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Abstract. We study hierarchies of partitions in a topological space where the interiors of the
classes and their frontiers are simultaneously represented. In both continuous and discrete
spaces our approach rests on tessellations whose classes are R-open sets. In the discrete
case, the passage from partitions to tessellations is expressed by the Alexandrov topology
and yields double resolutions. A new topology is proposed to remove the ambiguities of the
diagonal configurations. It leads to the triangular grid in Z2 and the centered cubic grid in
Z3, which are the only translation invariant grids which preserve connectivity and permit
the use of saliency functions.
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1 Introduction

When a set is partitioned, the frontiers between classes are not explicitly addressed, while the
operations on these frontiers might not trivial. Does the frontier between two classes belong to
one of them, to both, or to none? How does one combine set interiors and frontiers in a unique
representation? This is the focus of the current study.

Fig. 1. a) In a hierarchy, must we firstly connect the “2”s, or the “8”s? Do the frontiers in Figure c) play
the same role as in Figure b)?

When one goes up in a hierarchy of partitions, the frontier elements which disappear are only
those separating classes, e.g. the two medians in Fig.1b, and not the barbs of Fig. 1c. How does
one differentiate between these two cases? An answer is given by the notion of tessellation (section
3).

Preserving connectivity within classes may also be troublesome. How does one merge the squares
of Fig. 1a? Must we firstly link the “2”s, or rather the “8”s ? In 2D, the classical digital approach
focuses on the boundaries, which are usually supposed to be Jordan curves [13,22]. One could also
constructs “well composed set”, whose boundaries have no diagonal configurations [14].

In this study, our intuition is based on the fact that the classes themselves, and not their
boundaries, would provide a more convenient input to the present problem. We will see that
Jordan curves are totally useless in what follows, though the particular structure of the classes
(R-open sets) is crucial.

Image processing rests either on Euclidean background, or on the digital one, but the problem
of the frontiers in a partition is set upstream this distinction, and its solution will apply to both
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continuous and discrete models. In the second case Khalimsky topology is a convenient starting
point, for it identifies Zn with Euclidean n-cubes [1,17]. It involves simplicial complexes which lead
to double resolution techniques [3, 4, 9] (section 5). But it does not preserve connectivity (see Fig.
1a), unlike the topological variant developed in section 6.

2 Lattice of the regular open sets (reminder)

Let E be a set equipped with a (non necessarily separated) topology, and G be the class of its open
sets. G is a complete lattice, but not complemented. Now, the notion of a complement is essential,
and this orients us toward the family R = R(E) of the regular open sets of E. An open set B is
said to be regular, or R-open, when it does not change when one takes its adherence B, and then
one takes the interior of the latter, i.e. B = (B)◦. It is the case of Fig.1b for example, but not of
Fig.1c. 3. The main result about R is the following theorem [6,7, 21]:

Theorem 1. R is a complete lattice for the inclusion ordering, where the supremum and the
infimum are given by

∨Bi = (∪Bi)◦ ; ∧Bi = (∩Bi)◦. (1)

Lattice R is completely distributive and with unique complement

complB = ({B)◦. (2)

Here the symbol { designates the set complement operator. For example, in the two Fig. 4a
and b, the complement of each class is the supremum, in R, of the three other ones.

3 Tessellations

A “tessellation” is a partition of a topological space where both interiors and their boundaries are
classes [25]:

Definition 1. We define a tessellation τ of a topological space E as any family {Bi, i ∈ I} of
disjoint open sets called “classes”:

τ = {Bi, i ∈ I} with i 6= j ⇒ Bi ∩Bj = ∅ (3)

such that the union of all Bi and of all boundaries Fr(Bi, Bj) = Bi ∩Bj covers the space E:

E = ∪{Bi, i ∈ I} ∪ {Bi ∩Bj , i, j ∈ E, i 6= j}, (4)

We will designate by N (N for “net”) the set ∪{Bi ∩ Bj , i, j ∈ E, i 6= j} of all boundaries
between classes.

3.1 Tessellations and R open sets

In what follows, S = (B)◦ designates the R-open transform of the open set B ∈ G(E). The
operation B → S = (B)◦ is an algebraic closing on the set G of the open sets of E, and the image
of G is R. For example, if we take Fig. 1c for B, we obtain Fig. 1b for transform S. This closing
means that S is the smallest R-open set that contains B. Indeed, if another R-open S′ contains
B, then S′ = (S′)◦ ⊇ (B)◦ = S. Note that

S = (B)◦ ⇒ S ⊇ B and S = B. B ∈ G (5)
3 In mathematical morphology, the three major bibliographic sources come from G. Matheron, Ch. Ronse,
and H. Heijmans. The notion of an R-open (closed) set recurrently appears in Matheron works, from
1969 until 1996. In [16], p.156-157, he builds a σ-algebra of regular closed sets and proves a series of
characteristic properties; in [15] he associates a random set to every pair (A◦, A), A ∈ P(E); in [23]
he interprets the regularization operator as a strong morphological filter, and gives a middle element
between (A)◦ and (A◦)◦. For his part, Ch. Ronse shows in [21] that any complete boolean lattice is
isomorphic to a lattice of regular open sets, and indicates as a watermark that the associated topology
is Alexandrov.
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Besides, the set difference ∆ = S\B between S and B coincides with the difference between
the boundaries Fr(B) and Fr(S):

∆ = S\B ⇔ Fr(S) = Fr(B)\∆, (6)

and the frontier of B contains that of S.
The open sets of a tessellation cannot admit lacunae or fissures of empty interior, which makes

the tessellation impossible. Thus the convenient class to consider are that of the R-open sets.
Indeed,

Theorem 2. All classes Bi of any tessellation τ = {Bi, i ∈ I} are necessarily R-open.

Proof. We prove the theorem in the negative, by showing that if Bi 6= (Bi)◦ = Si, then the Bi do
not generate a tessellation. We firstly observe that the Bi are disjoint iff the corresponding R-open
sets Si are disjoint. We have

Bi ∩Bj = ∅ ⇔ Bi ∩Bj = ∅ ⇒ Bi ∩ (Bj)◦ = ∅ = Bi ∩ Sj ⇒ Si ∩ Sj = ∅

as well as the inverse implication, since Si⊇ Bi,∀i. Besides, we have, from Rel. (5), ∪{Bi ∩
Bj , i, j ∈, i 6= j} = ∪{Si ∩ Sj , i, j ∈, i 6= j} so that the Si form a tessellation of E. If there exists
one Bi at least which is strictly included in Si then z ∈ Si \Bi does not belong to any Bi or to any
boundaryBi ∩Bj since Si is open. Therefore the Bi do not cover set E, which achieves the proof.

All in all, just as a partition of E is a family in P(E) whose each element is the complement
of the union of all the others, a tessellation of E is a family in R(E) whose each element is the
complement of the supremum of all the others, both complement and supremum being taken in
R. ut

The algebraic closing B → S = (B)◦ fills up the fine fissure, isthmuses and the point lacunae of
B. However, some separations, too narrow, may not be filled up. Take for example, B composed of
two disjoint open squares of R2 whose adherence share one vertex only, then the adherence B1 ∪B2
joins the two squares, but the interior (B1 ∪B2)◦ separates them again.

In the literature, an example of tessellation is given by the clefts in the perfect fusion graphs
of J. Cousty and G. Bertrand [2]. Theorem 2 reminds us of Jordan’s one, though it is true in any
topological space, and it does not focus on the frontiers, but on the classes. In R2 every Jordan
curve induces a tessellation [9], but a tessellation into two open classes, even connected, can have
a frontier which is not a Jordan curve. Fig. 4b depicts a digital contour which separates R-open
sets and which is thick. Note also that connectivity is not involved in the above theorem, whereas
it is essential in Jordan’s one.

3.2 Structure of the tessellations

We now introduce a minimal tessellation τ0 of the space E . The classes {si} of τ0 are called “the
leaves”, and are supposed in locally finite number. These leaves are indivisible R-open sets, i.e.
each class of a larger tessellation contains one leave at least and is disjoint from those that it does
not contain. The family T of all tessellations of E is obviously ordered by the following relation :

τ ≤ τ ′ ⇔ S(x) ⊆ S′(x) x ∈ τ0 τ, τ
′ ∈ T (7)

where S(x) (resp. S′(x)) is the class of τ (resp. τ ′) at point x. This ordering provides T with the
structure of a complete lattice. More precisely, consider a set P of labels and the family {τp, p ∈ P}:

Proposition 1. The set T of all tessellations τ ≥ τ0 of E forms a complete lattice for the ordering
of Rel.(7), with universal elements τ0 and E. The infimum of family {τp, p ∈ P, τp ≥ τ0} is the
tessellation whose class at point x is the infimum, in R, of the classes of the τp at point x, and the
supremum is the smallest tessellation whose classes are suprema of the classes of the τp in R.
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Proof. Let x and y be two classes of τ0, and Sp(x) (resp. Sp(y)) be the class of τp at point x (resp.
y). We have to prove that {[∩Sp(x)]◦, x ∈ τ0} is a tessellation. If so, then this tessellation will be
the greatest lower bound of the τp, since on cannot find at point x an R-open class greater than
[∩Sp(x)]◦ and which is included in all Sp(x).

The point y ∈ Sp(x) iff x ∈ Sp(y); therefore, if y ∈ [∩Sp(x)] then [∩Sp(x)] = [∩Sp(y)] and
the two R-infima [∩Sp(x)]◦ and [∩Sp(y)]◦ are equal. If for some p the two sets Sp(x) and Sp(y)
are disjoint, then a fortiori the R-infima [∩Sp(x)]◦ and [∩Sp(y)]◦are also disjoint. Finally, as
∪{x, x ∈ τ0} ⊆ ∪{[∩Sp(x)]◦, x ∈ τ0}, and as ∪{x, x ∈ τ0} = E, the family {[∩Sp(x)]◦, x ∈ τ0}
turns out to be a tessellation of E, and T is a complete inf-semi Lattice. But in addition T admits
a greatest element, namely E itself, so that T is a complete lattice, which achieves the proof. ut

3.3 Hierarchies of tessellations

The tessellations met in image processing often form hierarchies, i.e. totally ordered closed se-
quences starting from the leaves and ending at E itself, considered as an R-open class.

One cannot merge the classes of a tessellation τ of the hierarchy by performing a simple union
of their leaves, since the frontiers between adjacent leaves (i.e. with non-empty intersection of the
adherences) would neither belong to classes, nor to the background net N which separates the
classes. We must find out another law of composition. Consider a partition the totality of the
leaves into J sub-sets B1, ..Bj , ..BJ , then

Proposition 2. The unique tessellation whose each class includes exactly one Bj, 1 ≤ j ≤ J has
the R-open sets Sj = (Bj)◦, 1 ≤ j ≤ J as classes.

Proof. Theorem 2 shows that we must replace each Bj with its R-open version Sj for finding again
a tessellation. Moreover, there is no tessellation {S′j} which keeps disjoint the family {Sj} and such
that S′j ⊃ Sj ∀j. Such a strict inclusion would mean that one could find an open set containing
x ∈ Fr(Sj) ∩ S′j , such that S′j is not disjoint from S′i, which is impossible. ut

The supremum and the infimum of a family of classes are those involved in the lattice R of the
R-open sets. Consequently, in a hierarchy of tessellations, every point of the net N is absorbed by
a class, sooner or later.

4 Connected classes and saliency function

Connectivity does not intervene in the paradigm of the hierarchies of tessellations. However the
leaves are often connected, and the question of preserving the connectivity of the classes arises.
Now this requirement is not always possible, neither in Euclidean topologies, nor in digital ones.
Even when the leaves {si} are connected, the R-open sets Sj = (Bj)◦ of Prop. 2 may be not
connected. One can also think of the example of the two open squares of R2 whose adherences
have only one point in common. They are connected, regular, their adherence is connected, but
their union, though regular, is again not connected.

To overcome this issue, we have to specify the nature of topological space E, which is for
now supposed to be locally arcwise connected, i.e. where the arcwise-connected components of an
open set are open. Furthermore, we say that a pair of two regular sets Si and Sj of E is strongly
connected when the sets are adjacent (i.e. the intersection of their adherences is not empty) and
when one can find a point x in their common frontier which is included in a small neighborhood
δ(x) which itself is included in the union of their adherences,i.e.

Si ∩ Sj = ∅ and ∃x ∈ Si ∩ Sj | x ∈ δ(x) ⊆ Si ∪ Sj . (8)

Hierarchies of tessellations require this strong adjacency to transmit the connectivity from the
leaves to their clusters into classes:

Theorem 3. let E be a locally arcwise connected set, and τ0 be a tessellation of E into R-open
connected leaves {si, i ∈ I} where every adjacent pair is strongly adjacency (8). The R-supremum
of any finite sequence {sk, 1 ≤ k ≤ n} of leaves is then connected.
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Fig. 2. The space E is the 10 points of Z. The saliency function {x, y, z} does not detect the non connected
class (in black) which appears at level 3 of this hierarchy.

Proof. Let S = ∨{sk, 1 ≤ k ≤ n} be the R-supremum of the family. From Prop. 2, S is the union
of the {sk} and of the boundaries between pairs {sk, sl}. Consider two strongly adjacent leaves
{sk, sl}. By strong adjacency, there exists a point x of the boundary sk∩sl which has a neighborhood
δ(x) ⊆ sk ∪ sl. As E is locally arcwise connected, there exists also a connected neighborhood
δ′ ⊆ δ(x) which thus contains points of sk and of sl. Therefore the union sk ∪ sl ∪ Fr(sk, sl) is
arcwise connected, and so is S, which achieves the proof. ut

In particular, the usual spaces Rn and Zn are locally arcwise connected. Note that a same
leave may appear several times in the sequence {sp, 1 ≤ p ≤ n}. When a hierarchy H with n
levels τp, 1 ≤ p ≤ n of tessellations satisfies the conditions of Theorem 3 then one can allocate a
numerical value to each point of the net N0 of the frontiers between the leaves of H. This function
on N0, s say, indicates the level when the frontier element adjacent between two classes vanishes,
and the classes merge.

This is nothing but the classical saliency function [19], here generalized, and without assuming
that the boundaries are Jordan curves (in the case of R2). When the conditions of Theorem 3 are
not satisfied, as in Fig. 1a, the saliency function may be undefined at some crucial points. Finally,
when the classes are possibly not connected, the saliency function may no longer summarizes
exhaustively the hierarchy, as shown in Fig. 2.

5 Tessellations of Zn and Khalimsky spaces

The notion of a tessellation rests on R-open sets, and to apply it to Zn, we first need to provide a
topology to this space.

5.1 Reminder on Khalimsky topology

E. Khalimsky topology clearly shows the analogies between the tessellations of Rn and those of
Zn. It was published in Russian in the sixties, but it is better known by more recent papers in
English [8]. It is just sketched here, but the reader will find a more detailed presentation in papers
by E. Melin [18], L. Mazo et Al. [17], and the lecture notes of Ch. Kiselman [11].

In 1937, P.S. Alexandrov introduced topological spaces E with smallest neighborhood (in short
sn-topology), where it is assumed that the class of the open sets is closed under intersection [20].
Khalimsky topology belongs to this category. In R, it associates the open interval ]m− 1

2 ,m
′ + 1

2 [
with every pair m ≤ m′ of odd integers, and the closed interval [n − 1

2 , n
′ + 1

2 ] with every pair
n ≤ n′of even integers. The unions of open (resp. closed) intervals generate a non separated sn-
topology. When m = m′ and n = n′ then R is partitioned into unit intervals, and is thus connected.
The product topology of n Khalimsky lines generates the topology in Rn. When all coordinates of
their centers are odd (resp. even), then the n-cubes are open (resp.closed), and the others n-cubes
are said to be mixed.

In R2 the Kovalevsky cells provide an equivalent approach, which allow us to display these
topologies [12]. This structure is akin to the simplicial complexes [1], to fusion grids [2] and to the
planar graphs.
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According to Theorem 2, in a Khalimsky space the tessellations areR-open sets, which simplifies
the basic elements. In Z2 for example, the isolated points and the pending edges are removed. The
background netN is made of loops contouring the classes and where open edges and points alternate
(see Fig. 3).

Fig. 3. Simple resolution: a) two classes of a partition of Z2. Double resolution: b) Khaminsky closure of
the first class of Fig.a; c) regular open versions of the two classes; d) corresponding tessellation (in black,
the net between classes).

5.2 Khalimsky digital tessellations

The use of Khalimsky topology in digital image processing is classical [17, 18]. In this section we
indicate its links with the R-open sets and tessellations, and we show that this topology does not
solve the question of the diagonal configurations.

Khalimsky topology on Z is obtained by identifying each unit interval of R with the corre-
sponding integer. The open intervals are obtained in the same manner from ]m− 1

2 ,m
′+ 1

2 [ where
m and m′ are odd and m ≤ m′. In this topology Z is connected. The extension to Zn is made as
previously with Rn.

Interpret the points of a set X ⊆ Z2 as points of odd coordinates in a Khalimsky plane K2 which
contains twice more points by line and twice more lines [3,4,9]. In Kovalevsky representation, the
initial points of X ⊆ Z2 become squares and the additional points become segments and points,
as depicted in Fig. 3b. The adherence X → X is the union of the adherences of its basic elements,
and the interior X → (X)◦ is the complement of the adherence of the complement set. Fig. 3b
depicts the step X → X for one class of X, and Fig. 3c X → (X)◦ depicts the construction of
the regularized version (X)◦. The two classes of tessellation (X)◦ are separated by the net in bold
of Fig. 3d. In the double resolution plane K2, all points of the background have odd coordinates.
This example illustrates the following property:

Proposition 3. Let Kn be the Khalimsky space of n dimensions and Zn be the sub-space formed
by the points of Kn whose all coordinates are odd. Every partition π of Zn induces in Kn a unique
tessellation τ whose each class contains one class of π, and the correspondence between π and τ is
biunivocal.

Proof. When Zn is embedded in Kn, each class Bi of π becomes open, since all its coordinates are
odd. Replace all Bi by their regularized versions Si = (Bi)◦, and let z be a point of Kn which does
not belongs to any class, i.e. z ∈ [∪ Si]c. Point z, which has one even coordinate at least, is the
center of a unit cube which meets two classes Si at least, which amounts to say that the Si cover
the space. Thus the family{Si} forms a tessellation of Kn. Conversely, let τ be a tessellation of
Kn. Those points whose all coordinates are odd lie necessarily in some classes, as they are open,
therefore the inverse passage to Zn forms a partition.
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This proposition theoretically justifies the classical rule of the double sampling [3, 4, 10]. The
fine mesh displays the net of the contours, which are topologically closed in Rn as in Kn, and which
envelop the connected open sets. The odd points of Kn, i.e. the unit open cubes play exactly the
same role as the leaves in a hierarchy. But the topology of Kn does not remove the ambiguity of
the diagonals, as shown in Fig.1a. We must introduce another topology.

6 Tessellations of Z2 and Z3 by Voronoi polyhedra

Let X ⊆ Rn be a locally finite set of centers. One can always associate with each center x ∈ X
the so-called Voronoi polyhedron Q(x) of all points y ∈ Rn closer to x than to any other center.
Q(x) is convex and open, hence regular, so that the set {Q(x), x ∈ X} of all Voronoi polyhedra
generates a tessellation of Rn. In particular in R, when the centers are the points m of odd integer
abscissae m, the corresponding Voronoi polyhedron is ]m − 1,m + 1[. We find again Khalimsky
topology.

Let H3 represent the truncated octahedron. Let us come back to Rn and impose the following
two conditions to the Voronoi polyhedra:

1. they must be identical, up to a translation (i.e. regular grid);
2. the adherences of two adjacent polyhedra always have a common face of n-1 dimension.

Concerning the first constraint, the mineralogist E.S. Fedorov proved that there are only two
solutions in R2, the square and the hexagon, and five in R3, the cube, the hexagonal prism, the
truncated octahedron, and the two elongated and rhombic dodecahedra [5].

The second condition imposes strong adjacencies, thus preserves connectivity, according to
Theorem 3. This condition reduces Fedorov possibilities to the only hexagon in the plane, and
only truncated octahedron in the space. In the 2-D case the centers describe the triangular grid,
in the 3-D case the centered cubic grid [24] (see Fig. 5a). If we are not interested in preserving
connectivity, this second condition becomes cumbersome.

6.1 Hexagonal tessellation of Z2

In spite of its advantages the hexagonal grid is not often used (though it recently re-appeared
about the simplicial complexes for digital watersheds [3]). Consider in R2 three axes of coordinates
at 120◦, and the origin O. Take for centers all points of the plane whose coordinates are odd on
each of the three axes. The associated Voronoi polygons are open hexagons. The other open sets
are obtained by unions of these hexagons plus the edges adjacent between them. They result in a
sn-topology where the triple points are closed. In Fig. 4b the previous squares and hexagons are
replaced by the unique symbol of big discs, which indicate the pixels of X ⊆ Z2, and the small
points are added to give the (X)◦. The asterisks indicate the net of the frontiers of the tessellation
in the double resolution. By comparison with Khalimsky tessellation in square grid (Fig. 4a) two
major differences appear. On the one hand, the frontiers are no longer Jordan arcs (clusters of
pixels in the hexagonal grid),and on the other hand the ambiguous diagonal were removed by
suppression of the quadruples points. If Fig. 4b is interpreted as the leaves of a hierarchy, a unique
value is allocated to each crossing point, namely that of the level when North-East and South-West
classes merge.

6.2 Tessellation of Z3 by truncated octahedra

The Voronoi polyhedra of the centered cubic grid are the truncated octahedra depicted in Fig.
5. They partition R3 in open polyhedra, square and hexagonal faces, triple edges and quadruple
vertices. These elements generate a sn-topology. The regularization fills up the internal 1-D or 2-D
fissures of zero thickness, and the background net is a connected union of faces and edges which
completely envelops the classes.

In the digital version, the double resolution rule for inducing a tessellation is indicated in Fig.
5. One starts from three horizontal planes of the cubic grid containing the vertices of the unit cube
(n◦ 1 and 5 in the Fig.), and the center (n◦ 3). The planes n◦ 2 and 4 are added for generating a
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Fig. 4. Square versus hexagonal tessellation. The big discs are the elementary open sets; the unions of big
and small discs form the regular open sets the small discs represent the segments and the points (square
grid); and the contours with segments and asterisks delineate the background net. In the hexagonal case
the quadruple point vanishes (thus its inherent ambiguity), but the background is no longer threadlike
(small triangles).

Fig. 5. Left: Truncated octahedron and centered cubic grid. Center : Partition the space. Right: Top-down
sections of the truncated octahedron. The big points are the open truncated octahedric cells of Z3, the
small points and the rings are the points added to make H3. The regularization is obtained by union of
big and small voxels.

centered cubic grid twice finer. In the three directions of the cube and the four ones of the main
diagonals alternate points of Z3 with those added for forming the double resolution space.

Again the tessellation reduces the cells to the two types of the (open) truncated octahedra, and
the (closed) square or hexagonal faces, i.e. something that can be described in terms of graphs.
If the first elements are displayed by points and the second by asterisks, like in Fig. 4 in 2-D,
and if we connect the asterisks which share an edge, then each class turns out to be a cluster of
points completely surrounded by a net of asterisks. In practice, the centered cubic grid can easily
be emulated by shifting horizontally the even planes by the vector (1, 1, 0).

7 Conclusion

In this paper, we characterized the partitions whose interiors and frontiers of the classes are jointly
represented. They are the tessellations, consist of R-open sets. No conditions like to be Jordan
curves (in 2D) hold on the frontiers, which can have a certain thickness. The theory applies to
both Euclidean and digital spaces, which gives more soundness to the numerical techniques. It
was shown in detail how the notions of tessellation, Alexandrov topology, and double resolution
interact. In digitizing a partition we make use of the double resolution.

For Z3 we proposed a variant of Khalimsky topology which suppresses the ambiguities of the
diagonal configurations, it is based on the truncated octahedra, that is the regular vornoi polyhedra
of the centerd-cubic grid.

Finally, it would be interesting to consider other alegraic closing operations, since they would
also treat the classes and their frontiers in a unique representation.
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