Skip to main content

Towards Effective GPU Implementation of Social Distances Model for Mass Evacuation

  • Conference paper
  • First Online:
Parallel Processing and Applied Mathematics

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9574))

Abstract

The Social Distances (SD) model for massive evacuation is based on a Cellular Automata and agent-based representation of pedestrians. When parallel processors are used, this approach creates a high performance simulation. In this paper, we present a new algorithm for Social Distance that is highly optimized for GPU computations. The original algorithms were redesigned in order to efficiently exploit the power of graphics processors. The performance of the SD model executed on a GPU is several times greater than the performance of the same algorithm executed on a normal CPU. It is now possible to simulate at least \(10^{6}\) pedestrians in real time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bilotta, G., Rustico, E., Hérault, A., Vicari, A., Russo, G., Del Negro, C., Gallo, G.: Porting and optimizing MAGFLOW on CUDA. Ann. Geophys. 54(5), 662–670 (2011)

    Google Scholar 

  2. Blecic, I., Cecchini, A., Trunfio, G.: Cellular automata simulation of urban dynamics through GPGPU. J. Supercomputing 65(2), 614–629 (2013)

    Article  Google Scholar 

  3. Bukáček, M., Hrabák, P.: Case study of phase transition in cellular models of pedestrian flow. In: Wąs, J., Sirakoulis, G.C., Bandini, S. (eds.) ACRI 2014. LNCS, vol. 8751, pp. 508–517. Springer, Heidelberg (2014)

    Google Scholar 

  4. Burstedde, C., Klauck, K., Schadschneider, A., Zittartz, J.: Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Phys. A Stat. Mech. Appl. 295(3–4), 507–525 (2001)

    Article  MATH  Google Scholar 

  5. D’Ambrosio, D., Di Gregorio, S., Filippone, G., Rongo, R., Spataro, W., Trunfio, G.: A multi-GPU approach to fast wildfire hazard mapping. In: Obaidat, M.S., Filipe, J., Kacprzyk, J., Pina, N. (eds.) Simulation and Modeling Methodologies. AISC, vol. 256, pp. 183–195. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  6. D’Ambrosio, D., Filippone, G., Marocco, D., Rongo, R., Spataro, W.: Efficient application of GPGPU for lava flow hazard mapping. J. Supercomputing 65(2), 630–644 (2013)

    Article  Google Scholar 

  7. Ezaki, T., Yanagisawa, D., Ohtsuka, K., Nishinari, K.: Simulation of space acquisition process of pedestrians using proxemic floor field model. Phys. A Stat. Mech. Appl. 391(1–2), 291–299 (2012)

    Article  Google Scholar 

  8. Gwizdałła, T.M.: Some properties of the floor field cellular automata evacuation model. Phys. A Stat. Mech. Appl. 419, 718–728 (2015)

    Article  Google Scholar 

  9. Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51, 4282–4286 (1995)

    Article  Google Scholar 

  10. Hrabák, P., Bukáček, M., Krbálek, M.: Cellular model of room evacuation based on occupancy and movement prediction: comparison with experimental study. J. Cell. Automata 8(5–6), 383–393 (2013)

    MathSciNet  Google Scholar 

  11. Kirik, E., Malyshev, A.: On validation of SigmaEva pedestrian evacuation computer simulation module with bottleneck flow. J. Comp. Sci. 5(5), 847–850 (2014)

    Article  Google Scholar 

  12. Miao, Q., Lv, Y., Zhu, F.: A cellular automata based evacuation model on GPU platform. In: 15th International IEEE Conference on Intelligent Transportation Systems, pp. 764–768 (2012)

    Google Scholar 

  13. Mróz, H., Wąs, J.: Discrete vs. continuous approach in crowd dynamics modeling using GPU computing. Cybern. Syst. 45(1), 25–38 (2014)

    Article  Google Scholar 

  14. Mróz, H., Wąs, J., Topa, P.: The use of GPGPU in continuous and discrete models of crowd dynamics. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2013, Part II. LNCS, vol. 8385, pp. 679–688. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  15. Rybacki, S., Himmelspach, J., Uhrmacher, A.M.: Experiments with single core, multi-core, and GPU based computation of cellular automata. In: 2009 First International Conference on Advances in System Simulation, pp. 62–67 (2009)

    Google Scholar 

  16. Spataro, W., Lupiano, W., Lupiano, V., Avolio, M., D’Ambrosio, D., Trunfio, G.: High detailed lava flows hazard maps by a cellular automata approach. In: Pina, N., Kacprzyk, J., Filipe, J. (eds.) Simulation and Modeling Methodologies, Technologies and Applications. Advances in Intelligent Systems and Computing, vol. 197, pp. 85–99. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  17. Topa, P.: Cellular automata model tuned for efficient computation on GPU with global memory cache. In: 22nd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing, PDP 2014, Torino, Italy, 12–14 February 2014, pp. 380–383 (2014)

    Google Scholar 

  18. Topa, P., Mlocek, P.: GPGPU implementation of cellular automata model of water flow. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2011, Part I. LNCS, vol. 7203, pp. 630–639. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  19. Vihas, C., Georgoudas, I.G., Sirakoulis, G.C.: Cellular automata incorporating follow-the-leader principles to model crowd dynamics. J. Cell. Automata 8(5–6), 333–346 (2013)

    MathSciNet  Google Scholar 

  20. Wei, X., Song, W., Lv, W., Liu, X., Fu, L.: Defining static floor field of evacuation model in large exit scenario. Sim. Modell. Pract. Theo. 40, 122–131 (2014)

    Article  Google Scholar 

  21. Wąs, J., Lubaś, R.: Towards realistic and effective agent-based models of crowd dynamics. Neurocomputing 146, 199–209 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Kłusek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Kłusek, A., Topa, P., Wąs, J. (2016). Towards Effective GPU Implementation of Social Distances Model for Mass Evacuation. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K., Kitowski, J., Wiatr, K. (eds) Parallel Processing and Applied Mathematics. Lecture Notes in Computer Science(), vol 9574. Springer, Cham. https://doi.org/10.1007/978-3-319-32152-3_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32152-3_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32151-6

  • Online ISBN: 978-3-319-32152-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics