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Abstract The discovery of connections between the distribution of energy levels of
heavy nuclei and spacings between prime numbers has been oneof the most sur-
prising and fruitful observations in the twentieth century. The connection between
the two areas was first observed through Montgomery’s work onthe pair correla-
tion of zeros of the Riemann zeta function. As its generalizations and consequences
have motivated much of the following work, and to this day remains one of the
most important outstanding conjectures in the field, it occupies a central role in our
discussion below. We describe some of the many techniques and results from the
past sixty years, especially the important roles played by numerical and experimen-
tal investigations, that led to the discovery of the connections and progress towards
understanding the behaviors. In our survey of these two areas, we describe the com-
mon mathematics that explains the remarkable universality. We conclude with some
thoughts on what might lie ahead in the pair correlation of zeros of the zeta function,
and other similar quantities.
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1 Introduction

Montgomery’s pair correlation conjecture posits that zeros of L-functions behave
similarly to energy levels of heavy nuclei. The bridge between these fields is ran-
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dom matrix theory, a beautiful subject which has successfully modeled a large vari-
ety of diverse phenomena (see [BBDS, KrSe] for a great example of how varied the
systems can be). It is impossible in a short chapter to cover all the topics and con-
nections; fortunately there is no need as there is an extensive literature. Our goal is
therefore to briefly describe the history of the subject and the correspondences, con-
centrating on some of the main objects of interest and past successes, ending with
a brief tour through asubsetof current work and a discussion of some of the open
questions in mathematics. We are deliberately brief in areas that are well known or
are extensively covered in the literature, and instead dwell at greater lengths on the
inspiration from and interpretation through physics (see for example§2.6), as these
parts of the story are not as well known but deserve to be (bothfor historical reasons
as well as the guidance they can offer).

To this end, we begin with a short introduction to random matrix theory and a
quick description of the main characters studied in this chapter. We then continue in
§2 with a detailed exposition of the historical development of random matrix theory
in nuclear physics in the 1950s and 1960s. We note the pivotalrole played by the
nuclear physics experimentalists in gathering data to support the theoretical conjec-
tures; we will see analogues of these when we get to the work inthe 1970s and 1980s
on zeros ofL-functions in§3.5. One of our main purposes is in fact to highlight the
power of experimental data, be it data from a lab or a computercalculation, and
show how attempts to explain such results influence the development and direction
of subjects. We then shift emphasis to number theory in§3, and see how studies on
the class number problem led Montgomery to his famous pair correlation conjecture
for the zeros of the Riemann zeta function. This and related statistics are the focus
of the rest of the chapter; we describe what they are, what progress has been made
(theoretically and numerically), and then turn to some openquestions. Most of these
open questions involve how the arithmetic ofL-functions influences the behavior;
remarkably the main terms in a variety of problems are independent of the finer
properties ofL-functions, and it is only in lower order terms (or, equivalently, in the
rates of convergence to the random matrix theory behavior) that the dependencies
on these properties surface. We then conclude in§4 with current questions and some
future trends.

Acknowledgements.The third named author was partially supported by NSF grant
DMS1265673. We thank our colleagues and collaborators overthe years for many
helpful discussions on these and related topics. One of us (Miller) was fortunate to
be a graduate student at Princeton, and had numerous opportunities then to converse
with John Nash on a variety of mathematical topics. It was always a joy sitting next
to him at seminars. We are grateful for his kind invitation tocontribute to this work,
and his comments on an earlier draft.
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1.1 The Early Days: Statistics and Biometrics

Though our main characters will be energy levels of nuclei and zeros ofL-functions,
the story of random matrix theory begins neither with physics nor with mathematics,
but with statistics and biometrics. In 1928 John Wishart published an article titled
The Generalised Product Moment Distribution in Samples from a Normal Multi-
variate[Wis] in Biometrika (see [Wik] for a history of the journal, which we briefly
recap). The journal was founded at the start of the century byFrancis Galton, Karl
Pearson, and Walter Weldon for the study of statistics related to biometrics. In the
editors’ introduction in the first issue (see also [Wik]), they write:

It is intended that Biometrika shall serve as a means not onlyof collecting or publishing
under one title biological data of a kind not systematicallycollected or published elsewhere
in any other periodical, but also of spreading a knowledge ofsuch statistical theory as may
be requisite for their scientific treatment.

The question of interest for Wishart was that of estimating covariance matrices.
The paper begins with a review of work to date on samples from univariate and
bivariate populations, and issues with the determination of correlation and regres-
sion coefficients. After summarizing some of the work and formulas from Fisher,
Wishart writes:

The distribution of the correlation coefficient was deducedby direct integration from this
result. Further, K. Pearson and V. Romanovsky, starting from this fundamental formula,
were able to deal with the regression coefficients. Pearson,in 1925, gave the mean value
and standard deviation of the regression coefficient, whileRomanovsky and Pearson, in the
following year, published the actual distribution.

After talking about the new problems that arise when dealingwith three or more
variates, he continues:

What is now asserted is that all such problems depend, in the first instance, on the determi-
nation of a fundamental frequency distribution, which willbe a generalisation of equation
(2). It will, in fact, be the simultaneous distribution in samples of then variances (squared
standard deviations) and then(n−1)

2 product moment coefficients. It is the purpose of the
present paper to give this generalised distribution, and tocalculate its moments up to the
fourth order. The case of three variates will first be considered in detail, and thereafter a
proof for the generaln-fold system will be given.

In his honor the distribution of the sample covariance matrix (arising from a
sample from a multivariate normal distribution) is called the Wishart distribution.
More specifically, if we have ann× pmatrixX whose rows are independently drawn
from a p-variate mean 0 normal distribution, the Wishart distribution is the density
of the p× p matricesXTX.

Several items are worth noting here. First, we have an ensemble (a collection) of
matrices whose entries are drawn from a fixed distribution; in this case there are de-
pendencies among the entries. Second, these matrices are used to model observable
quantities of interest, in this case covariances. Finally,in his article he mentions an
earlier work of his (published in the Memoirs of the Royal Meteorological Society,
volume II, pages 29–37, 1928) which experimentally confirmed some of the results
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discussed, thus showing the connections between experiment and theory which play
such a prominent role later in the story also played a key rolein the founding.

It was not until almost thirty years later that random matrixtheory, in the hands
and mind of Wigner, bursts onto the physics scene, and then itwill be almost an-
other thirty years more before the connections with number theory emerge. Before
describing these histories in detail, we end the introduction with a very quick tour
of some of the quantities and objects we’ll meet.

1.2 Cast of Characters: Nuclei and L-functions

The two main objects we study are energy levels of heavy nuclei on the physics
side, and zeros of the Riemann zeta function (or more generally L-functions) on
the number theory side, especially Montgomery’s pair correlation conjecture and
related statistics. We give a full statement of the pair correlation conjecture, and
results towards its proof, in§3.2. Briefly, given an ordered sequence of events (such
as zeros on the critical line, eigenvalues of Hermitian matrices, energy levels of
heavy nuclei) one can look at how often a difference is observed. The remarkable
conjecture is that these very different systems exhibit similar behavior.

We begin with a review of some facts about the these areas, from theories for
their behavior to how experimental observations were obtained which shed light on
the structures, and then finish the introduction with some hints at the similarities
between these two very different systems. Parts of that section, as well as much of
§2, are expanded with permission from the survey article [FM]written by two of the
authors of this chapter for the inaugural issue of the open access journal Symmetry.
The goal of that article was similar to this chapter, though there the main quantity
discussed was Wigner’s semi-circle law and not pair correlation.

Many, if not all, of the other survey articles in the subject concentrate on the
mathematics and ignore the experimental physics. When writing the survey [FM]
the authors deliberately sought a balance, with the intention of sharing and elaborat-
ing on that vantage again in a later work to give a wider audience a more complete
description of the development of the subjects, as other approaches are already avail-
able in the literature. We especially recommend to the reader Goldston’s excellent
survey articleNotes on pair correlation of zeros and prime numbers(see [Go]) for
an extended, detailed technical discussion; the purpose ofthis chapter is to com-
plement this and other surveys by highlighting other aspects of the story, especially
how Montgomery’s work on the pair correlation of zeros ofζ (s) connects, through
random matrix theory, a central object of study in number theory to our understand-
ing of the physics of heavy nuclei.
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1.2.1 Atomic Theory and Nuclei

Experiments and experimental data played a crucial role in our evolving understand-
ing of the atom. For example, Ernest Rutherford’s gold foil experiment (performed
by Hans Geiger and Ernest Marsden) near the start of the twentieth century demon-
strated that J. J. Thomson’s plum pudding model of an atom with negatively charged
electrons embedded in a positively charged region was false, and that the atom had
a very small positively charged nucleus with the electrons far away. These exper-
iments involved shooting alpha particles at thin gold foils. Alpha particles are he-
lium atoms without the electrons and are thus positively charged. While this positive
charge was responsible for disproving the plum pudding model, such particles could
not deeply probe the positively charged nucleus due to the strong repulsion from like
charges. To make further progress into the structure of the atom in general, and the
nucleus in particular, another object was needed. A great candidate was the neutron
(discovered by Chadwick in 1932); as it did not have a net charge, the electric force
would play an immensely smaller role in its interaction withthe nucleus than it did
with the alpha particles.

The earliest studies of neutron induced reactions showed that the total neutron
cross section1 for the interaction of low-energy (electron-volt, eV) neutrons with
a nucleus is frequently much greater than the geometrical area presented by the
target nucleus to the incident neutron [FA]. It was also found that the cross section
varies rapidly as a function of the bombarding energy of the incident neutron. The
appearance of these well-definedresonancesin the neutron cross section is the most
characteristic feature of low energy nuclear reactions.

In general, the low energy resonances were found to be closely spaced (spacing
≤ 10 eV in heavy nuclei), and to be very narrow (widths≤ 0.1 eV). These facts
led Niels Bohr to introduce thecompound nucleusmodel [Bo] that assumes the in-
teraction between an incoming neutron and the target nucleus is so strong that the
neutron rapidly shares its energy with many of the target nucleons. The nuclear state
that results from the combination of incident neutron and target nucleus may there-
fore last until sufficient energy again resides in one of the nucleons for it to escape
from the system. This is a statistical process, and a considerable time may elapse be-
fore it occurs. The long lifetime of the state (τ) (on a nuclear timescale) explains the
narrow width (Γ ) of the resonance.2 Also, since many nucleons are involved in the
formation of a compound state, the close spacing of the resonances is to be expected
since there are clearly many ways of exciting many nucleons.The qualitative model

1 A total neutron cross section is defined as

Number of events of all types per unit time per nucleus
Number of incident neutrons per unit time per unit area

,

and has the dimensions of area (the standard unit is thebarn, 10−24cm2).
2 The width,Γ , is related to the lifetime,τ , by the uncertainty relationΓ = h/2πτ , whereh is
Planck’s constant. The finite width (lack of energy definition) is due to the fact that a resonant
state can decay by emitting a particle, or radiation, whereas a state of definite energy must be a
stationary state.
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outlined above has formed the basis of most theoretical descriptions of low-energy,
resonant nuclear reactions [BW].

If a resonant state can decay in a number of different ways (orchannels), we
can ascribe a probability per unit time for the decay into a channel,c, which can be
expressed as a partial widthΓλ c. The total width is the sum of the partial widths, i.e.,
Γλ = ∑cΓλ c.

The appearance of well-defined resonances occurs in heavy nuclei (mass num-
ber A ≥ 100, say) for incident neutron energies up to about 100 keV, and in light
nuclei up to neutron energies of several MeV. As the neutron bombarding ener-
gies are increased above these energies, the total cross sections are observed to be-
come smoother functions of neutron energy [HS]. This is due to two effects: firstly,
the level density (i.e., the number of resonances per unit energy interval) increases
rapidly as the excitation energy of the compound nucleus is increased, and secondly,
the widths of the individual resonances tend to increase with increasing excitation
energy so that, eventually, they overlap. The smoothed-outcross sections provide
useful information on the average properties of resonances. One of the most sig-
nificant features of these cross sections is the appearance of gross fluctuations that
have been interpreted in terms of the single-particle nature of the neutron-nucleus
interaction [LTW]. Thesegiant resonancesform one of the main sources of exper-
imental evidence for introducing the successfuloptical modelof nuclear reactions.
This model represents the interaction between a neutron anda nucleus in terms of
the neutron moving in a complex potential well [OBJ] in whichthe imaginary part
allows for the absorption of the incident neutron.

Experimental results show that, on increasing the bombarding energy above
about 5 MeV, a different reaction mechanism may occur. For example, the en-
ergy spectra of emitted nucleons frequently contain too many high-energy nucleons
compared with the predictions of the compound nucleus model. The mechanism no
longer appears to be one in which the incident neutron sharesits energy with many
target nucleons but is one in which the neutron interacts with a single nucleon or,
at most, a few nucleons. Such a mechanism is termed adirect interaction, which is
defined as a nuclear reaction in which only a few of the available degrees of freedom
of the system are involved [Au].

Theoptical model, mentioned above, is an important example of a direct inter-
action that takes place even at low bombarding energies. Theincident neutron is
considered to move in the mean nuclear potential of all the nucleons in the target.
This model also has been used to account for anomalies in the spectra of gamma-
rays resulting from thermal neutron capture [L, LL].

At even higher bombarding energies, greater than 50 MeV, say, the mechanism
becomes clearer in the sense that direct processes are the most important. The reac-
tions then give information on the fundamental nucleon-nucleon interaction; these
studies and their interpretation are, however, outside thescope of the present discus-
sion.

When a low-energy neutron (energy< 10 keV, say) interacts with a nucleus the
excitation energy of the compound nucleus is greatly increased by the neutron bind-
ing energy that typically ranges from 5 to 10 MeV. In the late 1950s, experimental
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methods were developed for measuring low-energy neutrons with resolutions of a
few electron-volts. This meant that, for the first time in anyphysical system, it be-
came possible to study the fine structure of resonances at energies far above the
ground state of the system. The relevant experimental methods are discussed in§2.
Important information was thereby obtained concerning theproperties that char-
acterizes the resonances such as their peak cross sections,elastic scattering widths,
and adjacent spacing. The results were used to test the predictions of various nuclear
models used to describe the interactions. These models ranged from the Fermi Gas
Model, a quantized version of classical Statistical Mechanics and Thermodynamics
[Be], to the sophisticated Nuclear Shell Model [BW]. In the mid-1950s, all Statis-
tical Mechanics Models predicted that the spacing distribution of nearest-neighbor
resonances of the same spin and parity in a heavy nucleus (mass numberA≥ 100,
say) was an exponential distribution. By 1956, the experimental evidence on the
spacing distribution of s-wave resonances in a number of heavy nuclei indicated a
lack of very closely-spaced resonances, contradicting thepredictions of an expo-
nential distribution [HH]. By 1960, two research groups [RDRH, FLM] showed,
unequivocally, that the spacing distribution of resonances up to an energy of almost
2 keV followed the prediction of the random matrix model surmised by Wigner in
1956 [Wig5]; in his model the probability of a zero spacing iszero! It is a model
rooted in statistics, which interestingly is where our story on random matrix theory
began!

1.2.2 L-functions and Their Zeros

There are many excellent introductions, at a variety of levels, to number theory and
L-functions. We assume the reader is familiar with the basicsof the subject; for
more details see among others [Da, Ed, HW, IK, MT-B, Se]. The discussion below
is a quick review and is an abridgement (and slight expansion) of [FM], which has
additional details.

The primes are the building blocks of number theory: every integer can be written
uniquely as a product of prime powers. Note that the role played by the primes
mirrors that of atoms in building up molecules. One of the most important questions
we can ask about primes is also one of the most basic: how many primes are there
at mostx? In other words, how many building blocks are there up to a given point?

Euclid proved over 2000 years ago that there are infinitely many primes; so, if we
let π(x) denote the number of primes at mostx, we know limx→∞ π(x) = ∞. Though
Euclid’s proof is still used in courses around the world (andgives a growth rate on
the order of loglogx), one can obtain much better counts onπ(x).

The prime number theorem states that the number of primes at most x is
Li(x)+o(Li(x)), where Li(x) =

∫ x
2 dt/ logt and forx large, Li(x) is approximately

x/ logx, and f (x) = o(g(x)) means limx→∞ f (x)/g(x) = 0. While it is possible to
prove the prime number theorem elementarily [Erd, Sel2], the most informative
proofs use complex numbers and complex analysis, and lead tothe fascinating con-
nection between number theory and nuclear physics. One of the most fruitful ap-
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proaches to understanding the primes is to understand properties of the Riemann
zeta function,ζ (s), which is defined for Re(s)> 1 by

ζ (s) =
∞

∑
n=1

1
ns ; (1.1)

the series converges for Re(s) > 1 by the integral test. By unique factorization, we
may also writeζ (s) as a product over primes. To see this, use the geometric series
formula to expand(1− p−s)−1 as∑∞

k=0 p−ks and note thatn−s occurs exactly once
on each side (and clearly every term from expanding the product is of the formn−s

for somen). This is called the Euler product ofζ (s), and is one of its most important
properties:

ζ (s) =
∞

∑
n=1

1
ns = ∏

p prime

(
1− 1

ps

)−1

. (1.2)

Initially defined only for Re(s)> 1, using complex analysis the Riemann zeta func-
tion can be meromorphically continued to all ofC, having only a simple pole with
residue 1 ats= 1. It satisfies the functional equation

ξ (s) =
1
2

s(s−1)Γ
( s

2

)
π− s

2 ζ (s) = ξ (1− s). (1.3)

One proof is to use the Gamma function,Γ (s) =
∫ ∞

0 e−tts−1dt. A simple change of
variables gives ∫ ∞

0
x

1
2s−1e−n2πxdx = Γ

( s
2

)
/nsπs/2. (1.4)

Summing overn represents a multiple ofζ (s) as an integral. After some algebra we
find

Γ
( s

2

)
ζ (s) =

∫ ∞

1
x

1
2s−1ω(x)dx+

∫ ∞

1
x−

1
2s−1ω

(
1
x

)
dx, (1.5)

with ω(x) = ∑∞
n=1e−n2πx. Using Poisson summation, we see

ω
(

1
x

)
= −1

2
+−1

2
x

1
2 + x

1
2 ω(x), (1.6)

which yields

π− 1
2sΓ

( s
2

)
ζ (s) =

1
s(s−1)

+

∫ ∞

1
(x

1
2s−1+ x−

1
2s− 1

2 )ω(x)dx, (1.7)

from which the claimed functional equation follows.
The distribution of the primes is a difficult problem; however, the distribution of

the positive integers is not and has been completely known for quite some time! The
hope is that we can understand∑n1/ns as this involves sums over the integers, and
somehow pass this knowledge on to the primes through the Euler product.
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Riemann [Ri] (see [Cl, Ed] for an English translation) observed a fascinating con-
nection between the zeros ofζ (s) and the error term in the prime number theorem.
As this relation is the starting point for our story on the number theory side, we de-
scribe the details in some length. One of the most natural things to do to a complex
function is to take contour integrals of its logarithmic derivative; this yields informa-
tion about zeros and poles, and we will see later in (1.17) that we can get even more
information if we weigh the integral with a test function. There are two expressions
for ζ (s); however, for the logarithmic derivative it is clear that weshould use the
Euler product over the sum expansion, as the logarithm of a product is the sum of
the logarithms. Let

Λ(n) =

{
logp if n= pr for some integerr

0 otherwise.
(1.8)

We find
ζ ′(s)
ζ (s)

= −∑
p

logp · p−s

1− p−s = −
∞

∑
n=1

Λ(n)
ns (1.9)

(this is proved by using the geometric series formula to write (1− p−s)−1 as
∑∞

k=01/ps, collecting terms and then using the definition ofΛ(n)). Moving the neg-
ative sign over and multiplying byxs/s, we find

1
2π i

∫

(c)
−ζ ′(s)

ζ (s)
xs

s
ds =

1
2π i

∫

(c)
∑
n≤x

Λ(n)
( x

n

)s ds
s
, (1.10)

where we are integrating over some line Re(s) = c > 1. The integral on the right
hand side is 1 ifn < x and 0 ifn> x (by choosingx non-integral, we do not need
to worry aboutx= n), and thus gives∑n≤xΛ(n). By shifting contours and keeping
track of the poles and zeros ofζ (s), the residue theorem implies that the left hand
side is

x− ∑
ρ :ζ (ρ)=0

xρ

ρ
; (1.11)

thex term comes from the pole ofζ (s) at s= 1 (remember we count poles with a
minus sign), while thexρ/ρ term arises from zeros; in both cases we must multiply
by the residue, which isxρ/ρ (it can be shown thatζ (s) has neither a zero nor a
pole ats= 0). Some care is required with this sum, as∑1/|ρ | diverges. The solution
involves pairing the contribution fromρ with ρ; see for example [Da].

The Riemann zeta function vanishes wheneverρ is a negative even integer; we
call these thetrivial zeros. These terms contribute∑∞

k=−1x−2k/(2k) = − 1
2 log(1−

x−2). This leads to the following beautiful formula, known as theexplicit formula:

x− ∑
ρ:Re(ρ)∈(0,1)

ζ (ρ)=0

xρ

ρ
− 1

2
log(1− x−2) = ∑

n≤x
Λ(n) (1.12)
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If we write n as pr , the contribution from allpr pieces withr ≥ 2 is bounded by
2x1/2 logx for x large, thus we really have a formula for the sum of the primes at
mostx, with the primep weighted by logp. Through partial summation, knowing
the weighted sum is equivalent to knowing the unweighted sum.

We can now see the connection between the zeros of the Riemannzeta func-
tion and counting primes at mostx. The contribution from the trivial zeros is well-
understood, and is just− 1

2 log(1− x−2). The remaining zeros, whose real parts are
in [0,1], are called thenon-trivial or critical zeros. They are far more important and
more mysterious. The smaller the real part of these zeros ofζ (s), the smaller the
error. Due to the functional equation, however, ifζ (ρ) = 0 for a critical zeroρ then
ζ (1− ρ) = 0 as well. Thus the ‘smallest’ the real part can be is 1/2. Thisis the
celebratedRiemann Hypothesis (RH), which is probably the most important mathe-
matical aside ever in a paper. Riemann [Cl, Ed, Ri] wrote (translated into English;
note when he talks about the roots being real, he’s writing the roots as 1/2+ iγ, and
thusγ ∈R is the Riemann Hypothesis):

One now finds indeed approximately this number of real roots within these limits, and it is
very probable that all roots are real. Certainly one would wish for a stricter proof here; I
have meanwhile temporarily put aside the search for this after some fleeting futile attempts,
as it appears unnecessary for the next objective of my investigation.

Though not mentioned in the paper, Riemann had developed a terrific formula for
computing the zeros ofζ (s), and had checked (but never reported!) that the first
few were on the critical line Re(s) = 1/2. His numerical computations were only
discovered decades later when Siegel was looking through Riemann’s papers.

RH has a plethora of applications throughout number theory and mathematics;
counting primes is but one of many. The prime number theorem is in fact equivalent
to the statement that Re(ρ)< 1 for any zero ofζ (s), and was first proved indepen-
dently by Hadamard [Had] and de la Vallée Poussin [dlVP] in 1896. Each proof
crucially used results from complex analysis, which is hardly surprising given that
Riemann had shownπ(x) is related to the zeros of the meromorphic functionζ (s).
It was not until almost 50 years later that Erdös [Erd] and Selberg [Sel2] obtained
elementary proofs of the prime number theorem (in other words, proofs that did
not use complex analysis, which was quite surprising as the prime number theorem
was known to be equivalent to a statement about zeros of a meromorphic function).
See [Gol4] for some commentary on the history of elementary proofs. It is clear,
however, that the distribution of the zeros of the Riemann zeta function will be of
primary (in both senses of the word!) importance.

The Riemann zeta function is the first of many similar functions that we can
study. We assume the reader has seenL-functions before; in addition to the surveys
mentioned earlier, see also the introductory remarks in [ILS, RS]. We can examine,
for the real part ofssufficiently large,

L(s, f ) :=
∞

∑
n=1

af (n)

ns ; (1.13)



Contents 13

of course, while we can create such a function for any sequence {af (n)} of suf-
ficient decay, only certain choices will lead to useful objects whose zeros encode
the solution to questions of arithmetic interest. For example, if we choseaf arising
from Dirichlet characters we obtain information about primes in arithmetic pro-
gression, while takingaf (p) to count the number of solutions to an elliptic curve
y2 = x3+Ax+B modulop yields information about the rank of the group of ratio-
nal solutions.

Our previous analysis, where many of our formulas are due to taking the loga-
rithmic derivative and computing a contour integral, suggests that we insist that an
Euler product hold:

L(s, f ) =
∞

∑
n=1

af (n)

ns = ∏
p prime

Lp(s, f ). (1.14)

Further, we want a functional equation relating the values of the completedL-
function ats and 1− s, which allows us to take the series expansion that originally
converges only for real part ofs large and obtain a function defined everywhere:

Λ(s, f ) = L∞(s, f )L(s, f ) = ε f Λ(1− s, f ), (1.15)

whereε f , the sign of the functional equation, is of absolute value 1,and

Lp(s, f ) =
d

∏
j=1

(
1−α f ; j(p)p

−s)−1

L∞(s, f ) = AQs
n

∏
j=1

Γ
( s

2
+α f ; j

)
, (1.16)

with A 6= 0 a complex number,Q > 0, α f ; j ≥ 0 and∑n
j=1 α f ; j(p)ν = af (pν). For

‘nice’ L-functions, it is believed that the Generalized Riemann Hypothesis (GRH)
holds: All non-trivial zeros real part equal to 1/2.

We end our introduction to our main number theoretic objectsof interest by not-
ing that (1.12) is capable of massive generalization, not just to otherL-functions but
we can multiply (1.9) by a nice test functionφ(s) instead of the specific function
xs/s. The result of this choice is to have a formula that relates sums of φ at zeros
of our L-function to sums of the Fourier transform ofφ at the primes. For example
(see Section 4 of [ILS]) one can show

∑
ρ

φ
( γ

2π
logR

)
=

A
logR

−2∑
p

∞

∑
ν=1

af (p
ν)φ̂

(
logpν

logR

)
logp

pν/2 logR
, (1.17)

where R is a free scaling parameter chosen for the problem of interest, A =
2φ̂(0) logQ+∑n

j=1A j with

A j =

∫ ∞

−∞
ψ
(

α f ; j +
1
4
+

2π ix
logR

)
φ(x)dx (1.18)
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and the Fourier transform is defined by

φ̂(y) :=
∫ ∞

−∞
φ(x)e−2π ixydx. (1.19)

1.2.3 From the Hilbert-Pólya Connection to Random Matrix Theory

As stated earlier, the Generalized Riemann Hypothesis asserts that the non-trivial
zeros of the anL-function are of the formρ = 1/2+ iγρ with γρ real. Thus it makes
sense to talk about the distribution between adjacent zeros. Around 1913, Pólya
conjectured that theγρ are the eigenvalues of a naturally occurring, unbounded,
self-adjoint operator, and are therefore real.3 Later, Hilbert contributed to the con-
jecture, and reportedly introduced the phrase ‘spectrum’ to describe the eigenvalues
of an equivalent Hermitian operator, apparently by analogywith the optical spectra
observed in atoms. This remarkable analogy pre-dated Heisenberg’s Matrix Me-
chanics and the Hamiltonian formulation of Quantum Mechanics by more than a
decade.

Not surprisingly, the Hilbert-Pólya conjecture was considered so intractable that
it was not pursued for decades, and random matrix theory remained in a dormant
state. To quote Diaconis [Di1]:

Historically, random matrix theory was started by statisticians [Wis] studying the correla-
tions between different features of population (height, weight, income...). This led to cor-
relation matrices with(i, j) entry the correlation between theith and j th features. If the
data were based on a random sample from a larger population, these correlation matrices
are random; the study of how the eigenvalues of such samples fluctuate was one of the first
great accomplishments of random matrix theory.

Diaconis [Di2] has given an extensive review of random matrix theory from the
perspective of a statistician. A strong argument can be made, however, that random
matrix theory, as we know it today in the physical sciences, began in a formal math-
ematical sense with the Wigner surmise [Wig5] concerning the spacing distribution
of adjacent resonances (of the same spin and parity) in the interactions between
low-energy neutrons and nuclei, which we describe in great detail in §2.

2 The ‘Birth’ of Random Matrix Theory in Nuclear Physics

Below we discuss some of the history of investigations of thenucleus, concentrating
on the parts that led to the introduction of random matrix theory to the subject. As
mentioned earlier, this section is expanded with permission from [FM]. Our goal is

3 If v is an eigenvector with eigenvalueλ of a Hermitian matrixA (soA= A∗ with A∗ the complex
conjugate transpose ofA, thenv∗(Av) = v∗(A∗v) = (Av)∗v; the first expression isλ ||v||2 while the
last isλ ||v||2, with ||v||2 = v∗v=∑ |vi |2 non-zero. Thusλ = λ , and the eigenvalues are real. This is
one of the most important properties of Hermitian matrices,as it allows us to order the eigenvalues.
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to provide the reader with both sides of the coin, highlighting the interplay between
theory and experiment, and building the basis for applications to understanding ze-
ros ofL-functions; we have chosen to spend a good amount of space on these exper-
iments and conjectures as these are less-well known to the general mathematician
than the later parts of our story.

While other methods have since been developed, random matrix theory was the
first to make truly accurate, testable predictions. The general idea is that the behavior
of zeros ofL-functions are well-modeled by the behavior of eigenvaluesof certain
matrices. This idea had previously been successfully used to model the distribution
of energy levels of heavy nuclei (some of the fundamental papers and books on
the subject, ranging from experiments to theory, include [BFFMPW, DLL, Dy1,
Dy2, FLM, FRG, For, FKPT, Gau, HH, HPB, Hu, Meh1, Meh2, MG, MT-B, Po, T,
Wig1, Wig2, Wig3, Wig4, Wig5, Wig6]). We describe the development of random
matrix theory in nuclear physics below, and then delve into more of the details of
the connection between the two subjects.

2.1 Neutron Physics

The period from the mid-1930s to the late 1970s was the goldenage of neutron
physics; widespread interest in understanding the physicsof the nucleus, coupled
with the need for accurate data in the design of nuclear reactors, made the field
of neutron physics of global importance in fundamental physics, technology, eco-
nomics, and politics. In§1.2.1 we introduced some of the early models for nuclei,
and discussed some of the original experiments. In this section we describe later
work where better resolution was possible. Later we will show how a similar per-
spective and chain of progress holds in studies of zeros of the Riemann zeta func-
tion! Thus the material here, in addition to being of interest in its own right, will
also provide a valuable vantage for study of arithmetic objects.

In the mid-1950s, a discovery was made that turned out to havefar-reaching
consequences beyond anything that those working in the fieldcould have imagined.
For the first time, it was possible to study the microstructure of the continuum in a
strongly-coupled, many-body system, at very high excitation energies. This unique
situation came about as the result of the following facts.

• Neutrons, with kinetic energies of a few electron-volts, excite states in compound
nuclei at energies ranging from about 5 million electron-volts to almost 10 mil-
lion electron-volts – typical neutron binding energies. Schematically, see Figure
1.

• Low-energy resonant states in heavy nuclei (mass numbers greater than about
100) have lifetimes in the range 10−14 to 10−15 seconds, and therefore they have
widths of about 1 eV. The compound nucleus loses all memory ofthe way in
which it is formed. It takes a relatively long time for sufficient energy to reside in
a neutron before being emitted. This is a highly complex, statistical process. In
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Fig. 1 An energy-level diagram showing the location of highly-excited resonances in the com-
pound nucleus formed by the interaction of a neutron,n, with a nucleus of mass numberA. Nature
provides us with a narrow energy region in which the resonances are clearly separated, and are
observable.

heavy nuclei, the average spacing of adjacent resonances istypically in the range
from a few eV to several hundred eV.

• Just above the neutron binding energy, the angular momentumbarrier restricts
the possible range of values of total spin of a resonance,J (J = I + i + l, whereI
is the spin of the target nucleus,i is the neutron spin, andl is the relative orbital
angular momentum). This is an important technical point.

• The neutron time-of-flight method provides excellent energy resolution at ener-
gies up to several keV. (See Firk [Fi] for a review of time-of-flight spectrometers.)

The speedvn of a neutron can be determined by measuring the timetn that it takes
to travel a measured distanceℓ in free space. Using the standard result of special
relativity, the kinetic energy of the neutron can be deducedusing the equation

En = E0[(1− v2
n/c2)−1/2−1]

= E0[(1− ℓ2/t2
nc2)−1/2−1], (2.1)
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whereE0 ≈ 939.553 MeV is the rest energy of the neutron andc≈ 2.997925·108

m/s is the speed of light.
If the units of energy are MeV, and those of length and time aremeters and

nanoseconds, then

En = 939.553[(1−11.126496ℓ2/t2
n)

−1/2−1] MeV. (2.2)

It is frequently useful to rearrange this equation to give the ratiotn/ℓ for a given
energy,En:

tn/ℓ = 3.3356404/
√

1− (939.553/(En+939.553))2. (2.3)

Typical values for this ratio are 72.355 ns/m forEn = 1 MeV and 23.044 ns/m for
En = 10 MeV.

At energies below 1 MeV, the non-relativistic approximation to (2.3) is adequate:

(tn/ℓ)NR =
√

E0/2Enc2 = 72.298/
√

En µs/m. (2.4)

In the eV-region, it is usual to use units ofµs/m: a 1 eV neutron travels 1 meter
in 72.3 microseconds. At non-relativistic energies, the energy resolution∆E at an
energyE is simply:

∆E ≈ 2E∆ t/tE, (2.5)

where∆ t is the total timing uncertainty, andtE is the flight time for a neutron of
energyE.

In 1958, the two highest-resolution neutron spectrometersin the world had total
timing uncertainties∆ t ≈ 200 nanoseconds. For a flight-path length of 50 meters
the resolution was∆E ≈ 3 eV at 1 keV.

In 238U+n, the excitation energy is about 5 MeV; the effective resolution for a
1 keV-neutron was therefore

∆E/Eeffective ≈ 6 ·10−7 (2.6)

(at 1 eV, the effective resolution was about 10−11).
Two basic broadening effects limit the sensitivity of the method.

1. Doppler broadening of the resonance profile due to the thermal motion of the
target nuclei; it is characterized by the quantityδ ≈ 0.3

√
E/A (eV), whereA is

the mass number of the target. IfE = 1 keV andA = 200,δ ≈ 0.7 eV, a value
that may be ten times greater than the natural width of the resonance.

2. Resolution broadening of the observed profile due to the finite resolving power
of the spectrometer. For a review of the experimental methods used to measure
neutron total cross sections see Firk and Melkonian [FMe]. Lynn [Ly] has given
a detailed account of the theory of neutron resonance reactions.

In the early 1950s, the field of low-energy neutron resonancespectroscopy was
dominated by research groups working at nuclear reactors. They were located at
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National Laboratories in the United States, the United Kingdom, Canada, and the
former USSR. The energy spectrum of fission neutrons produced in a reactor is
moderated in a hydrogenous material to generate an enhancedflux of low-energy
neutrons. To carry out neutron time-of-flight spectroscopy, the continuous flux from
the reactor is “chopped” using a massive steel rotor with fineslits through it. At
the maximum attainable speed of rotation (about 20,000 rpm), and with slits a few
thousandths-of-an-inch in width, it is possible to producepulses each with a duration
approximately 1µsec. The chopped beams have rather low fluxes, and therefore the
flight paths are limited in length to less than 50 meters. The resolution at 1 keV is
then∆E ≈ 20 eV, clearly not adequate for the study of resonance spacings about 10
eV.

In 1952, there were only four accelerator-based, low-energy neutron spectrom-
eters operating in the world. They were at Columbia University in New York City,
Brookhaven National Laboratory, the Atomic Energy Research Establishment, Har-
well, England, and at Yale University. The performances of these early accelerator-
based spectrometers were comparable with those achieved atthe reactor-based fa-
cilities. It was clear that the basic limitations of the neutron-chopper spectrometers
had been reached, and therefore future developments in the field would require im-
provements in accelerator-based systems.

In 1956, a new high-powered injector for the electron gun of the Harwell electron
linear accelerator was installed to provide electron pulses with very short durations
(typically less than 200 nanoseconds) [FRG]. The pulsed neutron flux (generated
by the (γ, n) reaction) was sufficient to permit the use of a 56 meter flight path; an
energy resolution of 3 eV at 1 keV was achieved.

At the same time, Professors Havens and Rainwater (pioneersin the field of neu-
tron time-of-flight spectroscopy) and their colleagues at Columbia University were
building a new 385 MeV proton synchrocyclotron a few miles north of the campus
(at the Nevis Laboratory). The accelerator was designed to carry out experiments
in meson physics and low-energy neutron physics (neutrons generated by the (p, n)
reaction). By 1958, they had produced a pulsed proton beam with duration of 25
nanoseconds, and had built a 37 meter flight path [RDRH, DRRH]. The hydroge-
nous neutron moderator generated an effective pulse width of about 200 nanosec-
onds for 1 keV-neutrons. In 1960, the length of the flight pathwas increased to
200 meters, thereby setting a new standard in neutron time-of-flight spectroscopy
[GRPH].

2.2 The Wigner Surmise

At a conference on Neutron Physics by Time-of-Flight, held in Gatlinburg, Ten-
nessee on November 1st and 2nd, 1956, Professor Eugene Wigner (Nobel Laureate
in Physics, 1963) presented his surmise regarding the theoretical form of the spacing
distribution of adjacent neutron resonances (of the same spin and parity) in heavy
nuclei. At the time, the prevailing wisdom was that the spacing distribution had a
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Poisson form (see, however, [GP]). The limited experimental data then available
was not sufficiently precise to fix the form of the distribution (see [Hu]). The fol-
lowing quotation, taken from Wigner’s presentation at the conference, introduces
the concept of random matrices in Physics, for the first time:

Perhaps I am now too courageous when I try to guess the distribution of the distances be-
tween successive levels. I should re-emphasize that levelsthat have differentJ-values (total
spin) are not connected with each other. They are entirely independent. So far, experimental
data are available only on even-even elements. Theoretically, the situation is quite simple if
one attacks the problem in a simple-minded fashion. The question is simply ‘what are the
distances of the characteristic values of a symmetric matrix with random coefficients?’

We know that the chance that two such energy levels coincide is infinitely unlikely. We

consider a two-dimensional matrix,

(
a11 a12
a21 a22

)
, in which case the distance between two

levels is
√

(a11−a22)2+4a2
12. This distance can be zero only ifa11 = a22 anda12 = 0. The

difference between the two energy levels is the distance of apoint from the origin, the two
coordinates of which are(a11−a22) anda12. The probability that this distance isS is, for
small values ofS, always proportional toS itself because the volume element of the plane
in polar coordinates contains the radius as a factor....

The probability of finding the next level at a distanceSnow becomes proportional toSdS.
Hence the simplest assumption will give the probability

π
2

ρ2 exp
(
−π

4
ρ2S2

)
SdS (2.7)

for a spacing betweenSandS+dS.

If we put x= ρS= S/〈S〉, where〈S〉 is the mean spacing, then the probability distribution
takes the standard form

p(x)dx =
π
2

x exp
(
−πx2/4

)
dx, (2.8)

where the coefficients are obtained by normalizing both the area and the mean to unity.

The form of the Wigner surmise had been previously discussedby Wigner
[Wig1], and by Landau and Smorodinsky [LS], but not in the spirit of random matrix
theory.

The Wigner form, in which the probability of zero spacing is zero, is strikingly
different from the Poisson form

p(x)dx = exp(−x)dx (2.9)

in which the probability is a maximum for zero spacing. The form of the Wigner
surmise had been previously discussed by Wigner himself [Wig1], and by Landau
and Smorodinsky [LS], but not in the spirit of random matrix theory.

It is interesting to note that the Wigner distribution is a special case of a general
statistical distribution, named after Professor E. H. Waloddi Weibull (1887-1979), a
Swedish engineer and statistician [Wei]. For many years, the distribution has been
in widespread use in statistical analyses in industries such as aerospace, automotive,
electric power, nuclear power, communications, and life insurance.4 The distribution

4 In fact, one of the authors has used Weibull distributions tomodel run production in major league
baseball, giving a theoretical justification for Bill James’ Pythagorean Won-Loss formula [Mil3].
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gives the lifetimes of objects and is therefore invaluable in studies of the failure rates
of objects under stress (including people!). The Weibull probability density function
is

Wei(x;k,λ ) =
k
λ

( x
λ

)k−1
exp
(
−(x/λ )k

)
(2.10)

wherex ≥ 0, k > 0 is theshapeparameter, andλ > 0 is thescaleparameter. We
see that Wei(x;2,2/

√
π) = p(x), the Wigner distribution. Other important Weibull

distributions are given in the following list.

• Wei(x;1,1) = exp(−x) the Poisson distribution;
• Wei(x;2,λ ) = Ray(λ ), the Rayleigh distribution;
• Wei(x;3,λ ) is approximately a normal distribution.5

For Wei(x;k,λ ), the mean isλΓ (1+(1/k)), the median isλ log(2)1/k, and
the mode isλ (k− 1)1/k/k1/k, if k > 1. As k → ∞, the Weibull distribution has
a sharp peak atλ . Historically, Frechet introduced this distribution in 1927, and
Nuclear Physicists often refer to the Weibull distributionas the Brody distribution
[BFFMPW].

At the time of the Gatlinburg conference, no more than 20 s-wave neutron reso-
nances had been clearly resolved in a single compound nucleus and therefore it was
not possible to make a definitive test of the Wigner surmise. Immediately following
the conference, J. A. Harvey and D. J. Hughes [HH], and their collaborators, work-
ing at the fast-neutron-chopper-groups at the high flux reactor at the Brookhaven
National Laboratory, and at the Oak Ridge National laboratory, gathered their own
limited data, and all the data from neutron spectroscopy groups around the world,
to obtain the firstglobal spacing distributionof s-wave neutron resonances. Their
combined results, published in 1958, showed a distinct lackof very closely spaced
resonances, in agreement with the Wigner surmise.

By late 1959, the experimental situation had improved, greatly. At Columbia
University, two students of Professors Havens and Rainwater completed their Ph.D.
theses; one, Joel Rosen [RDRH], studied the first 55 resonances in 238U+n up to
1 keV, and the other, J Scott Desjardins [DRRH], studied resonances in two silver
isotopes (of different spin) in the same energy region. These were the first results
from the new high-resolution neutron facility at the Nevis cyclotron.

At Harwell, Firk, Lynn, and Moxon [FLM] completed their study of the first 100
resonances in238U+n at energies up to 1.8 keV; their measurement of the total
neutron cross section for the interaction238U+n in the energy range 400–1800 eV
is shown in Figure 2.

When this experiment began in 1956, no resonances had been resolved at ener-
gies above 500 eV. The distribution of adjacent spacings of the first 100 resonances
in the single compound nucleus,238U+n, ruled out an exponential distribution and

5 Obviously this Weibull cannot be a normal distribution, as they have very different decay rates
for largex, and this Weibull is a one-sided distribution! What we mean is that for 0≤ x≤ 2 this
Weibull is well approximated by a normal distribution whichshares its mean and variance, which
are (respectively)Γ (4/3) ≈ .893 andΓ (5/3)−Γ (4/3)2 ≈ .105.
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Fig. 2 High resolution studies of the total neutron cross section of 238U, in the energy range 400
eV – 1800 eV. The vertical scale (in units of ”barns”) is a measure of the effective area of the target
nucleus.

provided the best evidence (then available) in support of Wigner’s proposed distri-
bution.

Over the last half-century, numerous studies have not changed the basic findings.
At the present time, almost 1000 s-wave neutron resonances in the compound nu-
cleus 239U have been observed in the energy range up to 20 keV. The latest results,
with their greatly improved statistics, are shown in Figure3 [DLL].

2.3 Some Nuclear Models

It is interesting to note that, during the 1950s and 1960s, the study of the spacing
distribution of neutron-induced resonances was far from the main stream of research
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Fig. 3 A Wigner distribution fitted to the spacing distribution of 932 s-wave resonances in the
interaction 238U+n at energies up to 20 keV.

in nuclear physics; almost all research was concerned with fundamental questions
associated with nuclear structure and not with quantum statistical mechanics. The
newly-discovered Shell Model [Ma, LE] of nuclei, and developments such as the
Collective Model [Ra, BM] were popular, and quite rightly so, when the successes
of these models in accounting for the observed energies, spins and parities, and
magnetic moments of nuclear states, particularly in light nuclei (mass numbers<
20, say) were considered.

These models were not able to account for the spacing distributions in heavy
nuclei (mass numbersA> 150); the complex nature of so many strongly interacting
nucleons prevented any detailed analysis. However, the treatment of such complex
problems had been considered in the mid-1930s, before the advent of the Shell-
Model. The Fermi Gas Model and other approaches based upon quantum versions
of classical statistical mechanics and thermodynamics, were introduced, particularly
by Bethe [Be]. The Fermi Gas Model treats the nucleons as non-interacting spin-12
particles in a confined volume of nuclear size. This, of course, seems at variance
with the known strong interaction between pairs of nucleons. However, the argument
is made that the nuclear gas is completely degenerate and therefore, because of the
Pauli exclusion principle, the nucleons can be considered free! The model was the
first to predict the energy-dependence of the density of states in the nuclear system.

The number of states that are available to a freely moving particle in a volumeV
(the nuclear volume) that has a linear momentum in the rangep to p+dp is

dn = (4πV/h3)p2dp. (2.11)

This leads to
n = (V/3π2h3)p3

max, (2.12)

where the result has been doubled because of the twofold spindegeneracy of the
nucleons. The “Fermi energy”EF corresponds to the maximum momentum:
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EF = p2
max/2mNucleon. (2.13)

The level densityρ(E∗) at an excitation energyE∗ predicted by the model is

ρ(E∗) = ρ(0)exp
(

2
√

aE∗
)
, (2.14)

wherea is given by the equation

E∗ = a(kT)2 (2.15)

in which k is Boltzmann’s constant andT is the absolute temperature. The above
expression for the level density is for states of all spins and parities.

In practical cases,E∗ is about 6 MeV for low- energy neutron interactions; this
value leads to the following ratio for the mean level spacingat E∗ = 6 MeV and at
E∗ = 0 (the ground state):

〈D(6 MeV)〉/〈D(0)〉 ≈ 4 ·10−8. (2.16)

For 〈D(0)〉 = 100 keV (a practical value), the mean level spacing atE∗ = 6 MeV
is≈ 4 ·10−3 eV, which is more than three orders-of-magnitude smaller than typical
values observed in heavy nuclei.

Many refinements of the model were introduced over the years;the models take
into account spin, parity, and nucleon pairing effects. A frequently used refined form
is

ρ(E∗,J) = ρ(E∗,0)(2J+1)exp
(
−(J(J+1))/2σ2) , (2.17)

whereσ is called the “spin-cut-off parameter”; the value ofσ2 is typically about 10.
The predicted spacing distributions for two values ofσ , and their comparison with
a Wigner and an exponential distribution is shown in Figure 4.

2.4 The Optical Model

In 1936, Ostrofsky et. al. [OBJ] introduced a model of nuclear reactions that em-
ployed a complex nuclear potential to account for absorption of the incoming nu-
cleon. Later, Feshbach, Porter and Weisskopf [FPW] introduced an important devel-
opment of the model that helped further our understanding ofthe average properties
of parameters used to describe nuclear reactions at low energies.

The following discussion provides insight into the physical content of their
model. Consider the plane-wave solutions of the Schrödinger equation:

d2φ
dx2 +(2m/h2)[E+V0+ iW]φ = 0, φ = exp(±ikx), (2.18)

where the+ sign indicates outgoing waves and the− sign indicates incoming
waves. The wave number,k is complex:
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Fig. 4 The spacing distribution of adjacent levels of the same spinand parity follows a Wigner
distribution. For a completely random distribution of levels (in both spin and parity) the distribution
function is exponential. The distributions for random superpositions of several sequencies (each of
which is of a Wigner form with a characteristic spin and parity) are, for level densities given by
(2.17) andσ = 1 and 3, found to approach the exponential distribution.

k =
√
(2m/h2)[(E+V0)+ iW], (2.19)

which can be written
k = kR+KIM . (2.20)

ForW < (E+V0) (a reasonable assumption) we have

kR = 1/λ ≈
√
(2m/h2)(E+V0)

KIM = [W/(E+V0)](k/2). (2.21)

Taking typical practical valuesE = 10 MeV,V0 = 40 MeV andW = 10 MeV, the
wave numbers arekR ≈ 1.5fm−1 andKIM ≈ kR/10≈ 0.15fm−1.

We see that the outgoing solution of the wave equation is

φ = exp(ikRx)exp(−KIM x) , (2.22)

which represents an exponentially attenuated wave. The wave numberKIM is effec-
tively an attenuation coefficient. The “decay length” associated with the probability
function|φ |2 is the “mean free path”:
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Λ = 1/2KIM = (E+V0)/WkR. (2.23)

Using the above values for the energies, we obtainΛ ≈ 3.2fm. This value is of nu-
clear dimension, and supports the underlying hypothesis ofthe Compound Nucleus
Model.

If the mean spacing of energy levels of a particle of massm inside the compound
nucleus is〈D〉, and its wave number isK, then the particle covers a distance

d ≈ (h/〈D〉)((hK/2πm) = (h2K)/(2πm〈D〉) (2.24)

inside the nucleus at an average speed〈v〉 ≈ hK/2πmbefore it is emitted (or before
another indistinguishable particle is emitted). At an excitation energy of 10 MeV,
a mean level spacing〈D〉 ≈ 40 eV, and a mean lifetimeh/〈D〉 ≈ 10−16 sec are
predicted. These are reasonable values, considering the crudeness of the model.

The level density and level widths increase as the neutron bombarding energy
increases; an energy region is therefore reached in which the levels completely over-
lap. Cross section measurements then provide information on the average properties
of the levels and, in particular, on theneutron strength function[LTW] defined as

S = 〈γλ n〉2/〈D〉 (2.25)

in which = 〈γλ n〉2 is the average reduced neutron width and〈D〉 is the average
spacing. Fors-wave neutrons,γ2

λ n = 2kaΓλ n, wherek is the neutron wave number,a
is the nuclear radius, andΓλ n is the neutron width of the levelλ .

The average absorption cross section〈σabs〉 may be obtained by averaging over
the collision functionU [LTW]. The following expressions are then obtained:

1−|〈U〉|2 = 2π (〈Γλ n〉/〈D〉)
〈σabs〉 = (π/k2)g

(
1−|〈U〉|2

)
, (2.26)

whereg is a statistical “spin weighting factor”.
The term 1− |〈U〉|2 is directly related to the cross section for the formation of

a compound nucleus [FPW] which is, in turn, proportional to the strength function.
The importance of studying the spacing distribution of resonances, of a given spin
and parity, originated in recognizing that the value of〈D〉, the average spacing,
appears as the denominator in the fundamental strength function.

2.5 Further Developments

The first numerical investigation of the distribution of successive eigenvalues asso-
ciated with random matrices was carried out by Porter and Rozenzweig in the late
1950s [PR]. They diagonalized a large number of matrices where the elements are
generated randomly but constrained by a probability distribution. The analytical the-
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ory developed in parallel with their work: Mehta [Meh1], Mehta and Gaudin [MG],
and Gaudin [Gau]. At the time it was clear that the spacing distribution was not
influenced significantly by the chosen form of the probability distribution. Remark-
ably, then×n distributions had forms givenalmost exactlyby the original Wigner
2×2 distribution.

The linear dependence ofp(x) on the normalized spacingx (for small x) is a
direct consequence of thesymmetriesimposed on the Hamiltonian matrix,H(hi j ).
Dyson [Dy1] discussed the general mathematical propertiesassociated with random
matrices and made fundamental contributions to the theory by showing that different
results are obtained when differentsymmetriesare assumed forH. He introduced
three basic distributions; in Physics, only two are important, they are:

• the Gaussian Othogonal Ensemble (GOE) for systems in which rotational sym-
metry and time-reversal invariance holds (the Wigner distribution): p(x) = (π/2)
x exp

(
−(π/4)x2

)
;

• the Gaussian Unitary Ensemble (GUE) for systems in which time-reversal invari-
ance does not hold (French et. al. [FKPT]):p(x) = (32/π2)x2exp(−(π/4)x2).

The mathematical details associated with these distributions are given in [Meh1].
The impact of these developments was not immediate in nuclear physics. At the

time, the main research endeavors were concerned with the structure of nuclei–
experiments and theories connected with Shell-, Collective-, and Unified models,
and with the nucleon-nucleon interaction. The study of quantum statistical mechan-
ics was far removed from the mainstream. Almost two decades went by before ran-
dom matrix theory was introduced in other fields of physics (see, for example, Bo-
higas, Giannoni and Schmit [BGS] and Alhassid [Al]).

2.6 Lessons from Nuclear Physics

We have discussed at great length the connections between nuclear physics and
number theory, with random matrix theory describing the behavior in these two very
different fields. Before we analyze in great detail the success it has had in modeling
the zeros ofL-functions, it’s worth taking a few moments to create a dictionary
comparing these two subjects.

In nuclear physics the main object of interest is the nucleus. It is a many-bodied
system governed by complicated forces. We are interested instudying the internal
energy levels. To do so, we shoot neutrons (which have no net charge) at the nucleus,
and observe what happens. Ideally we would be able to send neutrons of any energy
level; unfortunately in practice we can only handle neutrons whose energies are in
a certain band. The more energies at our disposal, the more refined an analysis is
possible. Finally, there is a remarkable universality fromheavy nucleus to heavy
nucleus, where the distribution of spacings between adjacent energy levels depends
weakly on the quantum numbers.
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Interestingly, there are analogues of all these quantitieson the number theory
side. The nucleus is replaced by anL-function, which is built up as an Euler product
of many factors of arithmetic interest. We are interested inthe zeros of this func-
tion. We can glean information about them by using the explicit formula, (1.17). We
first choose an even Schwartz test functionφ whose Fourier transform̂φ has com-
pact support. The explicit formula relates sums ofφ at the zeros of theL-function to
weighted sums of̂φ at the primes. Thus the more functionsφ̂ where we can success-
fully execute the sums over the primes, the more informationwe can deduce about
the zeros. Unfortunately, in practice we can only evaluate the prime sums for̂φ with
small support (if we could do arbitrarŷφ , we could take a sequence converging to
the constant function 1, whose inverse Fourier transform would be a delta spike at
the origin and thus tell us what is happening there). Similarto the weak dependence
on the quantum numbers, the answers for many number theory statistics depend
weakly on the Satake parameters (whose moments are the Fourier coefficients in
the series expansion of theL-function). In particular, the spacing between adjacent
zeros is independent of the distribution of these parameters, though other statistics
(such as the distribution of the first zero or first few zeros above the central point)
fall into several classes depending on their distribution.

We collect these correspondences in the table below. While the structures studied
in the two fields are very different, we can unify the presentations. In both settings
we study the spacings between objects. While there are exactrules that govern their
behavior, these are complicated. We gain information through interactions of test
objects with our system; as we can only analyze these interactions in certain win-
dows, we gain only partial information on the items of interest.

Item Nuclear Physics Number Theory
Object nucleus L-function
Events energy levels zeros
Probe neutron (no net charge) test functionφ (Schwartz)
Restriction neutron’s energy supp(φ̂)
Individuality quantum numbers Satake parameters

We end by extracting some lessons from nuclear physics for number theory. The
first is the importance of using the proper test function, or related to that the proper
statistic. In the gold-foil experiments (1908 to 1913) positively charged alpha parti-
cles, which are helium nuclei, were used. Because they have anet positive charge,
they are repelled by the nucleus they are probing. With the discovery of the neutron
in 1932, physicists had a significantly better tool for studying the nucleus. As the
machinery improved, more and more neutron energy levels were available, which
led to sharper resolutions of the internal structure. We seevariants of these on the
number theory side, from restrictions on the test function to the consequences of
increasing support. For example, when Wigner made his bold conjectures the data
was not sufficiently detailed to rule out Poissonian behavior; that was not done until
later when better experiments were carried out. Similar situations arise in number
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theory, where some statistics are consistent with multiplemodels and only by in-
creasing the support are we able to determine the true underlying behavior. Finally,
while there is a remarkable universality in behavior of the zeros, as for statistics
such as adjacent spacings orn-level correlations the exact form of theL-function
coefficients do not matter, these distributions do affect the rate of convergence to
the random matrix theory predictions, as well as govern other statistics.

3 From Class Numbers to Pair Correlation and Random Matrix
Theory

The discovery that the pair correlation of the zeros of the Riemann zeta function
(and other statistics of its zeros, and the zeros of otherL-functions) are related to
eigenvalues of random matrix ensembles has its beginnings with one of the most
challenging problems in analytic number theory: the class number problem. Hugh
Montgomery’s investigation into the vertical distribution of the nontrivial zeros of
ζ (s) arose during his work with Weinberger [MW] on the class number problem.
We give a short introduction to this problem to motivate Montgomery’s subsequent
work on the differences between zeros ofζ (s). We assume the reader is familiar
with the basics of algebraic number theory andL-functions; an excellent introduc-
tion is Davenport’s classicMultiplicative Number Theory[Da]. For those wishing a
more detailed and technical discussion of the class number problem and its history,
see [Gol3, Gol4]. We then continue with a discussion of Montgomery’s work on
pair correlation, followed by the work of Odlyzko and otherson spacings between
adjacent zeros. After introducing the number theory motivation and results, we re-
veal the connection to random matrix theory, and conclude with a discussion of the
higher level correlations, other related statistics, and open problems.

As there are too many areas of current research to describe them all in detail in a
short article, we have chosen to concentrate on two major areas: the main terms for
the n-level correlations, and the lower order terms; thus we do not describe many
other important areas of research, such as the determination of moments or value
distribution. The main terms are believed to be described byrandom matrix theory;
however, the lower order terms depend on subtle arithmetic of the L-functions, and
there we can see different behavior. The situation is very similar to that of the Central
Limit Theorem, and we will describe these connections and viewpoints in greater
detail below.

3.1 The Class Number Problem

Let K = Q(
√−q) be the imaginary quadratic field associated to the negative fun-

damental discriminant−q. Here we have that−q is congruent to 1(mod 4) and
square-free or−q = 4m, wherem is congruent to 2 or 3(mod 4) and square-free.
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The class number ofK, denotedh(−q), is the size of the group of ideal classes ofK.
Whenh(−q) = 1, the ring of integers ofK, denotedOK , has unique factorization.
Such an occurrence (the class number one problem, discussedbelow) is rare, and
the class numberh(−q) may be thought of as a measure on the failure of unique
factorization inOK .

One of the most difficult problems in analytic number theory is to estimate the
size ofh(−q) effectively. Gauss [Ga] showed thath(−q) is finite and further conjec-
tured thath tends to infinity as−q runs over the negative fundamental discriminants.
This conjecture was proved by Heilbronn [He] in 1934. Thus, while it is settled that
there are only finitely many imaginary quadratic fields with agiven class number
h(−q), an obvious question remains: can we list all imaginary quadratic fieldsK
with a given class numberh(−q)? This is the class number problem.

One may easily deduce an upper bound onh(−d) via Dirichlet’s class number
formula. Forℜ(s)> 1, letL(s,χ−q) denote the DirichletL-function

L(s,χ−q) :=
∞

∑
n=1

χ−q(n)

ns , (3.1)

where χ−q(n) is the Kronecker symbol associated to the fundamental discrimi-
nant−q. In order to prove the equidistribution of primes in arithmetic progression,
Dirichlet derived the class number formula,

h(−q) =
w
√

q

2π
L(1,χ−q), (3.2)

wherew denotes the number of roots of unity ofK =Q(
√−q):

w =





2 if q> 4

4 if q= 4

6 if q= 3.

(3.3)

Dirichlet needed to showL(1,χ−q) 6= 0, which is immediate from the class num-
ber formula ash(−q) ≥ 1. This connection between class numbers and zeros of
L-functions is almost 200 years old, and illustrates how knowledge of zeros ofL-
functions yields information on a variety of important problems.

Instead of using the class number formula to prove non-vanishing ofL-functions,
we can use results on the size ofL-functions to obtain bounds on the class num-
ber. Combining (3.2) with that fact thatL(1,χ−q)≪ logq, it follows thath(−q)≪√

qlogq. On the other-hand, Siegel [Sie2] proved that for everyε > 0 we have
L(1,χ−q) > c(ε)q−ε , wherec(ε) is a constant depending onε that is not numeri-
cally computable for smallε. Upon inserting this lower bound in (3.2), it follows
that h(−q) ≫ c(ε)q1/2−ε ; however this does not help us solve the class number
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problem because the implied constant is ineffective.6 Computing an effective lower
bound onh(−q) is very difficult task.

The class number one problem was eventually solved independently by Heegner
[Hee], Stark [St1] and Baker [Ba1]. Forh(−d) = 2, the class number problem was
solved independently by Stark [St2], Baker [Ba2] and Montgomery and Weinberger
[MW]. In 1976, Goldfeld [Gol1, Gol2] showed that if there exists an elliptic curve
E whose Hasse-WeilL-function has a zero at the central points= 1 of order at least
three, then for anyε > 0, we haveh(−q)> cε,E log(|−q|)1−ε , where the constant
cε,E is effectively computable. In other words, Goldfeld provedthat if there exists an
elliptic curve whose Hasse-WeilL-function has a triple zero ats= 1, then the class
number problem is reduced to a finite amount of computations.In 1983, Gross and
Zagier [GZ] showed the existence of such an elliptic curve. Combining this deep
work of Gross-Zagier with a simplified version of Goldfield’sargument to reduce
the amount of necessary computations, Oesterlé [Oe] produced a complete list of
imaginary quadratic fields withh(−q) = 3. To date, the class number problem is
resolved for all 1≤ h(−q)≤ 100. (In addition to the previous references, see Arnon
[Ar], Arnon, Robinson, and Wheeler [ARW], Wanger [Wan] and Watkins [Wa].)

Combining their work with results of Stark [St2] and Lehmer,Lehmer, and
Shanks [LLS], Montgomery and Weinberger gave a complete proof for the class
number two problem. Their proof is based on the curious Deuring-Heilbronn phe-
nomenon, which implies that ifh(−d)< d1/4−δ then the low-lying nontrivial zeros
of many quadratic DirichletL-functions are on the critical line, at least up to some
height depending ond, δ , and theL-functions. For an overview of the Deuring-
Heilbronn phenomenon, see the survey article by Stopple [Sto]. Montgomery and
Weinberger also establish that if the class number is a bit smaller, then one can
show that these nontrivial zeros on the critical line are very evenly spaced. More-
over, more precise information about the vertical distribution of these zeros would
imply an effective lower bound onh(−d). Montgomery and Weinberger write:

Let ρ = 1/2+ iγ andρ ′ = 1/2+ iγ ′ be consecutive zeros on the critical line of anL-function
L(s,χ), whereχ is a primitive character(modk). Put

λ (K) = min
1

2π
|γ − γ ′| logK, (3.4)

where the minimum is over allk ≤ K, all χ (modk), and allρ = 1/2+ iγ of L(s,χ) with
|γ | ≤ 1. In this range the average of|γ − γ ′| is 2π/ logk, so trivially limsupλ (K) ≤ 1.
Presumablyλ (K) tends to 0 asK increases; if this could be shown effectively then the
effective lower boundh> d1/4−ε would follow. In fact the weak inequalityλ (K)< 1/4−δ

6 In other words, while the above is enough to prove that the class number tends to infinity, we
cannot use that argument to produce an explicit constantQn for eachn so that we could assert
that the class number is at leastn if q ≥ Qn. One of the best illustrations of the importance of
effectiveconstants is the following joke: There is a constantT0 such that if all the non-trivial zeros
of ζ (s) in the critical strip up to heightT0 are on the critical line, then they all are and the Riemann
Hypothesis is true; in other words, it suffices to check up to afinite height! To see this, if the
Riemann Hypothesis is true we may takeT0 to be 0, while if it is false we takeT0 to be 1 more than
the height of the first exemption. We have therefore shown a constant exists, but such information
is completely useless!
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for K > K0 implies thath> d(1/2)δ−ε for d >C(K0,ε); the functionC(K0,ε) can be made
explicit. Evenλ (K)< 1

2 −δ has striking consequences.

3.2 Montgomery’s Pair Correlation of the Zeros of ζ (s)

We have seen that the class number problem is related to another very difficult ques-
tion in analytic number theory:What is the vertical distribution of the zeros of the
Riemann zeta function (and general L-functions) on the critical line?

Given an increasing sequence{αn}∞
n=1 and a boxB⊂ Rn−1, then-level correla-

tion is defined by

lim
N→∞

#
{(

α j1 −α j2, . . . ,α jn−1 −α jn

)
∈ B, j i 6= jk

}

N
. (3.5)

The pair correlation is the casen = 2, and through combinatorics knowing all the
correlations yields the spacing between adjacent events (see for example [Meh2]). In
1973, Montgomery [Mon] was able to partially determine the behavior for the pair
correlation of zeros of the Riemann zeta function,ζ (s), which led to new results on
the number of simple zeros ofζ (s) and the existence of gaps between zeros ofζ (s)
that are closer together than the average. One of the most striking contributions in
Montgomery’s paper, however, is his now famous pair correlation conjecture. We
first state his conjecture and then discuss related work on spacings between adja-
cent zeros in the next subsection; after these have been described in detail we then
revisit these problems and describe the connections with random matrix theory in
§3.5. See [CI] for more on connections between spacings of zeros ofζ (s) and the
class number.

Conjecture 1 (Montgomery’s pair correlation conjecture).Assume the Riemann hy-
pothesis, and letγ,γ ′ denote the imaginary parts of nontrivial zeros ofζ (s). For fixed
0< a< b< ∞,

lim
T→∞

#{γ,γ ′ : 0≤ γ,γ ′ ≤ T,2πa(logT)−1 ≤ γ − γ ′ ≤ 2πb(logT)−1}
T
2π logT

=
∫ b

a
1−
(

sinπu
πu

)2

du. (3.6)

Thus Montgomery’s pair correlation conjecture is the statement that the pair corre-
lation of the zeros ofζ (s) is

1−
(

sinπu
πu

)2

. (3.7)
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Notice that the factor 1− (sinπu/πu)2 suggests a ‘repulsion’ between the ze-
ros of ζ (s). The notion that the zeros cannot be too close to one another was also
revealed in the aforementioned work of Montgomery and Weinberger as a conse-
quence of the Deuring-Heilbronn phenomenon.

To arrive at his conjecture, Montgomery introduced the function

F(x,T) = ∑
0<γ,γ ′≤T

xi(γ−γ ′)w(γ − γ ′), (3.8)

wherew(u) is a weight function given byw(u) = 4/(4+ u2). Let F(α) denote
F(x,T) with x set asx= Tα ; then

F(α) = F(α,T) =

(
T
2π

logT

)−1

∑
0≤γ,γ ′≤T

T iα(γ−γ ′)w(γ − γ ′), (3.9)

whereα andT ≥ 2 are real.F(α) is a real, even function. Letr(u) ∈ L1, and define
its Fourier transform by

r̂(α) =
∫ ∞

−∞
r(u)e2π iαudu. (3.10)

The functionr is a test function that replaces the ‘box’ in the statement ofthe
pair correlation conjecture 1. One notable item about Montgomery’s pair correla-
tion conjecture is that there is no restriction on the lengthof the interval[a,b]; the
differenceb−a is permitted to be arbitrarily small. In the language of smooth test
functions, this translates to permitting arbitrarily large support on the Fourier trans-
form r̂.

If r̂(α) ∈ L1, then upon multiplying (3.9) by ˆr(α) and integrating, we deduce

∑
0<γ,γ ′≤T

r

(
(γ ′−γ) logT

2π
w(γ ′−γ)

)
∼
(

T
2π

logT

)∫ ∞

−∞
r̂(α)F(α)dα (3.11)

asT tends to infinity. If the Riemann hypothesis is true, the asymptotic (3.11) con-
nects the pair correlation ofζ (s) to the functionF(α) given in (3.9). Montgomery
proceeded to prove an important special case of Conjecture 1for a class of test
functions with Fourier transform supported in(−1,1).

Theorem 1 (Montgomery’s theorem).Assume the Riemann hypothesis. For real
α, T ≥ 2, let F(α) be defined by(3.9). Then F(α) is real, and F(α) = F(−α). If
T > T0(ε) then F(α)≥−ε for all α. For fixedα satisfying0≤ α < 1 we have

F(α) = α +o(1)+T−2α logT(1+o(1)) (3.12)

uniformly for0≤ α < 1 as T tends to infinity.
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Thus, for any functionr(u) ∈ L1 with Fourier transform ˆr(α) supported in
(−1,1), one can use (3.12) to evaluate the sums appearing in (3.11).For α ≥ 1,
Montgomery further conjectured, with heuristic arithmetic justification, that

F(α) = 1+o(1) uniformly in bounded intervals asT → ∞. (3.13)

This conjecture, combined with (3.12) gives a complete picture of the function
F(α), which led Montgomery to make his pair correlation conjecture.

3.3 Proof of Montgomery’s Pair Correlation Conjecture for
Restricted a,b

We now provide greater detail about Montgomery’s original proof [Mon, §3, pp.
187–191] of his theorem (Theorem 1). The point of entry is an explicit formula due
to him.

The role of explicit formulæ cannot be overstated when working with ζ (s) or L-
functions, as these formulæ unlock the multiplicative structure implicit in the Euler
product, usually via the argument principal applied to the logarithmic derivative.
Assuming the Riemann hypothesis, and writing critical zeros of ζ (s) as 1/2+ iγ
andγ real, with 1< σ < 2 andx≥ 1, Montgomery proved that

(2σ −1)∑
γ

xiy

(
σ − 1

2

)2
+(t − γ)2

= − x−1/2

(

∑
n≤x

Λ(n)
(x

n

)1−σ+it
+ ∑

n>x
Λ(n)

(x
n

)σ+it
)

+ x1/2−σ+it(logτ +Oσ(1))+Oσ (x
1/2τ−1), (3.14)

whereτ = |t|+2 and the implied constants depend only onσ .

Proof (Proof of Montgomery’s theorem (Theorem 1); [Mon,§3, pp. 187–191]).
Placingσ = 3/2 in (3.14), and lettingL(x, t) andR(x, t) denote the left and right
sides, respectively, we now wish to evaluate the second moments of both sides; i.e.∫ T

0 |L(x, t)|2dt,
∫ T

0 |R(x, t)|2dt. The reason to do this is that, as we will see,F(α)
falls out of the second moment of the left side, and we end up with something
tractable for the second moment of the right side. Thus the equation of the two
moments gives us an identity forF(α).

By showing the contribution of those ordinatesγ above heightT is O(log3T),
Montgomery obtained

∫ T

0
|L(x, t)|2dt = 4 ∑

0<γ≤T
0<γ ′≤T

xi(γ−γ ′)
∫ T

0

dt
(1+(t− y)2)(1+(t− γ ′)2)

+O(log3T).

(3.15)
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Note that the range of integration may be extended to all ofR at a penalty no greater
in magnitude thanO(log2T); we then have

∫ T

0
|L(x, t)|2dt = 4 ∑

0<γ≤T
0<γ ′≤T

xi(γ−γ ′)
∫ ∞

−∞

dt
(1+(t− y)2)(1+(t− γ ′)2)

+O(log3T);

(3.16)
it then follows from the residue calculus that the definite integral evaluates tow(γ −
γ ′)π/2 and

∫ T

0
|L(x, t)|2dt = 2π ∑

0<γ≤T
0<γ ′≤T

xi(γ−γ ′)w(γ − γ ′)+O(log3T). (3.17)

Puttingx= Tα yields

∫ T

0
|L(x, t)|2dt = F(α)T logT +O(log3T). (3.18)

The non-negativity of the left side of (3.18) gives the statement in Theorem 1 of the
positivity of F(α). (The evenness ofF(α) follows from the fact thatγ andγ ′ may
be interchanged in the definition (3.9).) It then falls to evaluate

∫ T
0 |R(x, t)|2dt. First,

∫ T

0

∣∣x−1+it logτ
∣∣2dt =

T
x2 (log2T +O(logT)) (3.19)

for all x ≥ 1,T ≥ 2. Montgomery then applied a quantitative version of Parseval’s
identity for Dirichlet series to find

∫ T

0

∣∣∣∣∑
n

ann−it

∣∣∣∣
2

dt = ∑
n
|an|2 (T +O(n)). (3.20)

Applying (3.20) to the explicit formula (3.14), we find

1
x

∫ T

0

∣∣∣∣∣∑n≤x
Λ(n)

(x
n

)−1/2+it
+ ∑

n>x
Λ(n)

(x
n

)3/2+it
∣∣∣∣∣

2

dt

=
1
x ∑

n≤x
Λ(n)2

(x
n

)−1
(T +O(n)+

1
x ∑

n>x
Λ(n)2

(x
n

)3
(T +O(n))

= T(logx+O(1))+O(xlogx), (3.21)

where the last line follows from the prime number theorem with error term. It then
follows from simple estimation of the error terms and a more delicate application of
Cauchy-Schwarz that

∫ T

0
|R(Tα , t)|2dt = ((1+o(1))T−2α logT +α +o(1))T logT, (3.22)
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uniformly for 0≤ α ≤ 1− ε. Combining (3.18) and (3.22) yields Montgomery’s
theorem. ⊓⊔

We end this section by describing the heuristic evidence that led Montgomery
to conjecture (3.13) on the behavior ofF(α) for α > 1. The argument above for
proving Montgomery’s conjecture for 0≤ α < 1 fails for α > 1, since error terms
such as in (3.21) and those arising from Cauchy-Schwarz and the last line of (3.14)
are no longer dominated by the main term.

Examining the sum over primes from the explicit formula (3.14) with σ = 3/2,

∑
n≤x

Λ(n)
(x

n

)−1/2+it
+ ∑

n>x
Λ(n)

(x
n

)3/2+it
, (3.23)

the expected value is seen by the prime number theorem to be

2x1−it
(1

2 + it
)(3

2 − it
) . (3.24)

From the proof of Montgomery’s theorem we have, withF(x,T) as in (3.8), that

F(x,T) =
1

2πx

∫ T

0

∣∣∣∣∣∑n≤x
Λ(n)

(x
n

)−1/2+it
+ ∑

n>x
Λ(n)

(x
n

)3/2+it

− 2x1−it
(

1
2 + it

)(
3
2 − it

)
∣∣∣∣∣

2

dt+o(T logT); (3.25)

it follows that we would like to know the size of

∫ T

0

∣∣∣∣∣
1
x ∑

n≤x
Λ(n)n1/2−it + x ∑

n>x
Λ(n)n−3/2−it − 2x1/2−it

(
1
2 + it

)(
3
2 − it

)
∣∣∣∣∣

2

dt. (3.26)

Montgomery proceeded to multiply out and integrate term-by-term, finding that the
non-diagonal is non-neglectable. He collected terms in theform of sums of the sort

∑
n≤y

Λ(n)Λ(n+h); (3.27)

invoking the Hardy-Littlewoodk-tuple conjecture for 2-tuples with a strong error
term, (3.27) should be≍ y. This would give

F(x,T) ∼ T
2π

logT (3.28)

in x ≤ T ≤ x2−ε , and there is little reason to expect the behavior to change for
boundedα ≥ 2. On this basis, Montgomery made his conjecture (3.13).
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3.4 Spacings Between Adjacent Zeros

Motivated by Montgomery’s pair correlation conjecture on the zeros of the Riemann
zeta function, starting in the late 1970s Andrew Odlyzko began a large-scale compu-
tation of zeros ofζ (s) high in the critical strip. The average spacing between zeros
of ζ (s) at heightT in the critical strip is on the order of 1/ logT; thus as we go
higher and higher we have more and more zeros in regions of fixed size, and there
is every reason to hope that, after an appropriate normalization, a limiting behavior
exists.

The story of computing zeta zeros goes back to Riemann himself. As mentioned
in §1.2.2, in his one paper on the zeta function [Ri], Riemann states the Riemann
hypothesis (RH) in passing. He used a formula now known as theRiemann-Siegel
formula to compute a few zeros ofζ (s) up to a height of probably no greater than
100 in the critical strip; though he did not mention these computations in the paper,
the role of these computations was important in the development of mathematics
and mirror the role played by the calculation of energy levels in nuclear physics
in illuminating the internal structure of the nucleus. The formula was actually lost
for almost 70 years, and did not enter the mathematics literature until Siegel was
reading Riemann’s works [Sie1]. Siegel’s role in understanding, collecting, and in-
terpreting Riemann’s notes should not be underestimated, since the expertise and
insight needed to infer the ideas behind the notes was great.

The development of the Riemann-Siegel formula proceeds along the purely clas-
sical lines of complex analysis. Riemann had a formula forζ (s) valid for all s∈ C;
namely,

ζ (s) =
Γ (1− s)

2π i

∫

C

(−x)s

ex−1
· dx

x
, (3.29)

whereC is the contour that starts at+∞, traverses the real axis towards the origin,
circles the origin once with the positive orientation about0, and then retraces its
path along the real axis to+∞.

By splitting off some finite sums from the contour integral above, Riemann ar-
rived at the formula

ζ (s) =
N

∑
n=1

1
ns + π1/2−s Γ

(
s
2

)

Γ
(

1
2(1− s)

)
M

∑
n=1

1
n1−s

− Γ (1− s)
2π i

∫

CM

(−x)se−Nx

ex−1
· dx

x
, (3.30)

where heres∈C, N,M ∈N are arbitrary, andCM is the contour that traces from+∞
to (2M+1)π , circles the line|s| = (2M +1)π once with positive orientation, and
then returns to+∞, thereby enclosing the poles±2π iM ,±2π i(M− 1), . . . ,±2π i,
and the singularity at 0. This formula forζ (s) can be regarded as an approximate
functional equation, where the remainder is expressed explicitly in terms of the con-
tour integral overCM. The main task in developing the Riemann-Siegel formula then
falls to estimating the contour integral overCM using the saddle-point method.
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Prior to Siegel’s work, in 1903 Gram showed that the first 10 zeros ofζ (s) lie on
the critical line, and showed that these 10 were the only zeros up to height 50. The
development of the above, along with a cogent narrative of Riemann, Siegel, and
Gram’s contributions, may be found in Edwards [Ed].

In almost every decade in the last century, mathematicians have set new records
for computations of critical zeros ofζ (s). Alan Turing brought the computer to bear
on the problem of computing zeta zeros for the first time in 1950, when, as recounted
by Hejhal and Odlyzko [HO], Turing used the Manchester Mark 1Electronic Com-
puter, which had 25,600 bits of memory and punched its outputon teleprint tape in
base 32, to verify every zero up to height 1540 in the criticalstrip (he found there are
1104 such zeros). Turing also introduced a simplified algorithm to compute zeta ze-
ros now known as Turing’s method. Turing published on his computer computations
and his new algorithm for the first time in 1953 [Tur].

Following Turing, the computation of zeros ofζ (s) took off thanks to the increas-
ing power of the computer. At this time, the first 1013 nontrivial zeros ofζ (s), tens
of billions of nontrivial zeros around the 1023 and 1024, and hundreds of nontriv-
ial zeros near zero number 1032 are known to lie on the critical line. Additionally,
new algorithms by Schönhage and Odlyzko, and by Schönhage, Heath-Brown, and
Hiary have sped up the verification of zeta zeros.

However, the aforementioned projects for numerically checking that zeros of
ζ (s) lay on the critical line were not concerned with accurately recording the height
along the critical line of the zeros computed; only with ensuring the zeros had real
part exactly 1/2. This changed in the late 1970s with a series of computations by
Andrew Odlyzko, who was motivated not only by the Riemann Hypothesis but also
by Montgomery’s pair correlation conjecture.

Rather than verify consecutive zeros starting from the critical point, Odlyzko was
interested in starting his search high up in the critical strip, in the hope that near zero
number 1012, the behavior ofζ (s) would be closer to its asymptotic behavior. For,
as Montgomery’s pair correlation conjecture is a statementabout the limit as one’s
height in the critical strip passes to infinity, one would wish to know the ordinates of
many consecutive zeta zeros in the regime whereζ (s) is behaving asymptotically if
one wished to test the plausibility of the conjecture.

As he explains [Od2], his first computations [Od1] were in a window around
zero number 1012, and were done on a Cray supercomputer using the Riemann-
Siegel formula. These computations motivated Odlyzko and Arnold Schönhage to
develop a faster algorithm for computing zeros [Od3, OS], which was implemented
in the late 1980s and was subsequently used to compute several hundred million
zeros near zero number 1020 and some near number 2·1020, as seen in [Od4, Od5].

3.5 Number Theory and Random Matrix Theory Successes

After its introduction as a conjecture in the late 1950s to describe the energy lev-
els of heavy nuclei, random matrix theory experienced successes on both the nu-
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merical and the experimental fronts. The theory was beautifully developed to han-
dle a large number of statistics, and many of these predictions were supported as
more and more data on heavy nuclei became available. While there was signifi-
cant theoretical progress (see, among others, [Dy1, Dy2, Gau, Meh1, MG, Wig1,
Wig2, Wig3, Wig4, Wig5, Wig6]), there were some gaps that were not resolved
until recently. For example, while the density of normalized eigenvalues in matrix
ensembles (Wigner’s semi-circle law) was known for all ensembles where the en-
tries were chosen independently from nice distributions, the spacings between ad-
jacent normalized eigenvalues resisted proof until this century (see, among others,
[ERSY, ESY, TV1, TV2]).

The fact that random matrix theory also had a role to play in number theory
only emerged roughly twenty years after Wigner’s pioneering investigations. The
cause of the connection was a chance encounter between Hugh Montgomery and
Freeman Dyson at the Institute for Advanced Study at Princeton. As there are now
many excellent summaries and readable surveys of their meeting, early years and
statistics (see in particular [Ha] for a Hollywoodized version), and the story is now
well known, we content ourselves with a quick summary. For more, see among
others [Con1, Con2, Di1, Di2, IK, KaSa1, KaSa2, KeSn3, MT-B].

As described in§3.1, Montgomery was interested in the class number, which led
him to study the pair correlation of zeros of the Riemann zetafunction. Given an
increasing sequence{αn}∞

n=1 and a boxB⊂Rn, then-level correlation is defined by

lim
N→∞

#
{(

α j1 −α j2, . . . ,α jn−1 −α jn

)
∈ B, j i 6= jk

}

N
; (3.31)

the pair correlation is the casen = 2, and through combinatorics knowing all the
correlations yields the spacing between adjacent events. Montgomery was partially
able to determine the behavior for the pair correlation. When he told Dyson his
result, Dyson recognized it as the pair correlation function of eigenvalues of random
Hermitian matrices in a Gaussian Unitary Ensemble, GUE.

This observation was the beginning of a long and fruitful relationship between
the two areas. At first it appeared that the GUE was the only family of matrices
needed for number theory, as there was remarkable universality seen in statistics.
This ranged from work by Dennis Hejhal [Hej] on the 3-level correlation of the
zeros ofζ (s) and Zeev Rudnick and Peter Sarnak [RS] on then-level correlation of
general automorphicL-functions, to Odlyzko’s [Od1, Od2] striking experiments on
spacings between adjacent normalized zeros. In all cases the behavior agreed with
that of the GUE.

In particular, Odlyzko’s computations of high zeta zeros showed that, high
enough along the critical line, the empirical distributionof nearest-neighbor spac-
ings for zeros ofζ (s) becomes more or less indistinguishable from that of eigenval-
ues of random matrices from the Gaussian Unitary Ensemble, or GUE. The agree-
ment with the first million zeros is poor, but the agreement near zero number 1012 is
close, near perfect near zero number 1016, and even better near zero number 1020.
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These results provide massive evidence for Montgomery’s conjecture, and vindicate
Odlyzko’s choice of starting his search high along the critical line; see Figure 5.

Fig. 5 Probability density of the normalized spacingsδn. Solid line: GUE prediction. Scatterplot:
empirical data based on Odlyzko’s computation of a billion zeros near zero #1.3× 1016. (From
Odlyzko [Od2, Figure 1, p. 4].)

In all of these investigations, however, the statistics studied are insensitive to the
behavior of finitely many zeros. This is a problem, as certainzeros ofL-functions
play an important role. The most important of these are thoseof elliptic curveL-
functions. Numerical computations on the number of points on elliptic curves mod-
ulo p led to the Birch and Swinnerton-Dyer conjecture. Briefly, this states that the
order of vanishing of theL-function at the central point equals the geometric rank of
the Mordell-Weil group of rational solutions. The theoremson n-level correlations
and spacings between adjacent zeros are all limiting statements; we may remove
finitely many zeros without changing these limits. Thus these quantities cannot de-
tect what is happening at the central point.

Unfortunately for those who were hoping to distinguish between different sym-
metry groups, Nick Katz and Peter Sarnak [KaSa1, KaSa2] showed in the nineties
that then-level correlations of the scaling limits of the classical compact groups are
all the same and equal that of the GUE. Thus when we were sayingnumber theory
agreed with GUE we could instead have said it agreed with unitary, symplectic or
orthogonal matrices.

This led them to develop a new statistic that would be sensitive to finitely many
zeros in general, and the important ones near the central point in particular. The
resulting quantity is then-level density. We assume the Generalized Riemann Hy-
pothesis (GRH) for ease of exposition, so given anL(s, f ) all the zeros are of the
form 1/2+ iγ j ; f with γ j ; f real. The statistics are still well-defined if GRH fails, but
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we lose the interpretation of ordered zeros and connectionswith nuclear physics.
For more detail on these statistics see the seminal work by Henryk Iwaniec, Wenzhi
Luo and Peter Sarnak [ILS], who introduced them (or [AAILMZ]for an expanded
discussion).

Let φ j even Schwartz functions such that the Fourier transforms

φ̂ j(y) :=
∫ ∞

−∞
φ j(x)e

−2π ixydx (3.32)

are compactly supported, and setφ(x) =∏n
j=1φ j(x j ). Then-level density forf with

test functionφ is

Dn( f ,φ) = ∑
j1,..., jn
jℓ 6= jm

φ1
(
L f γ j1; f

)
· · ·φn

(
L f γ jn; f

)
, (3.33)

whereL f is a scaling parameter which is frequently related to the conductor. Given
a familyF = ∪NFN of L-functions with conductors tending to infinity, then-level
densityDn(F ,φ ,w) with test functionφ and non-negative weight functionw is
defined by

Dn(F ,φ ,w) := lim
N→∞

∑ f∈FN
w( f )Dn( f ,φ)

∑ f∈FN
w( f )

. (3.34)

Katz and Sarnak [KaSa1, KaSa2] conjecture that as the conductors tend to in-
finity, the n-level density of zeros near the central point in families ofL-functions
agree with the scaling limits of eigenvalues near 1 of classical compact groups.
Determiningwhich classical compact group governs the symmetry is one of the
hardest problems in the subject, though in many cases through analogies with a
function field analogue one has a natural candidate for the answer, arising from the
monodromy group. Unlike then-level correlations, the different classical compact
groups all have different scaling limits. As the test functions are Schwartz and of
rapid decay, this statisticsis sensitive to the zeros at the central point. While it was
possible to look at just oneL-function when studying correlations, that is not the
case for then-level density. The reason is that while oneL-function has infinitely
many zeros, it only has a finite number within a small, boundedwindow of the cen-
tral point (the size of the window is a function of the analytic conductor). We always
need do perform some averaging; for then-level correlations eachL-function gives
us enough zeros high up on the critical line for such averaging, while for then-level
density we must move horizontally and look at afamily of L-functions. While the
exact definition of family is still a work in progress, roughly it is a collection of
L-functions coming from a common process. Examples include Dirichlet charac-
ters, elliptic curves, cuspidal newforms, symmetric powers of GL(2) L-functions,
Maass forms on GL(3), and certain families of GL(4) and GL(6) L-functions; see
for example [AAILMZ, AM, DM1, DM2, ER-GR, FiM, FI, Gao, Gü, HM, HR,
ILS, KaSa2, LM, Mil1, MilPe, OS1, OS2, RR, Ro, Rub, Ya, Yo2]. This correspon-
dence between zeros and eigenvalues allows us, at least conjecturally, to assign a
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definite symmetry type to each family ofL-functions (see [DM2, ShTe] for more on
identifying the symmetry type of a family).

There are many other quantities that can be studied in families. Instead of look-
ing at zeros, one could look at values ofL-functions at the central point, or moments
along the critical line. There is an extensive literature here of conjectures and re-
sults, again with phenomenal agreement between the two areas. See for example
[CFKRS].

4 Future Trends and Questions in Number Theory

The results above are just a small window of the great work that has been done
with number theory and random matrix theory. Our goal above is not to write a
treatise, but to quickly review the history and some of the main results, setting the
stage for some of the problems we think will drive progress inthe coming decades.
As even that covers too large an area, we have chosen to focus on a few problems
with a strong numeric component, where computational number theory is provid-
ing the same support and drive to the subject as experimentalphysics did years
before. There are of course many other competing models forL-functions. One is
the Ratios Conjectures of Conrey, Farmer and Zirnbauer [CFZ1, CFZ2, CS]. An-
other excellent candidate is Gonek, Hughes and Keating’s hybrid model [GHK],
which combines random matrix theory with arithmetic by modeling theL-function
as a partial Hadamard product over the zeros, which is modeled by random matrix
theory, and a partial Euler product, which contains the arithmetic.

In all of the quantities studied, we have agreement (either theoretical or experi-
mental) of the main terms with the main terms of random matrixtheory in an ap-
propriate limit. A natural question to ask is how this agreement is reached; in other
words, what is the rate of convergence, and what affects thisrate? In the interest of
space we assume in parts of this section that the reader is familiar with the results
and background material from [ILS, RS], though we describe the results in general
enough form to be accessible to a wide audience.

4.1 Nearest Neighbor Spacings

We first look at spacing between adjacent zeros, where Odlyzko’s work has shown
phenomenal agreement for zeros ofζ (s) and eigenvalues of the GUE ensemble.
We plot thedifferencebetween the empirical and ‘theoretical,’ or ‘expected’ GUE
spacings in Figure 6. In his paper [Od2], Odlyzko writes:Clearly there is structure
in this difference graph, and the challenge is to understandwhere it comes from.

Recently, compelling work of Bogomolny, Bohigas, Leboeuf and Monastra
[BBLM] provides a conjectural answer for the source of the additional structure
in the form of lower-order terms in the pair correlation function for ζ (s). Though
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Fig. 6 Probability density of the normalized spacingsδn. Difference between empirical distribu-
tion for a billion zeros near zero #1.3×1016, as computed by Odlyzko, and the GUE prediction.
(From Odlyzko [Od2, Figure 2, p. 5].)

the main term is all that appears in the limit (where Montgomery’s conjecture ap-
plies), the lower-order terms contribute to any computation outside the limit, and
would therefore influence any numerical computations like those of Odlyzko. By
comparing a conjectural formula for the two-point correlation function of critical
zeros ofζ (s) of roughly heightT due to Bogomolny and Keating in [BK] with
the known formula for the two-point correlation function for eigenvalues of uni-
tary matrices of sizeN, Bogomolny et. al. deduce a recipe for picking a matrix size
that will best model the lower-order terms in the two-point correlation function, and
conjecture that it will be the best choice for all correlation functions, and therefore
the nearest-neighbor spacing. More recently yet, Dueñez,Huynh, Keating, Miller,
and Snaith [DHKMS1, DHKMS2] have applied techniques of Bogomolny et. al.
and others to studying lower-order terms in the behavior of the lowest zeros ofL-
functions attached to elliptic curves. Their results are currently being extended to
otherL-functions by the first and third named authors here and theircolleagues.

4.2 n-Level Correlations and Densities

The results of the studies on spacings between zero suggest that, while the arithmetic
of theL-function is not seen in the main term, it does arise in the lower order terms,
which determine therate of convergence to the random matrix theory predictions.
Another great situation where this can be seen is through then-level correlations
and the work of Rudnick and Sarnak [RS]. They proved that then-level correla-
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tions ofall cuspidal automorphicL-functionsL(s,π) have the same limit (at least in
suitably restricted regions). Briefly, the source of the universality in the main term
comes from the Satake parameters in the Euler product of theL-function, whose
moments are the coefficients in the series expansion. In their Remark 3 they write
(all references in the quote are to their paper):

The universality (inπ) of the distribution of zeros ofL(s,π) is somewhat surprising, the rea-
son being that the distribution of the coefficientsaπ (p) in (1.6), asp runs over primes, is not
universal. For example, for degree-two primitiveL-functions, there are two conjectured pos-
sible limiting distributions for theaπ (p)’s: Sato-Tate or uniform distribution (with a Dirac
mass term). As the degree increases, the number of possible limit distributions increases
rapidly. However, it is a consequence of the theory of the Rankin-SelbergL-functions (de-
veloped by Jacquet, Piatetski-Shapiro, and Shalika form> 3) that all these limiting distri-
butions have the same second moment (at least under hypothesis (1.7)). It is the universality
of the second moment that is eventually responsible for the universality in Theorems 1.1
and 1.2. For the case of pair correlation (n= 2), this is reasonably evident; forn> 2 it was
(at least for us) unexpected, and it has its roots in a key feature of “diagonal pairings” that
emerges as the main term in the asymptotics ofRn(T, f ,h).

Similar results are seen in then-level densities. There we average the Satake param-
eters over a family ofL-function, and in the limit as the conductors tend to infinity
only the first and second moments contribute to the main term (at least under the as-
sumption of the Ramanujan conjectures for the sizes of theseparameters). The first
moment controls the rank at the central point, and the secondmoment determines
the symmetry type (see [DM2, ShTe]). For example, families of elliptic curves with
very different arithmetic (complex multiplication or not,or different torsion struc-
tures) have the same limiting behaviorbuthave different rates of convergence to that
limiting behavior. This can be seen in terms of size one over the logarithm of the con-
ductor; while these terms vanish as the conductors tend to infinity, they are present
for finite values. See [Mil2, Mil4] for several examples (as well as [MMRW], where
interesting biases are observed in lower order terms of the second moments in the
families).

4.3 Conclusion

The number theory results above may be interpreted in a framework similar to that
of the Central Limit Theorem. There, if we have ‘nice’ independent identically dis-
tributed random variables, their normalized sum (standardized to have mean zero
and variance 1) converges to the standard normal distribution. The remarkable fact
is the universality, and that the limiting distribution is independent of the shape of
the distribution. We quickly review why this is the case and then interpret our num-
ber theory results in a similar vein.

Given a distribution with finite mean and variance, we can always perform a
linear change of variables to study a related quantity wherenow the mean is zero
and the variance one. Thus, the first moment where theshapeof the distribution is
noticeable is the third moment (or the fourth if the distribution is symmetric about
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the mean). In the proof of the Central Limit Theorem through moment generating
functions or characteristic functions, the third and higher moments do not survive in
the limit. Thus their effect is only on the rate of convergence to the limiting behavior
(see the Berry-Esseen theorem), and not on the convergence itself.

The situation is similar in number theory. The higher moments of the Satake
parameters (which control the coefficients of theL-functions) again surface only in
terms which vanish in the limit, and their effect therefore is seen only in the rate of
convergence.

This suggests several natural questions. We conclude with two below, which we
feel will play a key role in studies in the years to come. Thesetwo questions provide
a nice mix, with the first related to the main term and the second related to the rate
of convergence.

• Is Montgomery’s pair correlation true for all boxes (or testfunctions)? What
about then-level correlations, both forζ (s) and cuspidal automorphicL-functions?
Note agreement with random matrix theory for all these statistics implies the con-
jectures on spacings between adjacent zeros.

• For a givenL-function (if we are studyingn-level correlations) or a family of
L-functions (if we are studyingn-level densities), how does the arithmetic enter?
Specifically, what are the possible lower order terms? How are these affected by
properties of theL-functions? If we use Rankin-Selberg convolution to create
newL-functions, how is the arithmetic of the lower order terms here a function
of the arithmetic of the constituent pieces?

There are numerous resources and references for those wishing to pursue these
questions further. For then-level correlations, the starting point are the papers [Mon,
Hej, RS], while for then-level densities it is [KaSa1, KaSa2, ILS].
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