
ar
X

iv
:1

50
5.

02
58

6v
1

 [c
s.

P
F

]
11

 M
ay

 2
01

5

Performance analysis of the Kahan-enhanced scalar
product on current multicore processors

J. Hofmann1, D. Fey1, J. Eitzinger2, G. Hager2, and G. Wellein2

1Chair for Computer Architecture, University Erlangen-Nuremberg
2Erlangen Regional Computing Center (RRZE), University Erlangen-Nuremberg

Abstract. We investigate the performance characteristics of a numerically en-
hanced scalar product (dot) kernel loop that uses the Kahan algorithm to com-
pensate for numerical errors, and describe efficient SIMD-vectorized implemen-
tations on recent Intel processors. Using low-level instruction analysis and the
execution-cache-memory (ECM) performance model we pinpoint the relevant
performance bottlenecks for single-core and thread-parallel execution, and pre-
dict performance and saturation behavior. We show that the Kahan-enhanced
scalar product comes at almost no additional cost compared to the naive (non-
Kahan) scalar product if appropriate low-level optimizations, notably SIMD vec-
torization and unrolling, are applied. We also investigatethe impact of architec-
tural changes across four generations of Intel Xeon processors.

1 Introduction and related work

Accumulating finite-precision floating-point numbers in a scalar variable is a common
operation in computational science and engineering. The consequences in terms of ac-
curacy are inherent to the number representation and have been well known and studied
for a long time [1]. There is a number of summation algorithmsthat enhance accuracy
while maintaining an acceptable throughput [2, 3], of whichKahan [4] is probably the
most popular one. However, the topic is still subject to active research [5–8]. A straight-
forward solution to the inherent accuracy problems is arbitrary-precision floating point
arithmetic, which comes at a significant performance penalty. Naive summation and
arbitrary precision arithmetic are at opposite ends of a broad spectrum of options, and
balancing performance vs. accuracy is a key concern when selecting a specific solution.

Naive summation, which simply adds each successive number in sequence to an
accumulator, requires appropriate unrolling for SIMD vectorization and pipelining.
The necessary code transformations are performed automatically by modern compil-
ers, which results in optimal in-core performance. Such a code quickly saturates the
memory bandwidth of modern multi-core CPUs when the data is in memory.

This paper investigates implementations of the scalar product, a kernel which is
relevant in many numerical algorithms. Starting from an optimal naive implementation
it considers scalar and SIMD-vectorized versions of the Kahan algorithm using various
SIMD instruction set extensions on a range of current Intel processors. Using an analytic
performance model we point out the conditions under which Kahan comes for free, and
we predict the single core performance in all memory hierarchy levels as well as the
scaling behavior across the cores of a chip.

http://arxiv.org/abs/1505.02586v1

2 Performance modeling on the core and chip level

The ECM model [9–11] is an extension of the well-known Roofline model [12]. It esti-
mates the number of CPU cycles required to execute a number ofiterationsnit of a loop
on a single core of a multicore chip. It considers the time forexecuting the iterations
with data coming from the L1 cache as well as the time for moving the required cache
lines (CLs) through the cache hierarchy. In the following wewill assume fully inclusive
caches, which is appropriate for current Intel architectures. We give a brief overview of
the model here; details can be found in [11].

The ECM model considers the time to execute the instructionsof a loop kernel on
the processor core, assuming that there are no cache misses,and the time to transfer
data between its initial location and the L1 cache. The in-core execution timeTcore is
determined by the unit that takes the most cycles to execute the instructions. Since
data transfers in the memory hierarchy occur in units of cache lines (CLs), we always
consider one cache line’s “worth of work.” E.g., with a loop kernel that handles single-
precision floating-point arrays with unit stride, one unit of work is nit = 16 iterations.

The time needed for all data transfers required to execute one work unit is the “trans-
fer time.” We neglect all latency effects, so the cost for oneCL transfer is set by the
maximum bandwidth. E.g., on the Intel IvyBridge architecture, one CL transfer takes
two cycles between adjacent cache levels. Getting a 64-byteCL from memory to L3
or back takes 64bytes· f/bS cycles, wheref is the CPU clock speed andbS is the
memory bandwidth. Note that in practice we encounter the problem that the model is
too optimistic for in-memory data sets on some processors. This can be corrected by
introducing a latency penalty. See Sect. 3 for details.

The in-core execution and transfer times must be put together to arrive at a predic-
tion of single-thread execution time. IfTdata is the transfer time,TOL is the part of the
core execution that overlaps with the transfer time, andTnOL is the part that does not,
then

Tcore= max(TnOL,TOL) and TECM = max(TnOL+Tdata,TOL) . (1)

The model assumes that (i) core cycles in which loads are retired do not overlap with
any other data transfer in the memory hierarchy, but all other in-core cycles (includ-
ing pipeline bubbles) do, and (ii) the transfer times up to the L1 cache are mutually
non-overlapping. A shorthand notation is used to summarizethe relevant informa-
tion about the cycle times that comprise the model for a loop:We write the model as
{TOL ‖TnOL |TL1L2 |TL2L3 |TL3Mem} , whereTnOL andTOL are as defined above, and the
other quantities are the data transfer times between adjacent memory hierarchy levels.
Cycle predictions for data sets fitting into any given memorylevel can be calculated
from this by adding up the appropriate contributions fromTdata andTnOL and apply-
ing (1). For instance, if the ECM model reads{2‖4|4|4|9} cy, the prediction for L2
cache will be max(2,4+4) cy= 8cy. As a shorthand notation for predictions we use
a similar format but with “⌉” as the delimiter. For the above example this would read
as TECM = {4⌉8⌉12⌉21} cy. Converting from time (cycles) to performance is done
by dividing the workW (e.g., flops) by the runtime:P = W/TECM. If TECM is given in
clock cycles but the desired unit of performance is F/s, we have to multiply by the clock
speed.

Microarchitecture SandyBridge-EP IvyBridge-EP Haswell-EP Broadwell-D

Shorthand SNB IVB HSW BDW

Xeon Model E5-2680 E5-2690 v2 E5-2695 v3 D-1540

Year 03/2012 09/2013 09/2014 03/2015

Clock speed (fixed) 2.7 GHz 2.2 GHz 2.3 GHz 1.8 GHz

Cores/Threads 8/16 10/20 14/28 8/16

Load/Store throughput per cycle

AVX(2) 1 LD & 1/2 ST 1 LD & 1/2 ST 2 LD & 1 ST 2 LD & 1 ST

SSE/scalar 2 LD‖ 1 LD & 1 ST 2 LD‖ 1 LD & 1 ST 2 LD & 1 ST 2 LD & 1 ST

L1 port width 2×16+1×16 B 2×16+1×16 B 2×32+1×32 B 2×32+1×32 B

ADD throughput 1 / cy 1 / cy 1 / cy 1 / cy

MUL throughput 1 / cy 1 / cy 2 / cy 2 / cy

FMA throughput n/a n/a 2 / cy 2 / cy

L2-L1 data bus 32 B 32 B 64 B 64 B

L3-L2 data bus 32 B 32 B 32 B 32 B

LLC size 20 MiB 25 MiB 35 MiB 12 MiB

Main memory 4×DDR3-1600 4×DDR3-1866 4×DDR4-2133 4×DDR4-2133

Peak memory BW 51.2 GB/s 51.2 GB/s 68.3 GB/s 34.1 GB/s

Load-only BW 43.6 GB/s (85%) 46.1 GB/s (90%) 60.6 GB/s (89%) 33 GB/s (95%)

TL3Mem per CL 3.96 cy 3.05 cy 2.43 cy 3.49 cy

Table 1: Test machine specifications and micro-architectural features (one socket). The cache line
length is 64 bytes in all cases. The SIMD register width is 16 bytes for SSE and 32 bytesfor AVX.

We assume that the single-core performance scales linearlyuntil a bottleneck is hit.
On modern Intel processors the only bottleneck is the memorybandwidth, which means
that an upper performance limit is given by the Roofline prediction for memory-bound
execution:PBW = I · bS, whereI is the computational intensity of the loop code. The
performance scaling forn cores is thus described byP(n) = min

(

nPmem
ECM, I ·bS

)

if Pmem
ECM

is the ECM model prediction for data in main memory. The performance will saturate
at nS =

⌈

T mem
ECM/TL3Mem

⌉

cores. In the following section we will use the ECM model to
describe performance properties of different dot implementations.

3 Optimal implementations and performance models for dot

Table 1 gives an overview of the relevant architectural details of the four generations of
Intel Xeon processors used in this work. The CPUs were released in successive years
between 2012 and 2015. Intel Haswell-EP marks the big micro-architectural change,
with a new SIMD instruction set extension (AVX2) and severalfused multiply-add
instructions (FMA3). There are also notable improvements in the memory hierarchy:
The access path width of load/store units was widened from 16bytes to 32 bytes, and
the bus width between the L2 and the L1 cache was enlarged from32 bytes to 64 bytes.

(a)

float sum = 0.0;

for (int i=0; i<n; i++) {

sum = sum + a[i] * b[i]

}

(b)

float sum = 0.0;

float c = 0.0;

for (int i=0; i<N; ++i) {

float prod = a[i]*b[i];

float y = prod-c;

float t = sum+y;

c = (t-sum)-y;

sum = t;

}

Fig. 1: (a) Naive scalar product code in single precision. (b) Kahan-compensated scalar product
code.

The Broadwell chip is a very recent power-efficient “Xeon D” variant. All results for
Broadwell are preliminary since we only had access to a pre-release version of the chip.

We first discuss variants for dot in single precision (SP) forthe Intel IvyBridge
microarchitecture. The differences to double precision (DP) and the impact of architec-
tural changes are covered in Sect. 3. To eliminate variations introduced by compilers
we implemented all kernels directly in assembly language using thelikwid-bench
microbenchmarking framework [13].

Naive scalar product The naive scalar product in single precision serves as the base-
line (see Fig. 1a). Sufficient unrolling must be applied to hide the ADD pipeline latency
for the recursive update on the accumulation register and toapply SIMD vectorization.
Both optimizations introduce partial sums and are therefore not compatible with the C
standard as the order of non-associative operations is changed. With higher optimiza-
tion levels the current Intel compiler (version 15.0.2) is able to generate optimal code.
Note that partial sums usually improve the accuracy of the result [8].

This kernel is limited by the throughput of the LOAD unit on the IVB architecture
(see Table 1). Two AVX loads per vector (a andb) are required to cover one unit of work
(16 scalar loop iterations), resulting inTnOL = 4cy. The overlapping part isTnOL = 2cy
since two MULT and two ADD instructions must be executed. Data transfers between
cache levels require two cycles per CL, so thatTL1L2 = TL2L3 = 4cy.

For TL3Mem we calculate the number of cycles per CL transfer from the maximum
memory bandwidth and the clock speed (last row in Table 1) andarrive atTL3Mem =
6.1cy. The full ECM model thus reads{2‖4|4|4|6.1} cy. On newer Intel chips (no-
tably IVB and HSW) unknown peculiarities in the design of theUncore lead to extra
latency penalties per cache line from memory. We take these deviations into account
by introducing a penalty parameter that is fixed empirically. This parameter is an addi-
tive contribution toTL3Mem, so that the final model is{2‖4|4|4|6.1+2.9} cy, leading
to a runtime prediction of{4⌉8⌉12⌉18.1+2.9} cy. At a clock speed of 2.2 GHz the
expected serial performance is thus

P =
16updates·2.2Gcy/s

{4⌉8⌉12⌉18.1+2.9} cy
= {8.80⌉4.40⌉2.93⌉1.68} GUP/s. (2)

We choose an “update” (two flops) as the basic unit of work to make performance results
for different implementations comparable. The predicted saturation point is atnS =
⌈(18.1+2.9)/6.1⌉= 4 cores. Note that the maximum memory bandwidth has to be
taken into account for the saturation point, so we divide by 6.1 cy. The Roofline “light
speed,” i.e., the memory bandwidth-limited saturated performance, can be calculated
from the computational intensity of one update per eight bytes:PBW = (1update/8B) ·
bS = 5.76GUP/s.

All versions of the enhanced scalar product described in thenext section will be
compared to the optimal naive implementation.

Kahan-enhanced scalar product on IvyBridge Figure 1b shows the implementation
of the Kahan algorithm for dot. Compilers have problems withthis loop code for two
reasons: First, the compiler detects (correctly) a loop-carried dependency onc, which
prohibits SIMD vectorization and modulo unrolling. Second, the compiler may recog-
nize that, arithmetically,c is always equal to zero. With high optimization levels it may
thus reduce the code to the naive scalar product, defeating the purpose of the Kahan
algorithm. This is the reason why we use hand-coded assemblythroughout this work.

One iteration comprises one multiplication, four additions or subtractions, and two
loads. The bottleneck on the IVB core level is thus the ADD unit (ADD and SUB are
handled by the same pipeline). In the following we constructthe ECM model for scalar,
SSE, and AVX versions of the Kahan loop. Independent of vectorization we always
establish proper modulo unrolling for best pipeline utilization.

Scalar implementation. In scalar mode, one unit of work amounts to 16× 4= 64
instructions in the ADD unit, resulting inTOL = 64cy. Since two scalar loads can be
executed per cycle on the IVB core, the 32 loads lead toTnOL = 16cy. The contribu-
tions from in-cache and memory transfers are the same as for the naive variant above,
so the complete ECM model is{64‖16|4|4|6.1+2.9} cy, and the runtime predic-
tion is {64⌉64⌉64⌉64} cy. According to the model the scalar variant should not be
able to saturate the memory bandwidth using all cores on the ten-core chip, since
nS= ⌈64/6.1⌉= 11 cores. The analysis shows that the scalar variant of Kahanis limited
by the instruction throughput, specifically on the ADD pipeline, regardless of where the
data resides. We thus expect the same performanceP= 16·2.2/64GUP/s= 0.55GUP/s
in all memory hierarchy levels for single-threaded execution, and close to perfect scal-
ability across the cores of the chip.

SSE implementation. SSE uses 16-byte wide registers, and all instructions required
for the Kahan algorithm exist in SSE variants, so the overallnumber of instructions is
reduced by a factor of four compared to the scalar version, but the same through-
put limits apply for the ADD and the LOAD unit. This leads to anECM model
of {16‖4|4|4|6.1+2.9} cy and a prediction of{16⌉16⌉16⌉18.1+2.9} cy, which
yieldsP = {2.20⌉2.20⌉2.20⌉1.68} GUP/s. The SSE code is limited by the instruction
throughput up to the L3 cache since all data transfer contributions can be overlapped
with the ADD instructions. The optimal 4× speed-up of SSE is thus observed in this
case. For data in main memory the speed-up is just about 64/21≈ 3×, and the single-
core performance and saturation behavior are identical to the naive scalar product.

ECM model [cy] Prediction [cy/CL] Pred. performance [GUP/s]

SNB {8‖4|4|4|7.9+5.1} {8⌉8⌉12⌉19.9+5.1} {5.40⌉5.40⌉3.60⌉1.73}

IVB {8‖4|4|4|6.1+2.9} {8⌉8⌉12⌉18.1+2.9} {4.40⌉4.40⌉2.93⌉1.68}

HSW {8‖2|2|5.54|4.9+11.1} {8⌉8⌉9.54⌉14.44+11.1} {4.60⌉4.60⌉3.86⌉1.44}

BDW {8‖2|2|4 |7+1} {8⌉8⌉8⌉15+1} {3.60⌉3.60⌉3.60⌉1.8}
Table 2: Comparison of the ECM model for optimal AVX implementations across the multicore
Xeon CPUs in the testbed (see Table 1). The consequences of relevant architectural changes to
the preceding generation are highlighted.

AVX implementation. AVX further reduces the runtime for the ADD operations by
a factor of two, soTOL = 8cy. Although the number of LOAD instructions is also cut in
half, the non-overlapping timeTnOL does not change, because the two LOAD ports of
the L1 cache are only 16 bytes wide. Therefore only one LOAD instruction can be re-
tired per cycle. The complete ECM model is{8‖4|4|4|6.1+2.9} cy, the runtime pre-
diction is{8⌉8⌉12⌉18.1+2.9} cy (leading toP = {4.40⌉4.40⌉2.93⌉1.68} GUP/s),
and the saturation behavior is the same as for the SSE variantof Kahan and the naive
scalar product. The AVX code is limited by the instruction throughput up to the L2
cache, and the full 2× advantage versus SSE can be observed in this case. Starting from
L3 there is a slight impact on runtime by data transfers, leading to a reduced speed-up of
1.3× in L3 and none at all in main memory. Again the saturation behavior is expected
between three and four cores.

The conclusion from this analysis is that there is no expected performance differ-
ence for in-memory working sets between the naive scalar product and the Kahan ver-
sion if any kind of vectorization is applied to Kahan. With AVX, Kahan comes for free
even in the L3 or the L2 cache. Only for in-L1 data we expect a 2× slowdown for Kahan
versus the naive version even with the best possible code.

Influence of processor architecture In this section we compare the model-based
analysis across four generations of Intel CPUs: SandyBridge-EP (SNB), IvyBridge-
EP (IVB), Haswell-EP (HSW), and Broadwell (BDW, in a power-efficient “Xeon D”
variant). This covers four Intel Xeon microarchitectures over a time of three years and
involves one major architectural step (from IVB to HSW). We always consider the
optimal AVX code for the comparisons. There is no major change expected between
SNB and IVB, since no dot-relevant hardware features were added. All observed per-
formance differences are thus rooted in the clock speed and memory bandwidth (first
row in Table 2). Note that despite the lower memory bandwidthof the SNB test system
compared to IVB, the in-memory performance is higher due to the faster clock speed of
SNB. The HSW microarchitecture has new features which influence dot performance:
It can sustain two AVX loads and one AVX store per cycle, effectively doubling LOAD-
/STORE throughput. In addition, the L1-L2 bus width was doubled, allowing for a full
CL transfer per cycle. These changes result inTnOL = 2cy andTL1L2 = 2cy (third row
in Table 2). Here we encounter the peculiarity that HSW lowers the Uncore clock speed
if only a single core is used. This is the reason why theTL2L3 contribution is 5.54cy

10
0

10
2

10
4

Dataset Size [KiB]

0

10

20

30

40

50

60

70

cy
cl

es
 p

er
 c

ac
he

 li
ne

L2
 C

ac
he

 L
im

it
(2

56
 K

iB
)

L3
 C

ac
he

 L
im

it
(2

5
M

iB
)AVX (naive)

scalar (Kahan)
SSE (Kahan)
AVX (Kahan)

L1
 C

ac
he

 L
im

it
(3

2
K

iB
)

Fig. 2: Single-core cycles per CL vs. data set
size for various implementations of the Ka-
han scalar product and the AVX version of
the naive scalar product in SP on IVB. The
horizontal lines represent the ECM model
predictions for scalar (top), SSE (middle),
and AVX (bottom) Kahan variants.

instead of 4cy. The BDW architecture has introduced no relevant changes, but it does
not show the Uncore slowdown like HSW (fourth row in Table 2).1 It is interesting that
BDW only requires half a cycle of latency penalty per CL in memory, so the uncor-
rected ECM model works very well already. BDW performance isinsensitive to data
transfers up to the L3 cache.

Double vs. single precisionThe model prediction in terms of cycles per CL does not
change for the SIMD variants of Kahan when going from SP to DP,but one CL update
represents twice as much useful work (scalar iterations) inthe SP case. However, the
penalty for going from SIMD to scalar is only half as big as forSP, since the scalar reg-
ister width is eight bytes instead of four. The ECM model for the DP scalar version of
the Kahan dot on IVB is{32‖8|4|4|6.1+2.9} cy and the according runtime predic-
tion is{32⌉32⌉32⌉32} cy, with P = 0.55GUP/s. The reduced cycle count (32 instead
of 64) for DP leads to saturation at a smaller number of cores for in-memory working
sets:nS = ⌈32/6.1⌉= 6. Hence, even the scalar DP variant of Kahan exerts sufficient
pressure on the memory interface to reach saturation. The saturated DP performance
according to the Roofline model isPBW = (1update/16B) ·bS= 2.88GUP/s.

4 Performance results and model validation

Single-core benchmarking results for single precision on IVB are shown in Fig. 2. The
model predicts the overall behavior very well. The naive andthe AVX Kahan version
show identical performance in L2 cache and beyond. As predicted there is no per-
formance drop for the SSE Kahan version from L1 to L2. Both AVXKahan and the
compiler-generated naive version fall slightly short of the prediction in L2. This is a
general observation with many loop kernels, and we interpret it as a consequence of the
L2-L1 hardware prefetcher doing a better job in latency hiding for SSE than for AVX
due to the more relaxed timings in the SSE case. Since the details of prefetching are
undisclosed, we have no way to prove or refute this hypothesis. Finally, the constant

1 Note that our test system was a pre-release Xeon D; production systems and mainstream Xeon
Broadwell chips may show a different behavior.

1 2 3 4 5 6 7 8 9 10
Number of Cores

0

1000

2000

3000

4000

5000

6000

P
er

fo
rm

an
ce

 [M
U

p/
s]

Compiler (icc15)
Scalar
SSE
AVX
AVX model
Scalar model

(a)

1 2 3 4 5 6 7 8 9 10
Number of Cores

0

500

1000

1500

2000

2500

3000

P
er

fo
rm

an
ce

 [M
U

p/
s]

Compiler (icc15)
Scalar
SSE
AVX
AVX model
Scalar model

(b)

Fig. 3: In-memory scaling for different implementation of the Kahan scalar product on IVB for
(a) single precision and (b) double precision. Model predictions are shown with dashed lines for
the scalar and AVX versions.

performance of the scalar Kahan variant across all memory levels is perfectly predicted
by the model.

In-memory scaling results on the chip level are shown in Fig.3a. The dashed lines
are the model predictions (for clarity we only show models for scalar and AVX). As
anticipated via the ECM model, the scalar version cannot saturate the memory band-
width even if all cores are used. Since any code that is able tosaturate the bandwidth
is “perfect,” any kind of vectorization will make the Kahan algorithm as fast as the
naive scalar product. Note, however, that on a CPU with a faster clock speed or more
cores saturation will be easily achieved even with scalar code. This effect illustrates the
general observation that more parallelism can “heal” low single-core performance. For
comparison we also show the compiler-generated variant of Kahan. As described ear-
lier, the code is devastatingly slow since the compiler cannot resolve the loop-carried
dependency.

The only relevant difference between DP and SP is the smallerperformance penalty
of the scalar variant for DP (see Fig. 3b), which leads to strong saturation at about six
cores as predicted by the model.

In order to compare different architectures, we show single-core data for the AVX-
vectorized Kahan scalar product in Fig. 4a. Since we report runtime in cycles per CL,
the influence of different clock speeds and memory bandwidths is only visible for the
in-memory case. In the L1 cache all processors show the same runtime, because the
architectural improvements with HSW and BDW do not address the bottleneck of the
algorithm at hand (the ADD throughput). In L2 and L3, HSW and BDW show higher
performance than the previous generations due to their doubled L2-L1 bandwidth and
LOAD throughput. The step from L2 to L3 is important, since itmarks the transition
to the Uncore, which is a shared resource across the cores. Although a notable im-
provement is seen in L3 with each new architecture, we observe efficiency issues in the
Uncore on IVB and HSW that prevent those CPUs from attaining the expected perfor-
mance. In memory, HSW is a significant step back in terms of single-core performance
due to a large latency penalty. BDW seems to have corrected those issues, but we must
stress again that these observations were made on an eight-core single-socket “Xeon D”

L1 L2 L3 MEM
0

4

8

12

16

20

24

28

cy
cl

es
 p

er
 c

ac
he

lin
e

SandyBridge
IvyBridge
Haswell
Broadwell

4C

6C

3C

4C(a)

2 4 6 8 10 12 14
Number of Cores

0

1000

2000

3000

4000

5000

6000

7000

8000

P
er

fo
rm

an
ce

 [M
U

P
/s

]

SandyBridge
IvyBridge
Haswell
Broadwell

(b)

Fig. 4: Comparison between four Intel Xeon multi-core architectures using the single-precision
AVX Kahan scalar product: (a) Measured single-core runtimein cycles per CL in different mem-
ory hierarchy levels. The saturation pointnS is indicated above the bars for the memory-bound
case. (b) Measured performance scaling with in-memory working set.

chip, and it is unclear if the to be released multi-socket variants with larger core counts
can live up to the expectations raised here. It is also worth emphasizing that, as already
mentioned above, in practice any code that can saturate the memory bandwidth is “good
enough.” Figure 4b shows the in-memory performance scalingfor all four architectures
with the AVX Kahan scalar product: The differences in saturated performance indeed
reflect the differences in saturated memory bandwidth. Again, and certainly as expected
from the model, vectorization makes the Kahan algorithm come for free.

There is one additional optimization on HSW and BDW that we have not mentioned
yet. The two FMA units can theoretically increase the ADD throughput by a factor
of two. Both units can execute FMA and MULT instructions, butonly one of them
can handle stand-alone ADDs. This is not a problem with hand-crafted assembly since
one can endow an FMA instruction with a unit multiplicand to act like an ADD. The
downside is that the FMA instruction has a higher latency of five cycles (ADD only
has three) and therefore requires deeper unrolling to hide the pipeline latency. Both
architectures hence run out of registers and only achieve a 20% speed-up from FMA
with data in L1, and no noticeable improvement beyond L1.

5 Conclusion

We have investigated the performance of naive and Kahan-enhanced variants of the
scalar product on a range of recent Intel multicore chips. Using the ECM model the
single-core performance in all memory hierarchy levels andthe multi-core scaling for
in-memory data were accurately described. The most important result is that even the
single-threaded Kahan algorithm comes with no performancepenalties on all standard
multicore architectures under investigation in the L2 cache, the L3 cache, and in mem-
ory if implemented optimally. Depending on the particular architecture and whether
single or double precision is used, even scalar code may achieve bandwidth saturation
in memory when using multiple threads. Performance improvements between succes-
sive generations of Intel CPUs could be attributed to specific architectural advance-

ments, such as increased LOAD throughput on Haswell or a moreefficient Uncore on
Broadwell.

We emphasize that the approach and insights described here for the special case of
the Kahan scalar product can serve as a blueprint for other load-dominated streaming
kernels.

Acknowledgement We thank Intel Germany for providing an early access Broadwell
test system. This work was partially funded by BMBF under grant 01IH13009A (project
FEPA), and by the Competence Network for Scientific High Performance Computing
in Bavaria (KONWIHR).

References

1. Goldberg, D.: What every computer scientist should know about floating-point arithmetic.
ACM Comput. Surv.23(1) (March 1991) 5–48

2. Linz, P.: Accurate floating-point summation. Commun. ACM13(6) (June 1970) 361–362
3. Gregory, J.: A comparison of floating point summation methods. Commun. ACM15(9)

(September 1972) 838–
4. Kahan, W.: Pracniques: Further remarks on reducing truncation errors. Commun. ACM8(1)

(January 1965) 40–
5. Rump, S.M., Ogita, T., Oishi, S.: Accurate floating-pointsummation part I: Faithful round-

ing. SIAM J. Sci. Comput.31(1) (October 2008) 189–224
6. Zhu, Y.K., Hayes, W.B.: Algorithm 908: Online exact summation of floating-point streams.

ACM Trans. Math. Softw.37(3) (2010) 37:1–37:13
7. Demmel, J., Nguyen, H.D.: Fast reproducible floating-point summation. In: Computer Arith-

metic (ARITH), 2013 21st IEEE Symposium on. (April 2013) 163–172
8. Dalton, B., Wang, A., Blainey, B.: SIMDizing pairwise sums: A summation algorithm bal-

ancing accuracy with throughput. In: Proceedings of the 2014 Workshop on Programming
Models for SIMD/Vector Processing. WPMVP ’14, New York, NY,USA, ACM (2014) 65–
70

9. Treibig, J., Hager, G.: Introducing a performance model for bandwidth-limited loop kernels.
In Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J., eds.: Parallel Processing
and Applied Mathematics. Volume 6067 of Lecture Notes in Computer Science., Springer
Berlin / Heidelberg (2010) 615–624

10. Hager, G., Treibig, J., Habich, J., Wellein, G.: Exploring performance and power proper-
ties of modern multicore chips via simple machine models. Concurrency Computat.: Pract.
Exper. (2013) DOI: 10.1002/cpe.3180.

11. Stengel, H., Treibig, J., Hager, G., Wellein, G.: Quantifying performance bottlenecks of
stencil computations using the Execution-Cache-Memory model. In: Proceedings of the
29th ACM International Conference on Supercomputing. ICS ’15, New York, NY, USA,
ACM (2015)

12. Williams, S., Waterman, A., Patterson, D.: Roofline: An insightful visual performance model
for multicore architectures. Commun. ACM52(4) (2009) 65–76

13. Treibig, J., Hager, G., Wellein, G.: likwid-bench: An extensible microbenchmarking platform
for x86 multicore compute nodes. In Brunst, H., et al., eds.:Tools for High Performance
Computing 2011. Springer Berlin Heidelberg (2012) 27–36

