:
The access path width of load/store units was widened froby & to 32 bytes, and
the bus width between the L2 and the L1 cache was enlarged32digtes to 64 bytes.

(@) (b)

float sum = 0.0; float sum = 0.0;
float ¢ = 0.0;
for (int i=0; i<n; 1i++) { for (int i=0; i<N; ++i) {
sum = sum + al[i] * b[i] float prod = al[i]l*b[i];

} float y = prod-c;

float t = sum+ty;

c = (t-sum)-y;

sum = t;

Fig. 1: (a) Naive scalar product code in single precisioh K@han-compensated scalar product
code.

The Broadwell chip is a very recent power-efficient “Xeon Qiriant. All results for
Broadwell are preliminary since we only had access to a@lease version of the chip.

We first discuss variants for dot in single precision (SP)tf@ Intel IvyBridge
microarchitecture. The differences to double precisioR)YBnd the impact of architec-
tural changes are covered in Sect. 3. To eliminate variatiomoduced by compilers
we implemented all kernels directly in assembly languageguhe 1 i kwid-bench
microbenchmarking framework [13].

Naive scalar product The naive scalar product in single precision serves as tbe-ba
line (see Fig. 1a). Sufficient unrolling must be applied weithe ADD pipeline latency
for the recursive update on the accumulation register aagpdy SIMD vectorization.
Both optimizations introduce partial sums and are theeefmt compatible with the C
standard as the order of non-associative operations igyeldaiith higher optimiza-
tion levels the current Intel compiler (version 15.0.2)lideato generate optimal code.
Note that partial sums usually improve the accuracy of tealt¢8].

This kernel is limited by the throughput of the LOAD unit oreth/B architecture
(see Table 1). Two AVX loads per vectar &éndb) are required to cover one unit of work
(16 scalar loop iterations), resultingThoL = 4cy. The overlapping part if oL = 2¢cy
since two MULT and two ADD instructions must be executed.asansfers between
cache levels require two cycles per CL, so fhat 2 = Ty o3 = 4cy.

For T 3mem We calculate the number of cycles per CL transfer from theimarn
memory bandwidth and the clock speed (last row in Table 1)ande atT amem =
6.1cy. The full ECM model thus read®|/4|4|4|6.1} cy. On newer Intel chips (no-
tably IVB and HSW) unknown peculiarities in the design of thiecore lead to extra
latency penalties per cache line from memory. We take thesmmiibns into account
by introducing a penalty parameter that is fixed empiricdllyis parameter is an addi-
tive contribution toT; svem, SO that the final model i82||4|4|4|6.1+ 2.9} cy, leading
to a runtime prediction 0f4]8]12]18.1+ 2.9} cy. At a clock speed of 2.2 GHz the
expected serial performance is thus

16 updates2.2 Gey/s

P= {418712]181+2.9} cy

={8.80]4.40]2.93]1.68} GUP/s. 2

We choose an “update” (two flops) as the basic unit of work tkenerformance results
for different implementations comparable. The predictatlistion point is ahs =
[(18.1+2.9)/6.1] = 4 cores. Note that the maximum memory bandwidth has to be
taken into account for the saturation point, so we divide lyc§. The Roofline “light
speed,” i.e., the memory bandwidth-limited saturated qrerfince, can be calculated
from the computational intensity of one update per eightsyRs\w = (Lupdatg8B) -

bs = 5.76 GUP/s.

All versions of the enhanced scalar product described imthe section will be
compared to the optimal naive implementation.

Kahan-enhanced scalar product on IvyBridge Figure 1b shows the implementation
of the Kahan algorithm for dot. Compilers have problems litis loop code for two
reasons: First, the compiler detects (correctly) a loapi@a dependency oo, which
prohibits SIMD vectorization and modulo unrolling. Secottte compiler may recog-
nize that, arithmetically; is always equal to zero. With high optimization levels it may
thus reduce the code to the naive scalar product, defedtengurpose of the Kahan
algorithm. This is the reason why we use hand-coded assdholyghout this work.

One iteration comprises one multiplication, four addi§an subtractions, and two
loads. The bottleneck on the VB core level is thus the ADD (8DD and SUB are
handled by the same pipeline). In the following we consttiuetECM model for scalar,
SSE, and AVX versions of the Kahan loop. Independent of veton we always
establish proper modulo unrolling for best pipeline uétion.

Scalar implementation. In scalar mode, one unit of work amounts toxX @ = 64
instructions in the ADD unit, resulting ifip. = 64cy. Since two scalar loads can be
executed per cycle on the IVB core, the 32 loads leadtp = 16cy. The contribu-
tions from in-cache and memory transfers are the same akdaraive variant above,
so the complete ECM model i{64|16|4|4|6.1+ 2.9} cy, and the runtime predic-
tion is {641]64] 64164} cy. According to the model the scalar variant should not be
able to saturate the memory bandwidth using all cores onahedre chip, since
ns=[64/6.1] = 11 cores. The analysis shows that the scalar variant of KiaHamited
by the instruction throughput, specifically on the ADD pipel regardless of where the
data resides. We thus expect the same performnce6-2.2/64 GUP/s= 0.55GUP/s
in all memory hierarchy levels for single-threaded examutand close to perfect scal-
ability across the cores of the chip.

SSE implementation. SSE uses 16-byte wide registers, and all instructions redui
for the Kahan algorithm exist in SSE variants, so the ovenathber of instructions is
reduced by a factor of four compared to the scalar versiohthmi same through-
put limits apply for the ADD and the LOAD unit. This leads to &CM model
of {16|/4]4|4|6.1+ 2.9} cy and a prediction 0f16]16]16]18.1+ 2.9} cy, which
yieldsP = {2.20]2.2012.20] 1.68} GUP/s. The SSE code is limited by the instruction
throughput up to the L3 cache since all data transfer cantabs can be overlapped
with the ADD instructions. The optimal>4 speed-up of SSE is thus observed in this
case. For data in main memory the speed-up is just abg@164 3x, and the single-
core performance and saturation behavior are identichtmaive scalar product.

ECM model [cy] Prediction [cy/CL] Pred. performance [GUP/s
SNB {8||4|4]4|7.9+5.1} {8]18712]19.9+5.1} {5.40]5.40]3.60]1.73}
VB {8]|4|4]4|6.1+2.9} {8]8712]181+2.9} {4.40]4.40]2.93]1.68}
HSW {8|/2]2]5.54|4.9+111} {8]8]9.54]14.44+11.1} {4.60]4.60]3.86]1.44}
BDW {8]|2|2]4|7+1} {818]8]15+1} {3.60]3.60]3.60]1.8}
Table 2: Comparison of the ECM model for optimal AVX implentetions across the multicore

Xeon CPUs in the testbed (see Table 1). The consequencekewdnearchitectural changes to
the preceding generation are highlighted.

AVX implementation. AVX further reduces the runtime for the ADD operations by
a factor of two, sdp. = 8cy. Although the number of LOAD instructions is also cut in
half, the non-overlapping tim&,o_ does not change, because the two LOAD ports of
the L1 cache are only 16 bytes wide. Therefore only one LOAdxirction can be re-
tired per cycle. The complete ECM modeli8||4|4|4|6.1+ 2.9} cy, the runtime pre-
diction is {818]12]181+ 2.9} cy (leading toP = {4.40]4.40]2.93] 1.68} GUP/s),
and the saturation behavior is the same as for the SSE vafi&@han and the naive
scalar product. The AVX code is limited by the instructiomailghput up to the L2
cache, and the full2 advantage versus SSE can be observed in this case. Staotimg f
L3 there is a slight impact on runtime by data transfers,iteath a reduced speed-up of
1.3x in L3 and none at all in main memory. Again the saturation bihas expected
between three and four cores.

The conclusion from this analysis is that there is no exgkptaformance differ-
ence for in-memory working sets between the naive scalafymtoand the Kahan ver-
sion if any kind of vectorization is applied to Kahan. With X¥Kahan comes for free
evenin the L3 orthe L2 cache. Only forin-L1 data we expecta®wdown for Kahan
versus the naive version even with the best possible code.

Influence of processor architecture In this section we compare the model-based
analysis across four generations of Intel CPUs: SandyBrleg (SNB), IvyBridge-
EP (IVB), Haswell-EP (HSW), and Broadwell (BDW, in a powsdfigent “Xeon D”
variant). This covers four Intel Xeon microarchitecturestoa time of three years and
involves one major architectural step (from IVB to HSW). Wevays consider the
optimal AVX code for the comparisons. There is no major cleaagpected between
SNB and IVB, since no dot-relevant hardware features wede@dAll observed per-
formance differences are thus rooted in the clock speed amdary bandwidth (first
row in Table 2). Note that despite the lower memory bandwidthe SNB test system
compared to IVB, the in-memory performance is higher dubédaster clock speed of
SNB. The HSW microarchitecture has new features which infteelot performance:
It can sustain two AVX loads and one AVX store per cycle, dffety doubling LOAD-
/ISTORE throughput. In addition, the L1-L2 bus width was dedballowing for a full
CL transfer per cycle. These changes resull,in. = 2c¢y andT 1,2 = 2cy (third row
in Table 2). Here we encounter the peculiarity that HSW Iatke Uncore clock speed
if only a single core is used. This is the reason why Thg 3 contribution is 554 cy

-~
o
T

D
o
T

«— AVX (naive)

— scalar (Kahan
- SSE (Kahan)
— AVX (Kahan)

L3 Cache Limit (25 MiB)

a1
o
T

Fig. 2: Single-core cycles per CL vs. data set
size for various implementations of the Ka-
- han scalar product and the AVX version of
/aaus | the naive scalar product in SP on IVB. The
horizontal lines represent the ECM model
predictions for scalar (top), SSE (middle),
L L iinw] and AVX (bottom) Kahan variants.

3 10° 10"
Dataset Size [KiB]

N
o
T

L1 Cache Limit (32 KiB)
L2 Cache Limit (256 KiB)

cycles per cache line
w
—F

N

o
T
1

[N
o
T
1

o

instead of 4cy. The BDW architecture has introduced no egieghanges, but it does
not show the Uncore slowdown like HSW (fourth row in Table 2)is interesting that

BDW only requires half a cycle of latency penalty per CL in nmayy so the uncor-

rected ECM model works very well already. BDW performancm&ensitive to data

transfers up to the L3 cache.

Double vs. single precisionThe model prediction in terms of cycles per CL does not
change for the SIMD variants of Kahan when going from SP totiDPpne CL update
represents twice as much useful work (scalar iterationf)enSP case. However, the
penalty for going from SIMD to scalar is only half as big as $#, since the scalar reg-
ister width is eight bytes instead of four. The ECM model fog DP scalar version of
the Kahan dot on IVB i{32|8|4|4|6.1+ 2.9} cy and the according runtime predic-
tion is {32]32]32] 32} cy, with P = 0.55GUP/s. The reduced cycle count (32 instead
of 64) for DP leads to saturation at a smaller number of caresyfmemory working
sets:ng = [32/6.1] = 6. Hence, even the scalar DP variant of Kahan exerts sufficien
pressure on the memory interface to reach saturation. Tiueasad DP performance
according to the Roofline model Bw = (1updat¢16 B) - bs = 2.88 GUP/s.

4 Performance results and model validation

Single-core benchmarking results for single precision\d are shown in Fig. 2. The
model predicts the overall behavior very well. The naive #rel AVX Kahan version
show identical performance in L2 cache and beyond. As ptediithere is no per-
formance drop for the SSE Kahan version from L1 to L2. Both A&han and the
compiler-generated naive version fall slightly short of fbrediction in L2. This is a
general observation with many loop kernels, and we intéipas a consequence of the
L2-L1 hardware prefetcher doing a better job in latencyrmdior SSE than for AVX
due to the more relaxed timings in the SSE case. Since thésdetarefetching are
undisclosed, we have no way to prove or refute this hypash&snally, the constant

1 Note that our test system was a pre-release Xeon D; produsyistems and mainstream Xeon
Broadwell chips may show a different behavior.

Performance [MUp/s]

3000

— AVX model

— - Scalar model

300

2500—

N
o
s}
?

1500~

Performance [MUp/s]
1
s

500~ =+ AVX model

@—e Compiler (icc15)

— - Scalar model

| | | L 1 | 1 | | 1 1
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Number of Cores Number of Cores

Fig. 3: In-memory scaling for different implementation betKahan scalar product on 1VB for
(a) single precision and (b) double precision. Model prigalis are shown with dashed lines for
the scalar and AVX versions.

performance of the scalar Kahan variant across all memuejdés perfectly predicted
by the model.

In-memory scaling results on the chip level are shown in 8&.The dashed lines
are the model predictions (for clarity we only show modelsdcalar and AVX). As
anticipated via the ECM model, the scalar version cannotrate the memory band-
width even if all cores are used. Since any code that is abdatirate the bandwidth
is “perfect,” any kind of vectorization will make the Kahatgarithm as fast as the
naive scalar product. Note, however, that on a CPU with @&fadbck speed or more
cores saturation will be easily achieved even with scaldec®his effect illustrates the
general observation that more parallelism can “heal” lavgks-core performance. For
comparison we also show the compiler-generated variantabiad. As described ear-
lier, the code is devastatingly slow since the compiler camesolve the loop-carried
dependency.

The only relevant difference between DP and SP is the sn@léormance penalty
of the scalar variant for DP (see Fig. 3b), which leads tongfreaturation at about six
cores as predicted by the model.

In order to compare different architectures, we show shogle data for the AVX-
vectorized Kahan scalar product in Fig. 4a. Since we repmtime in cycles per CL,
the influence of different clock speeds and memory bandwitttonly visible for the
in-memory case. In the L1 cache all processors show the santiene, because the
architectural improvements with HSW and BDW do not addrhesibttleneck of the
algorithm at hand (the ADD throughput). In L2 and L3, HSW arldv@ show higher
performance than the previous generations due to theirlddut2-L1 bandwidth and
LOAD throughput. The step from L2 to L3 is important, sinceniarks the transition
to the Uncore, which is a shared resource across the corgsugh a notable im-
provement is seen in L3 with each new architecture, we obssfficiency issues in the
Uncore on IVB and HSW that prevent those CPUs from attaintiegeixpected perfor-
mance. In memory, HSW is a significant step back in terms @fisioore performance
due to a large latency penalty. BDW seems to have correctese tissues, but we must
stress again that these observations were made on an eigtghegle-socket “Xeon D”

N
®

800

SandyBridg
IvyBridge
Haswell
Broadwell

7000

IN]
EN

N
< T
Al N

[
o o
S o
Q¢

=
o

[N
N

cycles per cacheline
Performance [MUP/s]

Now A
o o o
S & o
e o o

L —e SandyBridg
| o—e lvyBridge

L +— Haswell
e—e Broadwell

®

N

| 1 | | 1 1
0 2 8 10 12 1«

4 6
Number of Cores

o

Fig. 4: Comparison between four Intel Xeon multi-core aettures using the single-precision
AVX Kahan scalar product: (a) Measured single-core runiimeycles per CL in different mem-
ory hierarchy levels. The saturation poimy is indicated above the bars for the memory-bound
case. (b) Measured performance scaling with in-memory ingrget.

chip, and it is unclear if the to be released multi-sockeiards with larger core counts
can live up to the expectations raised here. It is also warthtesizing that, as already
mentioned above, in practice any code that can saturateg¢heny bandwidth is “good
enough.” Figure 4b shows the in-memory performance scéingll four architectures
with the AVX Kahan scalar product: The differences in satenlgperformance indeed
reflect the differences in saturated memory bandwidth. Agaid certainly as expected
from the model, vectorization makes the Kahan algorithmewn free.

There is one additional optimization on HSW and BDW that wesh@t mentioned
yet. The two FMA units can theoretically increase the ADDotighput by a factor
of two. Both units can execute FMA and MULT instructions, lomfy one of them
can handle stand-alone ADDs. This is not a problem with herafted assembly since
one can endow an FMA instruction with a unit multiplicand td ke an ADD. The
downside is that the FMA instruction has a higher latency @ fiycles (ADD only
has three) and therefore requires deeper unrolling to tdepipeline latency. Both
architectures hence run out of registers and only achiev@a speed-up from FMA
with data in L1, and no noticeable improvement beyond L1.

5 Conclusion

We have investigated the performance of naive and Kahaareed variants of the
scalar product on a range of recent Intel multicore chipsndgythe ECM model the

single-core performance in all memory hierarchy levels tnedmulti-core scaling for

in-memory data were accurately described. The most imporésult is that even the
single-threaded Kahan algorithm comes with no performaecalties on all standard
multicore architectures under investigation in the L2 @t¢he L3 cache, and in mem-
ory if implemented optimally. Depending on the particulachatecture and whether
single or double precision is used, even scalar code magwaxhiandwidth saturation
in memory when using multiple threads. Performance impramts between succes-
sive generations of Intel CPUs could be attributed to speeifthitectural advance-

ments, such as increased LOAD throughput on Haswell or a eftiogent Uncore on
Broadwell.

We emphasize that the approach and insights describeddratresfspecial case of
the Kahan scalar product can serve as a blueprint for otlerdominated streaming
kernels.

Acknowledgement We thank Intel Germany for providing an early access Brodldwe
test system. This work was partially funded by BMBF undeng)€41H13009A (project
FEPA), and by the Competence Network for Scientific High &enfance Computing
in Bavaria (KONWIHR).

References

1. Goldberg, D.: What every computer scientist should knbaua floating-point arithmetic.
ACM Comput. Surv23(1) (March 1991) 5-48
. Linz, P.: Accurate floating-point summation. Commun. ACR(6) (June 1970) 361-362
3. Gregory, J.: A comparison of floating point summation mmdth Commun. ACML5(9)
(September 1972) 838—

4. Kahan, W.: Pracniques: Further remarks on reducing atimterrors. Commun. ACNj(1)
(January 1965) 40—

5. Rump, S.M., Ogita, T., Oishi, S.: Accurate floating-p@ommation part I: Faithful round-
ing. SIAM J. Sci. Comput31(1) (October 2008) 189-224

6. Zhu, Y.K., Hayes, W.B.: Algorithm 908: Online exact suniioa of floating-point streams.
ACM Trans. Math. Softw37(3) (2010) 37:1-37:13

7. Demmel, J., Nguyen, H.D.: Fast reproducible floatingapsimmation. In: Computer Arith-
metic (ARITH), 2013 21st IEEE Symposium on. (April 2013) 1832

8. Dalton, B., Wang, A., Blainey, B.: SIMDizing pairwise samA summation algorithm bal-
ancing accuracy with throughput. In: Proceedings of thed2@/brkshop on Programming
Models for SIMD/Vector Processing. WPMVP 14, New York, NYSA, ACM (2014) 65—
70

9. Treibig, J., Hager, G.: Introducing a performance modebandwidth-limited loop kernels.
In Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasnikiyd., eds.: Parallel Processing
and Applied Mathematics. Volume 6067 of Lecture Notes in @oter Science., Springer
Berlin / Heidelberg (2010) 615-624

10. Hager, G., Treibig, J., Habich, J., Wellein, G.: Expigriperformance and power proper-
ties of modern multicore chips via simple machine modelsnddorency Computat.: Pract.
Exper. (2013) DOI: 10.1002/cpe.3180.

11. Stengel, H., Treibig, J., Hager, G., Wellein, G.: Quaitg performance bottlenecks of
stencil computations using the Execution-Cache-Memoryleho In: Proceedings of the
29th ACM International Conference on Supercomputing. ICS New York, NY, USA,
ACM (2015)

12. Williams, S., Waterman, A., Patterson, D.: Roofline: Asightful visual performance model
for multicore architectures. Commun. ACB2(4) (2009) 65-76

13. Treibig, J., Hager, G., Wellein, G.: likwid-bench: Artemsible microbenchmarking platform
for x86 multicore compute nodes. In Brunst, H., et al., edisals for High Performance
Computing 2011. Springer Berlin Heidelberg (2012) 27-36

N

