
Parallelization Strategy for Elementary
Morphological Operators on Graphs

Imane Youkana1,2(B), Jean Cousty1, Rachida Saouli1,2, and Mohamed Akil1

1 Laboratoire d’Informatique Gaspard-Monge, ESIEE Paris,
Université Paris-Est, Paris, France

{imane.youkana,jean.cousty,rachida.saouli,mohamed.akil}@esiee.fr
2 Département d’Informatique, Université de Biskra, Biskra, Algeria

Abstract. This article focuses on the graph-based mathematical mor-
phology operators presented in [J. Cousty et al., “Morphological filtering
on graphs”, CVIU 2013]. These operators depend on a size parameter
that specifies the number of iterations of elementary dilations/erosions.
Thus, the associated running times increase with the size parameter. In
this article, we present distance maps that allow us to recover (by thresh-
olding) all considered dilations and erosions. The algorithms based on
distance maps allow the operators to be computed with a single linear-
time iteration, without any dependence to the size parameter. Then, we
investigate a parallelization strategy to compute these distance maps.
The idea is to build iteratively the successive level-sets of the distance
maps, each level set being traversed in parallel. Under some reasonable
assumptions about the graph and sets to be dilated, our parallel algo-
rithm runs in O(n/p + K log2 p) where n, p, and K are the size of the
graph, the number of available processors, and the number of distinct
level-sets of the distance map, respectively.

1 Introduction

Mathematical morphology provides a set of filtering and segmenting tools that
are very useful in applications to image analysis. There is a growing interest
for considering digital objects not only composed of points but also composed
of elements lying between them and carrying structural information about how
the points are glued together. The simplest of these representations are the
graphs. The domain of an image is considered as a graph (which can be planar
or not) whose vertex set is made of the pixels and whose edge set is given by
an adjacency relation on these pixels. Note that this adjacency relation can be
either spatially invariant or spatially variant leading to operators that are either
spatially invariant or spatially variant. Graphs are also useful to process other
kinds of discrete structures defined for instance on 3-dimensional meshes. In this
context, it becomes relevant to consider morphological transformations acting
on the subsets of vertices, the subsets of edges and the subgraphs of a graphs
and not only those acting on the set of all subsets of pixels.

Mathematical morphology on graphs was pioneered by Vincent [12] who
proposes operators relying on a dilatation (and its adjunct erosion) that act
c© Springer International Publishing Switzerland 2016
N. Normand et al. (Eds.): DGCI 2016, LNCS 9647, pp. 311–322, 2016.
DOI: 10.1007/978-3-319-32360-2 24

312 I. Youkana et al.

on the vertices of a graph. More recently, [3,6] introduce basic dilatations and
erosions that map a set of vertices to a set of edges and a set of edges to a set
of vertices. It was shown in [3] that these operators can be combined in order to
obtain operators acting on the subsets of edges, on the subsets of vertices and on
the subgraphs of a given graph. In particular, interesting openings and closings
(and then the associated alternate sequential filters) are obtained by iteration of
the basic operators. The number of iterations constitutes a filtering parameter
related to the size of the features to be preserved or removed. Therefore, based
on the straightforward definition, the time-complexity of the associated algo-
rithm increases with the size parameter. More precisely, for a parameter value
of λ the algorithm runs in O(λ.n) time, where n is the size of the underlying
graph. In this article, our main contributions are twofold: we first propose to use
distance maps in order to avoid the dependence to the parameter λ when com-
puting the results of the operators of [3]; and then we propose a parallelization
strategy leading to fast computation, in particular, for multicore/multithread
architectures.

After presenting background notions about morphology and graphs in Sect. 2,
we investigate in Sect. 3 some distance maps that lead to characterizations of
the dilations and erosions presented in [3]. Since we are interested in operators
that map sets of edges to sets of vertices and sets of vertices to sets of edges,
we introduce edge-vertex and vertex-edge distance maps. Given a set of edges
(resp. vertices), the edge-vertex (resp. vertex-edge) distance map provides for
each vertex (resp. edge) a geodesic distance to the closest edge (resp. vertex)
of the input set. In order to computed these distance maps, we adapt classical
linear-time algorithm for distance maps in unweighted graphs. These algorithms
derive from breadth first search. Whatever the size parameter, any dilation,
erosion, opening and closing of [3] can be obtained by thresholding these distance
maps. Therefore, the time complexity of the associated algorithms is linear with
respect to the size of the graph, without any dependence to the size parameter.

In Sect. 4, we propose a parallel algorithm to compute the proposed dis-
tance maps, hence the morphological operators of [3]. Parallel and/or separable
algorithms for morphological operators and distance maps on images have been
widely studied [1,2,5,7–11]. Based on the regular structure of the space, such
computations use a static partitioning of the image into rows, columns or blocks
processed in parallel. In order to handle the non-regular structure of a graph,
our parallelization strategy is based on dynamic partitioning which depends on
the input set and which is iteratively computed during the execution. The time
complexity of our parallel algorithm is analyzed. In particular it depends of the
complexity of two auxiliary functions to manage the dynamic partitions. These
functions are presented in Sect. 5. Under some reasonable assumptions about
the graph and set under consideration, our algorithm runs in O(n/p + K log2 p)
time, where n, p, and K are the size of the underlying graph, the number of
available processors and the number of distinct level sets of the distance map,
respectively. In the considered practical cases, this complexity is dominated by
the O(n/p) term.

Parallelization Strategy for Elementary Morphological Operators on Graphs 313

2 Background Notions for Morphology on Graphs

A (undirected) graph is a pair X = (X•,X×) where X• is a set and X× is
composed of unordered pairs of distinct elements in X•, i.e., X× is a subset
of {{x, y} ⊆ X• | x �= y}. Each element of X• is called a vertex or a point (of X),
and each element of X× is called an edge (of X).

Important Remark. Hereafter, the workspace is a graph G = (G•,G×) and
we consider the sets G•, G× and G of respectively all subsets of G•, all subsets
of G× and all subgraphs of G.

Mathematical morphology on graphs, as introduced in [3], relies on four basic
operators. The operators δ• and ε• are defined from G× to G• by:

δ•(X×) = {x ∈ G
• | ∃{x, y} ∈ X×}, for any X× ⊆ G

×; and (1)

ε•(X×) = {x ∈ G
• | ∀{x, y} ∈ G

×, {x, y} ∈ X×}, for any X× ⊆ G
×. (2)

The operators ε×, and δ× are defined from G• to G× by:

ε×(X•) = {{x, y} ∈ G
× | x ∈ X• and y ∈ X•}, for any X• ⊆ G

•; and (3)

δ×(X•) = {{x, y} ∈ G
× | x ∈ X• or y ∈ X•}, for any X• ⊆ G

•. (4)

In order to obtain efficient filters (opening, closings, and associated alternate
sequential filters), which are parametrized by a integer value related to a notion
of size of the features to be preserved or removed, one needs to consider iterated
versions of the basic building blocks presented above. Let α be an operator acting
on G• or on G× and let i be a non negative integer. The operator αi is defined
by the identity when i = 0 and by α ◦ αi−1 otherwise.

Since the operators defined above map the elements of G• (i.e., subsets of
vertices) to those of G× (i.e., subsets of edges) or the elements of G× to those
of G•, they cannot be directly iterated. However, any composition of an oper-
ator acting from G• to G× (resp. from G× to G•) with an operator from G×

to G• (resp.from G• to G×) leads to an operator on G• (resp. on G×). Then,
such composition can be iterated and eventually followed again by an operator
from G• to G× (resp. from G× to G•). Therefore, to define iterated operators
on graphs, two cases can be distinguish depending whether a final composition
with an operator from G• to G× (resp. from G× to G•) is considered or not.

Definition 1 (Iterated Dilations/Erosions). Let λ be a nonnegative integer.

Case 1 (Even Values of λ). If λ is even, the operators δλ/2 and ελ/2 are
defined on G• by δλ/2 = (δ• ◦ δ×)λ/2 and ελ/2 = (ε• ◦ ε×)λ/2; the operators Δλ/2

and ελ/2 are defined on G× by Δλ/2 = (δ× ◦ δ•)λ/2 and ελ/2 = (ε× ◦ ε•)λ/2.

Case 2 (Odd Values of λ). If λ is odd, the operators δλ/2 and ελ/2 are defined
from G• to G× by δλ/2 = δ× ◦(δ• ◦δ×)(λ−1)/2 and ελ/2 = ε× ◦(ε• ◦ε×)(λ−1)/2; the
operators Δλ/2 and ελ/2 are defined from G× to G• by Δλ/2 = δ•◦(δ×◦δ•)(λ−1)/2

and ελ/2 = ε• ◦ (ε× ◦ ε•)(λ−1)/2.

314 I. Youkana et al.

Fig. 1. Illustration of some morphological operators on graphs and of vertex-edge and
edge-vertex distance maps.

Illustrations of the operators δλ/2 and Δλ/2 are provided in Fig. 1 for λ = 3.
The operators δ•, δ×, δλ/2 and Δλ/2 are all morphological dilations and the

operators ε×, ε•, ελ/2 and ελ/2 are their adjunct erosions. Thus, any composition
of one of these dilations with its adjunct erosion leads to a morphological filter
which is either an opening or a closing depending on the composition order. In
particular, when the integer parameter λ is even (resp. odd), the compositions
of δλ/2 ◦ ελ/2 and ελ/2 ◦ δλ/2 (resp. Δλ/2 ◦ ελ/2 and ελ/2 ◦ δλ/2) filters on G• and
the compositions of Δλ/2 ◦ελ/2 and ελ/2 ◦Δλ/2 (resp. δλ/2 ◦ελ/2 and ελ/2 ◦Δλ/2)
filters on G×. The simultaneous application of these compositions on the vertices
and on the edges of any element in G (i.e., on any subgraph of G) leads to a
subgraph of G, hence morphological filtering on subgraphs.

When the size parameter λ is an even integer, the operators δλ/2 and ελ/2

correspond to the dilation and erosion proposed in [12]. It is known [12] that the
result of these operators can be obtained by thresholding a (geodesic) distance
map instead of iterating the basic dilation or erosion.

Let x and y be two vertices in G
•. A (vertex-vertex) path from x to y

is a sequence (x0, u0, . . . , u�−1, x�) such that x0 = x, x� = y, and, for
any i in {0, . . . , � − 1}, we have ui = {xi, xi+1}. The length of a path π =
(x0, u0, . . . , u�−1, x�) is the number of its elements minus one, i.e., the integer
value 2�. A shortest path from x to y is a path of minimal length from x to y. We
denote by L(x, y) the length of a shortest path from x to y. The (vertex-vertex)

Parallelization Strategy for Elementary Morphological Operators on Graphs 315

distance map DX• to a set X• ⊆ G
• is the map from G

• to the set of integers
such that:

DX•(x) = min{L(x, y) | y ∈ X•}, for any x ∈ X•. (5)

Then, when λ is even, the following relation characterizes the dilation δλ/2:

δλ/2(X•) = {x ∈ G
• | D•

X•(x) ≤ λ}, for any X• ∈ G•. (6)

Based on Eq. 6, to obtain the dilation of a set of vertices, one needs to com-
pute a distance map and to threshold it. An advantage, compared to the compu-
tation based on the iterative definition, is to avoid the dependence to the para-
meter λ in the algorithm time-complexity. More precisely, it is known that the
distance map and thresholding computations (see e.g. Algorithm 1 for distance
map) can be done in linear-time with respect to the size of the graph G. In par-
ticular, Algorithm 1 is a variation on breadth-first search, which is a linear-time
algorithm with respect to the size of G. Observe that at line 8 of Algorithm 1,
the distance value given to y is equal to the one of its predecessor x plus two.
This is indeed correct with respect to the above definition of the length of a
path, for which, e.g., the distance between two neighbors is equal to two.

It can be deduced from the duality properties stated in [3] that (δλ/2, ελ/2)
and (Δλ/2, ελ/2) are pairs of dual operators, meaning that one operator in the
pair can be easily computed from the other due to complementation opera-
tions. Hence, in order to provide efficient algorithms for these operators, we
only need to focus on the operators δλ/2 and Δλ/2 and deduce the others by
duality. For instance, the erosion ελ/2(X•) can be obtained with the same algo-
rithm as δλ/2(X•) provided a complementation on both the input and output of
the dilation algorithm. It is also straightforward to obtain a similar linear-time
algorithms, based on an edge-edge distance map, for the edge dilation Δλ/2 and
erosion ελ/2 when λ is even.

Algorithm 1. Sequential vertex-vertex distance map.
Data: a connected graph G = (G

•, G
×), a subset X• of G•.

Result: the distance map D•
X• to the set X•.

1 Q := an empty queue with FIFO property;
2 foreach vertex x in G

• do
3 if x ∈ X• then Q.push(x); D×

X•(u) := 0;

4 else D×
X•(x) := ∞;

5 while Q.isNotEmpty() do
6 x:= Q.pop();
7 foreach vertex y adjacent to x in G do // i.e., when {x, y} ∈ G

×

8 if D•
X•(y) = ∞ then Q.push(y); D•

X•(y) := D•
X•(x) + 2 ;

The next section presents an approach based on distance maps to obtain
linear time algorithms for Δλ/2 and δλ/2 when λ is odd. Then, Sect. 4 presents

316 I. Youkana et al.

a parallelization strategy leading to efficient parallel algorithms for all morpho-
logical operators on graphs presented in [3].

3 Vertex-Edge and Edge-Vertex Distance Maps

When considering an odd value of λ, an important difference with the even
case is that the results and arguments of the dilations δλ/2 and Δλ/2 are not
homogeneous: one of them is a set of edges whereas the other one is a set of
vertices. In order to deal with this inhomogeneity, we introduce the edge-vertex
and vertex-edge distance maps. Given a set of edges (resp. vertices), the edge-
vertex (resp. vertex-edge) distance map provides for each vertex (resp. edge) of G
a distance to the closest edge (resp. vertex) of the input set. These distance maps
allow us to characterize (by thresholding) the dilations δλ/2 and Δλ/2 when λ is
odd. Finally, Algorithm 1 is adapted to compute these distance maps.

The distance maps considered in this section rely on the lengths of short-
est paths from vertices to edges. A (vertex-edge) path from a vertex x of G to
an edge u of G is a sequence (x0, u0, . . . , x�, u�) such that u� = u, x� ∈ u�,
and (x0, u0, . . . , x�) is a vertex-vertex path from x to x�. The length of a path
(x0, u0, . . . , xl, u�) is the number of its elements minus one, i.e., the integer value
2� + 1. A shortest path from a vertex x of G to an edge u of G is a path of
minimal length from x to u. We denote by L(x, u) the length of a shortest path
from x to u. Finally, given a subset X• of vertices of G, we define the vertex-edge
distance map to X• as the map D×

X• from G
× to the set of integers such that:

D×
X•(u) = min{L(x, u) | x ∈ X•}, for any u ∈ X×. (7)

Dualy, given a subset X× of edges, the edge-vertex distance map to the set
X× is the map D•

X× from G
• to the set of integers such that:

D•
X×(x) = min{L(x, u) | u ∈ X×}, for any x ∈ X•. (8)

Edge-vertex and vertex-edge distance maps are illustrated in Fig. 1.
The next property states that the dilatations δλ/2 and Δλ/2 can also be

characterized with distance maps when λ is odd.

Property 2. Let λ be any odd positive integer. The following relations hold
true:

δλ/2(X•) = {u ∈ G
× | D×

X•(u) ≤ λ}, for any X• ∈ G•; and

Δλ/2(X×) = {x ∈ G
• | D•

X×(x) ≤ λ}, for any X× ∈ G×.

Algorithms 2 and 3 presented below compute these distance maps in linear
time with respect to size |G•| + |G×| of G.

Parallelization Strategy for Elementary Morphological Operators on Graphs 317

Algorithm 2. Vertex-edge distance map.
Data: A connected graph (G•,G×), A subset X• of G•.
Result: The vertex-edge distance map D×

X• to the set X•.
1 Q := an empty queue with FIFO property;
2 foreach edge u = {x, y} in G

× do
3 if x ∈ X• or y ∈ X• then Q.push(u); D×

X•(u) := 1;

4 else D×
X•(u) := ∞;

5 while Q.isNotEmpty() do
6 u := Q.pop() ;
7 foreach edge v in G

× adjacent to u do // i.e., when we have v ∩ u �= ∅
8 if D×

X•(v) = ∞ then Q.push(v); D×
X•(v) := D×

X•(u) + 2 ;

Algorithm 3. Edge-vertex distance map.
Data: A connected graph (G•,G×), a subset X× of G×.
Result: The edge-vertex distance map D•

X× to the set X×.
1 Q := an empty queue with FIFO property;
2 foreach vertex x in G

• do D•
X×(x) := ∞;

3 foreach edge u = {x, y} in G
× do

4 if D•
X×(x) = ∞ then Q.push(x); D•

X×(x) := 1;
5 if D•

X×(y) = ∞ then Q.push(y); D•
X×(y) := 1;

6 while Q.isNotEmpty() do
7 x := Q.pop() ;
8 foreach vertex y in G• adjacent to x do // i.e., when {x, y} ∈ G

×

9 if D•
X×(y) = ∞ then Q.push(y); D•

X×(y) := D•
X×(x) + 2 ;

4 Parallel Algorithm for Distance Maps on Graphs

Contrary to the parallel computation of distance maps on an image, which is
often based on a static partitioning of the image into rows, columns or blocks
processed in parallel, our parallelization strategy on graphs is based on dynamic
partitioning. The partition depends on the input set and is iteratively computed
during the execution. More precisely, our strategy iteratively considers the suc-
cessive level-sets of the distance maps, each level set being partitioned and then
traversed in parallel. In this section, our parallel algorithm is presented and
its complexity is analyzed assuming that partitioning can be done efficiently.
Efficient parallel management of partitions is the topic of the next section.

For the sake of simplicity, we only describe the case of vertex-vertex distance
maps, but our strategy can also be adapted to edge-edge, vertex-edge and edge-
vertex distance maps computations.

Let us first present our algorithm from a high level point of view. To this end,
we recall the notion of a level set. Given an integer λ and a (distance) map D
from G

• in the set of integers, the λ-level set of D is the set of all elements of

318 I. Youkana et al.

value λ for D (i.e., the set {x ∈ G
• | D(x) = λ}). Given a subset X• of G

•,
after an initialization step where an integer variable λ is set to 0 and where the
elements of X• are inserted in a variable set E (hence E is the (λ = 0)-level-set
of D•

X•), our algorithm can be sketched as follows:

1. Partition E (i.e., the λ-level set of D•
X•) into p balanced subsets E1, . . . , Ep.

2. Assign each of the p subsets E1, . . . , Ep to one of the p processors
3. Let, in parallel, each processor insert the non already traversed neighbors of

the elements in its assigned subset Ei into a private variable set Si and set
the distance map value of the elements in Si to λ + 2.

4. Merge the private sets {Si | i ∈ {1, . . . , p}} and store the result in E so that E
becomes the (λ + 2)-level set of D•

X• .
5. Increment λ and repeat steps 1–4 until E becomes empty.

In Step 3, in order to concurrently check if a vertex has been already traversed,
we need to equip each vertex with a synchronization Boolean variable that is
handled with an atomic test-and-set instruction. The test-and-set instruction
sets a given variable to true and returns its old value as a single atomic (i.e.,
non-interruptible) instruction.

Algorithm 4 provides the precise description of our parallel approach. It uses
two auxiliary functions called Partition and Union. In the next section, we pro-
vide algorithms for these two functions. The efficiency of Algorithm 4 depends on
these functions. As we will see, the function Partition runs in linear time with
respect to n/p and the function Union runs in O(n/(Kp) + log2p) amortized
time, where n, p and K are the size of the graph, the number of processors, and
the number of level-sets of the produced distance map. Furthermore, any class
of the produced partition contains either n/p or n/p + 1 elements.

Finally, in order to state the time complexity of Algorithm 4, we need to make
two assumptions about the graph and the set of vertices under consideration.

The degree of a vertex x of G is the number of edges that contain x (i.e., the
cardinality of the set {y ∈ G

• | {x, y} ∈ G
×}). Let β be any positive integers.

We say that G is β-balanced if the degrees of any two vertices of G differ by
at most β. Let X• be a subset of G

•. We say that X• is β-balanced if every
nonempty level-set of D•

X• contains at least β elements.
Note that when X• is p-balanced, the distance map D•

X• has at most |G•|/p
nonempty level-sets, then the while loop at line 7 is executed at most |G•|/p
times. Furthermore, if a given level set E contains n vertices, any of the {Ei | i ∈
{1, . . . , p}} obtained at line 8 contains at most n/p + 1 vertices, which allows
us to deduce that the loop line 11 runs in O(|G•|/p) time since the level-sets
of D•

X• partition G
•. As any of the {Ei | i ∈ {1, . . . , p}} contains at most n/p+1

vertices, when G is β-balanced, we can bound the number of edges that contain
an element in Ei by m/p + dmin + βn/p + β, where m is the total number of
edges that contain an element in Ei and where dmin is the minimal degree of a
vertex of G. Thus, we also have |Si| ≤ m/p+dmin +βn/p+β, where Si is the set
obtained after the execution of foreach loop line 11. Hence, since the level sets of
D•

X• partition G
•, it can be shown that the insertion operation on Si at line 14 is

executed at most (3|G×|+2β|G•|)/p times by each of the p processors during the

Parallelization Strategy for Elementary Morphological Operators on Graphs 319

Algorithm 4. Parallel vertex-vertex distance map.
Data: A connected graph (G•,G×), a subset X• of G•, the number p of

processors.
Result: The distance map D•

X• to the set X•.
1 E := ∅; λ :=0;
2 Set to False all elements of a shared Boolean array Traversed of size |G•|
3 (E1, . . . ,Ep):= Partition(X•, p);
4 foreach processor i in {1, . . . ,p} do in parallel
5 foreach vertex x ∈ Ei do D•

X•(x) := λ; Traversed[x] := True; ;

6 E:=Union(p, E1, . . . , Ep);
7 while E �= ∅ do
8 (E1, . . . ,Ep):= Partition(E, p);
9 foreach processor i in {1, . . . , p} do in parallel

10 Si:=∅;
11 foreach x in Ei do
12 foreach vertex y adjacent to x in G do // i.e., when {x, y} ∈ G

×

13 if test-and-set(Traversed[y]) = False then
14 Si:=Si ∪ {y};
15 D•

X•(y) := λ + 2;

16 E:=Union(p, S1, . . . , Sp);

overall execution and the continuation condition of the loop at line 12 must be
tested less than 3|G×|/p + 2(β + 1)|G•|/p times. Hence, using an array of linked
lists to represent the graph G and using simple arrays for all sets, we deduce
that the time complexity of the main part (lines 9 to 15) of Algorithm 4 is linear
with respect to (|G×| + |G•|)/p. Considering also the auxiliary functions Union
and Partition, the overall time complexity of Algorithm 4 can be established.

Theorem 3. Algorithm 4 outputs a map D•
X• which is the vertex-vertex dis-

tance map to the set X•. Let p be the number of available processors. Let us
assume that β is a constant integer such that G is β-balanced and that X• is p-
balanced. Then, Algorithm 4 runs in O((|G•|+|G×|)/p+K log2 p) time, where K
is the number of nonempty level-sets of D•

X• .

Under the assumption of Theorem 3, the distance map DX contains at
most |G•|/p nonempty level-sets. Thus the time complexity of Algorithm 4 is
less than O((|G•| + |G×|)/p + |G•|(log2 p)/p).

The assumptions in Theorem 3 hold, in general, true when the graph-based
morphological operators of [3] are applied to image processing. In particular,
when we consider a 2-dimensional image equipped with the 4- or 8- adjacency
relation, the degrees of any two vertices are the same (except on the image
borders), and the number of distinct level-sets is of the order of

√|G•|, meaning
that in average, each level set contains

√|G•| vertices. Furthermore, in practice,

320 I. Youkana et al.

we generally have K. log2 p ≤ (|G•| + |G×|)/p. Thus, roughly speaking, we can
say that the time-complexity is, in general, dominated by (|G•| + |G×|)/p.

5 Parallel Partition and Disjoint Union Algorithms

In this section, we present efficient parallel algorithms for the partition and union
function used in Algorithm 4 and we analyze their time-complexity.

The parallel partition algorithm (see Algorithm 5) consists of computing in
parallel, with p processors, a balanced partition {E1, . . . , Ep} of a set E. The
partition is balanced in the sense that the k-first sets of the partition con-
tain |E|/p + 1 elements whereas the following ones contain |E|/p elements,
where k is the remainder in the integer division of |E| by p. The elements
of E, stored in an array, are moved to arrays previously allocated for the sub-
sets E1, . . . , Ep in the order of their indices: the first set receives the first elements
of the array E and so on (see Fig. 2). Thus, each processor computes the index of
the first and of the last element that must be copied (lines 2 to 7) before actually
copying the elements of E located between the computed indices (line 8). The
computation of the first and of the last indices can be done in constant time
and the copying step is done in linear time with respect to |E|/p (each processor
moves at most |E|/p + 1 elements).

Algorithm 5. Partition.
Data: An array E of n = |E| elements, the number p of processors.
Result: A balance partition (E1, . . . ,Ep) of E.

1 foreach processor i in {1, . . . ,p} do in parallel
2 if i ≤ (n mod p) then
3 start[i] := (i − 1) ∗ (n/p + 1);
4 end[i] := start[i] + n/p;

5 else
6 start[i] := (n mod p) ∗ (n/p + 1) + (i − 1 − (n mod p)) ∗ (n/p);
7 end[i] := start[i] + n/p - 1;

8 foreach ji in {start[i], . . . , end[i]} do Ei[ji − start[i]] := E[ji] ;

Our parallel Union algorithm (see Algorithm 6) computes the union of p dis-
joint sets {S1, . . . , Sp} with p processors. The elements of each set are stored in
an array and each processor i copies the elements of the array Si in the array E.
The elements of Si are stored in the resulting array E from the index start[i],
where start[i] is the sum of the cardinalities of the sets S1, . . . , Si−1 (see Fig. 3).
Thus, our algorithm first computes the values start[i] for any i in {1, . . . , p}
(line 1) before actually copying the elements into E (line 3). Given the cardinal-
ities |S1|, . . . , |Sp|, computing the values start[i] for any i in {1, . . . , p} is known
as the prefix-sum problem. It can be solved in parallel with p processors with

Parallelization Strategy for Elementary Morphological Operators on Graphs 321

716151413121110198765432110

Processor 1 Processor 2 Processor 3 Processor 4 Processor 5

start[1] end[4] start[5]start[2]end[1] end[5]start[3]end[2] start[4]end[3]

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 0 1 2

E

E1 E2 E3 E5E4

Fig. 2. Illustration of the Partition algorithm with p = 5 processors.

Fig. 3. Illustration of the Union algorithm with p = 5 processors.

a O(log2 p) running-time algorithm [4]. Then, each processor i copies (line 3)
the elements of Si into E at the correct position. Let us consider the amortized-
time complexity of this operation for a sequence of calls to Union as used in
Algorithm 4, under the assumptions of Theorem 3. Let K be the number of
distinct level sets of D•

X• . There is one call to Union for each level-set of the
distance map D•

X . Thus, there are K calls to Union. We have seen in Sect. 4
that there are at most (3|G×|+2β|G•|)/p insertions in Si. Any element inserted
in Si is considered exactly once at line 3 of Algorithm 6. Thus, the amortized
time-complexity of line 3 is O((|G•| + |G×|)/(Kp)) and the one of Algorithm 6
is O((|G•| + |G×|)/(Kp) + log2 p).

Algorithm 6. Union.
Data: A series S1, . . . , Sp of p sets, and the number p of processors.
Result: An array E whose elements constitutes the union of {S1, . . . , Sp}.

1 start = ParallelPrefixSum(|S1|, . . . , |Sp|);
2 foreach processor i in {1, . . . , p} do in parallel
3 foreach ji in {0, . . . , |Si| − 1} do E[start[i] + ji] := Si[ji];

322 I. Youkana et al.

6 Conclusion

In this article efficient sequential and parallel algorithms for the (binary) graph-
based mathematical morphology operators defined in [3] have been proposed.
These algorithms are based on distance maps computation in unweighted graphs.
The sequential algorithms run in linear time with respect to the size of the
underlying graph, whereas the parallel algorithms run (under some reasonable
assumptions) in O(n/p + K log2 p) time, where n, p, and K are the size of the
underlying graph, the number of available processors, and the number of distinct
level-sets of the distance map, respectively.

From a computational point of view, future work will include experimen-
tal studies of the execution times, variations on our parallel algorithms with
improved load balancing, as well as algorithms for the so-called “grayscale case”
in order to filter functions as well as binary sets. On the methodological point of
view, the use of distance maps in unweighted graphs opens the door towards the
investigation of morphological operators on graphs embedded in metric spaces
(or more generally on weighted graphs) where the result of an operator depends
on the “length” of the edges according to the metric.

References

1. Chia, T.L., Wang, K.B., Chen, Z., Lou, D.C.: Parallel distance transforms on a
linear array architecture. IPL 82(2), 73–81 (2002)

2. Coeurjolly, D.: 2D subquadratic separable distance transformation for path-based
norms. In: Barcucci, E., Frosini, A., Rinaldi, S. (eds.) DGCI 2014. LNCS, vol. 8668,
pp. 75–87. Springer, Heidelberg (2014)

3. Cousty, J., Najman, L., Dias, F., Serra, J.: Morphological filtering on graphs. CVIU
117(4), 370–385 (2013)

4. Ladner, R.E., Fischer, M.J.: Parallel prefix computation. JACM 27(4), 831–838
(1980)

5. Man, D., Uda, K., Ueyama, H., Ito, Y., Nakano, K.: Implementations of parallel
computation of Euclidean distance map in multicore processors and GPUs. In:
ICNC, pp. 120–127 (2010)

6. Meyer, F., Angulo, J.: Micro-viscous morphological operators. In: ISMM, pp. 165–
176 (2007)

7. Pham, T.Q.: Parallel implementation of geodesic distance transform with applica-
tion in superpixel segmentation. In: DICTA, pp. 1–8. IEEE (2013)

8. Saito, T., Toriwaki, J.I.: New algorithms for euclidean distance transformation
of an n-dimensional digitized picture with applications. Pattern Recogn. 27(11),
1551–1565 (1994)

9. Shyu, S.J., Chou, T., Chia, T.L.: Distance transformation in parallel. In: Pro-
ceedings of Workshop Combinatorial Mathematics and Computation Theory, pp.
298–304 (2006)

10. Soille, P., Breen, E.J., Jones, R.: Recursive implementation of erosions and dilations
along discrete lines at arbitrary angles. PAMI 18(5), 562–567 (1996)

11. Svolos, A.I., Konstantopoulos, C.G., Kaklamanis, C.: Efficient binary morpholog-
ical algorithms on a massively parallel processor. In: IPDPS, p. 281 (2000)

12. Vincent, L.: Graphs and mathematical morphology. Sig. Proc. 16(4), 365–388
(1989)

	Parallelization Strategy for Elementary Morphological Operators on Graphs
	1 Introduction
	2 Background Notions for Morphology on Graphs
	3 Vertex-Edge and Edge-Vertex Distance Maps
	4 Parallel Algorithm for Distance Maps on Graphs
	5 Parallel Partition and Disjoint Union Algorithms
	6 Conclusion
	References

