Skip to main content

A Study on Vectorisation and Paralellisation of the Monotonicity Approach

  • Conference paper
  • First Online:
Parallel Processing and Applied Mathematics

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9574))

Abstract

Solving parametric interval linear systems is one of the fundamental problems of interval computations. When the solution of a parametric linear system is a monotone function of interval parameters, then an interval hull of the parametric solution set can be computed by solving at most 2n real systems. If only some of the elements of the solution are monotone functions of parameters, then a good quality interval enclosure of the solution set can be obtained. The monotonicity approach, however, suffers from poor performance when dealing with large scale problems. Therefore, in this paper an attempt is made to improve the efficiency of the monotonicity approach. Techniques such as vectorisation and parallelisation are used for this purpose. The proposed approach is verified using some illustrative examples from structural mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Figueiredo, L.H., Stolfi, J.: Self-validated numerical methods and applications. In: Brazilian Mathematics Colloquium Monographs, IMPA/CNPq, Rio de Janeiro, Brazil (1997)

    Google Scholar 

  2. Hladík, M.: Enclosures for the solution set of parametric interval linear systems. Int. J. Appl. Math. Comput. Sci. 22(3), 561–574 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Jansson, C.: Interval linear systems with symmetric matrices, skew-symmetric matrices and dependencies in the right hand side. Computing 46(3), 265–274 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kolev, L.: A method for outer interval solution of linear parametric systems. Reliable Comput. 10, 227–239 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Kolev, L.: Outer solution of linear systems whose elements are affine functions of interval parameters. Reliable Comput. 6, 493–501 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kolev, L.: Solving linear systems whose elements are non-linear functions of intervals. Numer. Algorithms 37, 213–224 (2004)

    Article  MathSciNet  Google Scholar 

  7. Muhanna, R.L., Erdolen, A.: Geometric uncertainty in truss systems: an interval approach. In: Rafi, L., Muhanna, R.L.M., (eds.): Proceedings of the NSF Workshop on Reliable Engineering Computing: Modeling Errors and Uncertainty in Engineering Computations, Savannah, Georgia, USA, 22–24 February 2006, pp. 239–247 (2006)

    Google Scholar 

  8. Muhanna, R., Kreinovich, V., Solin, P., Cheesa, J., Araiza, R., Xiang, G.: Interval finite element method: new directions. In: Rafi, L., Muhannah, R.L.M., (eds.) Proceedings of the NSF Workshop on Reliable Engineering Computing (REC), Svannah, Georgia USA, 22–24 February 2006, pp. 229–244 (2006)

    Google Scholar 

  9. Neumaier, A.: Worst case bounds in the presence of correlated uncertainty. In: Rafi, L., Muhannah, R.L.M., (eds.): Proceedings of the NSFWorkshop on Reliable Engineering Computing (REC), Savannah, Georgia USA, 22–24 February 2006, pp. 113–114 (2006)

    Google Scholar 

  10. Neumaier, A.: Interval Methods for Systems of Equations. Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  11. Popova, E.D.: On the solution of parametrised linear systems. In: Kraemer, W., J.W.v.G., (eds.) Scientific Computing, Validated Numerics, Interval Methods, Kluwer Academic Publishers, pp. 127–138 (2001)

    Google Scholar 

  12. Popova, E., Lankov, R., Bonev, Z.: Bounding the response of mechanical structures with uncertainties in all the parameters. In: Rafi, L., Muhannah, R.L.M., (eds.) Proceedings of the NSF Workshop on Reliable Engineering Computing (REC), Svannah, Georgia USA, 22–24 February 2006, pp. 245–265 (2006)

    Google Scholar 

  13. Pownuk, A.: Calculations of displacement in elastic and elastic-plastic structures with interval parameters. In: 33rd Solid Mechanics Conference, Zakopane, Poland, pp. 160–161, September 2000

    Google Scholar 

  14. Rao, S., Berke, L.: Analysis of uncertain structural systems using interval analysis. AIAA J. 35(4), 727–735 (1997)

    Article  MATH  Google Scholar 

  15. Rohn, J.: A method for handling dependent data in interval linear systems. Technical report 911, Academy of Sciences of the Czech Republic, Czech Republic (2004)

    Google Scholar 

  16. Rump, S.: Verification methods for dense and sparse systems of equations. In: Herzberger, J. (ed.) Topics in Validated Computations. Studies in Computational Mathematics, vol. 5, pp. 63–135. Elsevier, Amsterdam (1994)

    Google Scholar 

  17. Skalna, I.: A method for outer interval solution of parametrized systems of linear interval equations. Reliable Comput. 12(2), 107–120 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Skalna, I.: Methods for solving systems of linear equations of structure mechanics with interval parameters. Comput. Assist. Mech. Eng. Sci. 10(3), 281–293 (2003)

    MATH  Google Scholar 

  19. Skalna, I.: Evolutionary optimization method for approximating the solution set hull of parametric linear systems. In: Boyanov, T., Dimova, S., Georgiev, K., Nikolov, G. (eds.) NMA 2006. LNCS, vol. 4310, pp. 361–368. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  20. Skalna, I.: On checking the monotonicity of parametric interval solution of linear structural systems. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2007. LNCS, vol. 4967, pp. 1400–1409. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  21. Cytron, R., Lipkis, J., Schonberg, E.: A compiler-assisted approach to SPMD execution. In: Proceedings of the 1990 ACM/IEEE Conference on Supercomputing (Supercomputing 1990), CA, USA, pp. 398–406. IEEE Computer Society Press, Los Alamitos (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iwona Skalna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Skalna, I., Duda, J. (2016). A Study on Vectorisation and Paralellisation of the Monotonicity Approach. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K., Kitowski, J., Wiatr, K. (eds) Parallel Processing and Applied Mathematics. Lecture Notes in Computer Science(), vol 9574. Springer, Cham. https://doi.org/10.1007/978-3-319-32152-3_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32152-3_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32151-6

  • Online ISBN: 978-3-319-32152-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics