Skip to main content

Parallel Mechanisms

  • Chapter
  • First Online:

Part of the book series: Springer Handbooks ((SHB))

Abstract

This chapter presents an introduction to the kinematics and dynamics of parallel mechanisms, also referred to as parallel robots. As opposed to classical serial manipulators, the kinematic architecture of parallel robots includes closed-loop kinematic chains. As a consequence, their analysis differs considerably from that of their serial counterparts. This chapter aims at presenting the fundamental formulations and techniques used in their analysis.

figure a

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

3-D:

three-dimensional

CCT:

conservative congruence transformation

DOF:

degree of freedom

References

  1. J.E. Gwinnett: Amusement device, US Patent 1789680 (1931)

    Google Scholar 

  2. V.E. Gough: Contribution to discussion of papers on research in automobile stability, control and tyre performance, 1956--1957. Proc. Auto Div. Inst. Mech. Eng. (1956)

    Google Scholar 

  3. D. Stewart: A platform with 6 degrees of freedom, Proc. Inst. Mech. Eng. Part 1 15 (1965) pp. 371–386

    Google Scholar 

  4. I.A. Bonev: The true origins of parallel robots, http://www.parallemic.org/Reviews/Review007.html (2003)

  5. S. Briot, I.A. Bonev: Are parallel robots more accurate than serial robots?, CSME Transactions 31(4), 445–456 (2007)

    MATH  Google Scholar 

  6. G. Aridon, D. Rémond, F. Morestin, L. Blanchard, R. Dufour: Self-deployment of a tape-spring hexapod: experimental and numerical investigation, ASME J. Mech. Des. 131(2), 0210031–0210037 (2009)

    Google Scholar 

  7. M. Hafez, M.D. Lichter, S. Dubowsky: Optimized binary modular reconfigurable robotic devices, IEEE Trans. Mechatron. 8(1), 152–162 (2003)

    Google Scholar 

  8. J. Albus, R. Bostelman, N. Dagalakis: The NIST robocrane, J. Robotic Syst. 10(5), 709–724 (1993)

    Google Scholar 

  9. R. Clavel: DELTA, a fast robot with parallel geometry, 18th Int. Symp.Ind. Robots (ISIR), Lausanne (1988) pp. 91–100

    Google Scholar 

  10. K.H. Hunt: Structural kinematics of in parallel actuated robot arms, J. Mech. Transm. Autom. Des. 105(4), 705–712 (1983)

    Google Scholar 

  11. K.E. Neumann: Robot: Neos Product HB Norrtalje Suède. US Patent 4732525, (1988)

    Google Scholar 

  12. Q. Li, J.M. Hervè: Parallel mechanisms with bifurcation of Schoenflies motion, IEEE Trans. Robotics 25(1), 158–164 (2009)

    Google Scholar 

  13. J.M. Hervé: Group mathematics and parallel link mechanisms, 9th IFToMM World Congr.TheoryMach.Mech., Milan (1995) pp. 2079–2082

    Google Scholar 

  14. C.-C. Lee, J.M. Hervè: Type synthesis of primitive Schönflies-motion generators, Mech.Mach. Theory 44(10), 1980–1997 (2009)

    MATH  Google Scholar 

  15. J. Meng, G.F. Liu, Z. Li: A geometric theory for analysis and synthesis of sub-6 DOF parallel manipulators, IEEE Trans. Robotics 23(4), 625–649 (2007)

    Google Scholar 

  16. X. Kong, C.M. Gosselin: Type Synthesis of Parallel Mechanisms, Springer Tracts in Advanced Robotics, Vol. 33 (Springer, Berlin, Heidelberg 2007)

    MATH  Google Scholar 

  17. J.P. Merlet: http://www.sop.inria.fr/members/Jean-Pierre.Merlet//Archi/archi_robot.html (INRIA, France)

  18. F. Pierrot, V. Nabat, O. Company, S. Krut, P. Poignet: Optimal design of a 4-DOF parallel manipulator: From academia to industry, IEEE Trans.Robotics 25(2), 213–224 (2009)

    Google Scholar 

  19. C. Gosselin, T. Lalibertè, A. Veillette: Singularity-free kinematically redundant planar parallel mechanisms with unlimited rotational capability, IEEE Trans. Robotics 31(2), 457–467 (2015)

    Google Scholar 

  20. G. Gogu: Structural Synthesis of Parallel Robots (Kluwer, Dordrecht 2007)

    MATH  Google Scholar 

  21. P. Dietmaier: The Stewart Gough platform of general geometry can have 40 real postures. In: Advances in Robot Kinematics: AnalysisControl, ed. by J. Lenarčič, M.L. Husty (Kluwer, Dordrecht 1998) pp. 7–16

    Google Scholar 

  22. M.L. Husty: An algorithm for solving the direct kinematic of Stewart Gough-type platforms, Mech.Mach. Theory 31(4), 365–380 (1996)

    Google Scholar 

  23. M. Raghavan: The Stewart platform of general geometry has 40 configurations, ASME J. Mech. Des. 115(2), 277–282 (1993)

    Google Scholar 

  24. J.C. Faugère, D. Lazard: The combinatorial classes of parallel manipulators, Mech.Mach. Theory 30(6), 765–776 (1995)

    Google Scholar 

  25. T.-Y. Lee, J.-K. Shim: Improved dyalitic elimination algorithm for the forward kinematics of the general Stewart Gough platform, Mech.Mach. Theory 38(6), 563–577 (2003)

    MATH  Google Scholar 

  26. F. Rouillier: Real roots counting for some robotics problems. In: Computational Kinematics, ed. by J.-P. Merlet, B. Ravani (Kluwer, Dordrecht 1995) pp. 73–82

    Google Scholar 

  27. J.-P. Merlet: Solving the forward kinematics of a Gough-type parallel manipulator with interval analysis, Int. J. Robotics Res. 23(3), 221–236 (2004)

    Google Scholar 

  28. D. Manocha: Algebraic and Numeric Techniques for Modeling and Robotics, Ph.D. Thesis (University of California, Berkeley 1992)

    Google Scholar 

  29. A.J. Sommese, C.W. Wampler: The Numerical Solution of Systems of Polynomials: Arising in Engineering And Science (World Scientific, Singapore 2005)

    MATH  Google Scholar 

  30. C. Gosselin, J. Sefrioui, M.J. Richard: Solution polynomiale au problème de la cinématique directe des manipulateurs parallèles plans à 3 degrés de liberté, Mech.Mach. Theory 27(2), 107–119 (1992)

    Google Scholar 

  31. P. Wenger, D. Chablat, M. Zein: Degeneracy study of the forward kinematics of planar $3-R\underline{P}R$ parallel manipulators, ASME J. Mech. Des. 129(12), 1265–1268 (2007)

    Google Scholar 

  32. L. Baron, J. Angeles: The direct kinematics of parallel manipulators under joint-sensor redundancy, IEEE Trans.RoboticsAutom. 16(1), 12–19 (2000)

    MATH  Google Scholar 

  33. J.-P. Merlet: Closed-form resolution of the direct kinematics of parallel manipulators using extra sensors data, IEEE Int. Conf.RoboticsAutom. (ICRA), Atlanta (1993) pp. 200–204

    Google Scholar 

  34. R. Vertechy, V. Parenti-Castelli: Robust, fast and accurate solution of the direct position analysis of parallel manipulators by using extra-sensors. In: Parallel Manipulators: Towards New Applications, ed. by H. Wu (InTech, Rijeka 2008) pp. 133–154

    Google Scholar 

  35. R. Stoughton, T. Arai: Kinematic optimization of a chopsticks-type micro-manipulator, Jpn. Symp.Flex. Autom., San Fransisco (1993) pp. 151–157

    Google Scholar 

  36. J.-P. Merlet, D. Daney: Dimensional synthesis of parallel robots with a guaranteed given accuracy over a specific workspace, IEEE Int. Conf.RoboticsAutom. (ICRA), Barcelona (2005)

    Google Scholar 

  37. J.-P. Merlet: Jacobian, manipulability, condition number, and accuracy of parallel robots, ASME J. Mech. Des. 128(1), 199–206 (2006)

    Google Scholar 

  38. F.-T. Niaritsiry, N. Fazenda, R. Clavel: Study of the source of inaccuracy of a 3 DOF flexure hinge-based parallel manipulator, IEEE Int. Conf.RoboticsAutom. (ICRA), New Orleans (2004) pp. 4091–4096

    Google Scholar 

  39. G. Pritschow, C. Eppler, T. Garber: Influence of the dynamic stiffness on the accuracy of PKM, 3rd Chemnitzer Parallelkinematik Semin. Chemnitz (2002) pp. 313–333

    Google Scholar 

  40. V. Parenti-Castelli, S. Venanzi: On the joint clearance effects in serial and parallel manipulators, WorkshopFundam. IssuesFuture Res. Dir.Parallel Mech.Manip. Québec (2002) pp. 215–223

    Google Scholar 

  41. A. Pott, M. Hiller: A new approach to error analysis in parallel kinematic structures, Adv. Robot Kinemat., Sestri-Levante (2004)

    Google Scholar 

  42. K. Wohlhart: Degrees of shakiness, Mech.Mach. Theory 34(7), 1103–1126 (1999)

    MATH  Google Scholar 

  43. K. Tönshoff, B. Denkena, G. Günther, H.C. Möhring: Modelling of error effects on the new hybrid kinematic DUMBO structure, 3rd Chemnitzer Parallelkinematik Semin. Chemnitz (2002) pp. 639–653

    Google Scholar 

  44. U. Sellgren: Modeling of mechanical interfaces in a systems context, Int. ANSYS Conf., Pittsburgh (2002)

    Google Scholar 

  45. S. Eastwood, P. Webbb: Compensation of thermal deformation of a hybrid parallel kinematic machine, RoboticsComput. Manuf. 25(1), 81–90 (2009)

    Google Scholar 

  46. W. Khalil, S. Besnard: Identificable parameters for the geometric calibration of parallel robots, Arch.Control Sci. 11(3/4), 263–277 (2001)

    MathSciNet  MATH  Google Scholar 

  47. C.W. Wampler, J.M. Hollerbach, T. Arai: An implicit loop method for kinematic calibration and its application to closed-chain mechanisms, IEEE Trans.RoboticsAutom. 11(5), 710–724 (1995)

    Google Scholar 

  48. D. Daney, Y. Papegay, A. Neumaier: Interval methods for certification of the kinematic calibration of parallel robots, IEEE Int. Conf.RoboticsAutom. (ICRA), New Orleans (2004) pp. 1913–1918

    Google Scholar 

  49. D. Daney, N. Andreff, G. Chabert, Y. Papegay: Interval method for calibration of parallel robots: a vision-based experimentation, Mech.Mach. Theory 41(8), 929–944 (2006)

    MATH  Google Scholar 

  50. A. Nahvi, J.M. Hollerbach: The noise amplification index for optimal pose selection in robot calibration, IEEE Int. Conf.RoboticsAutom. (ICRA), Minneapolis (1996) pp. 647–654

    Google Scholar 

  51. G. Meng, L. Tiemin, Y. Wensheng: Calibration method and experiment of Stewart platform using a laser tracker, Int. ConfSyst. ManCybern., Hague (2003) pp. 2797–2802

    Google Scholar 

  52. D. Daney: Optimal measurement configurations for Gough platform calibration, IEEE Int. Conf.RoboticsAutom. (ICRA), Washington (2002) pp. 147–152

    Google Scholar 

  53. P. Renaud, N. Andreff, P. Martinet, G. Gogu: Kinematic calibration of parallel mechanisms: A novel approach using legs observation, IEEE Trans. Robotics 21(4), 529–538 (2005)

    Google Scholar 

  54. C. Gosselin, J. Angeles: Singularity analysis of closed-loop kinematic chains, IEEE Trans.RoboticsAutom. 6(3), 281–290 (1990)

    Google Scholar 

  55. D. Zlatanov, R.G. Fenton, B. Benhabib: A unifying framework for classification and interpretation of mechanism singularities, ASME J. Mech. Des. 117(4), 566–572 (1995)

    Google Scholar 

  56. D. Zlatanov, I.A. Bonev, C.M. Gosselin: Constraint singularities of parallel mechanisms, IEEE Int. Conf.RoboticsAutom. (ICRA), Washington (2002) pp. 496–502

    Google Scholar 

  57. M. Conconi, M. Carricato: A new assessment of singularities of parallel kinematic chains, IEEE Trans. Robotics 25(4), 757–770 (2009)

    Google Scholar 

  58. G. Liu, Y. Lou, Z. Li: Singularities of parallel manipulators: A geometric treatment, IEEE Trans. RoboticsAutom. 19(4), 579–594 (2003)

    Google Scholar 

  59. I.A. Bonev, D. Zlatanov: The mystery of the singular SNUtranslational parallel robot, http://www.parallemic.org/Reviews/Review004.html (2001)

  60. H. Li, C.M. Gosselin, M.J. Richard, B. Mayer St-Onge: Analytic form of the six-dimensional singularity locus of the general Gough-Stewart platform, ASME J. Mech. Des. 128(1), 279–287 (2006)

    Google Scholar 

  61. B. Mayer St-Onge, C.M. Gosselin: Singularity analysis and representation of the general Gough-Stewart platform, Int. J. Robotics Res. 19(3), 271–288 (2000)

    Google Scholar 

  62. J.-P. Merlet: Singular configurations of parallel manipulators and Grassmann geometry, Int. J. Robotics Res. 8(5), 45–56 (1989)

    Google Scholar 

  63. R. Ben-Horin, M. Shoham: Application of Grassmann Cayley algebra to geometrical interpretation of parallel robot singularities, Int. J. Robotics Res. 28(1), 127–141 (2009)

    Google Scholar 

  64. H. Pottmann, M. Peternell, B. Ravani: Approximation in line space. Applications in robot kinematics, Adv. Robot Kinemat., Strobl (1998) pp. 403–412

    MATH  Google Scholar 

  65. P.A. Voglewede, I. Ebert-Uphoff: Measuring closeness to singularities for parallel manipulators, IEEE Int. Conf.RoboticsAutom. (ICRA), New Orleans (2004) pp. 4539–4544

    Google Scholar 

  66. G. Nawratil: New performance indices for 6-DOF UPS and 3-DOF RPR parallel manipulators, Mech.Mach. Theory 44(1), 208–221 (2009)

    MATH  Google Scholar 

  67. J. Hubert, J.-P. Merlet: Static of parallel manipulators and closeness to singularity, J. Mech.Robotics 1(1), 1–6 (2009)

    Google Scholar 

  68. P. Cardou, S. Bouchard, C. Gosselin: Kinematic-sensitivity indices for dimensionally nonhomogeneous jacobian matrices, IEEE Trans. Robotics 26(1), 166–173 (2010)

    Google Scholar 

  69. J.-P. Merlet, D. Daney: A formal-numerical approach to determine the presence of singularity within the workspace of a parallel robot. In: Computational Kinematics, ed. by F.C. Park, C.C. Iurascu (EJCK, Seoul 2001) pp. 167–176

    Google Scholar 

  70. S. Bhattacharya, H. Hatwal, A. Ghosh: Comparison of an exact and an approximate method of singularity avoidance in platform type parallel manipulators, Mech.Mach. Theory 33(7), 965–974 (1998)

    MATH  Google Scholar 

  71. D.N. Nenchev, M. Uchiyama: Singularity-consistent path planning and control of parallel robot motion through instantaneous-self-motion type, IEEE Int. Conf.RoboticsAutom. (ICRA), Minneapolis (1996) pp. 1864–1870

    Google Scholar 

  72. C. Innocenti, V. Parenti-Castelli: Singularity-free evolution from one configuration to another in serial and fully-parallel manipulators, 22nd Bienn. Mech. Conf., Scottsdale (1992) pp. 553–560

    Google Scholar 

  73. M. Husty: Non-singular assembly mode change in 3-RPR parallel manipulators. In: Computational Kinematics, ed. by A. Kecskeméthy, A. Müller (Springer, Berlin, Heidelberg 2009) pp. 51–60

    Google Scholar 

  74. S. Caro, P. Wenger, D. Chablat: Non-singular assembly mode changing trajectories of a 6-DOF parallel robot, ASME Int. Des. Eng. Techn. Conf. Comput. Inform. Eng. Conf., Chicago (2012)

    Google Scholar 

  75. R. Ranganath, P.S. Nair, T.S. Mruthyunjaya, A. Ghosal: A force-torque sensor based on a Stewart platform in a near-singular configuration, Mech.Mach. Theory 39(9), 971–998 (2004)

    MATH  Google Scholar 

  76. M.L. Husty, A. Karger: Architecture singular parallel manipulators and their self-motions. In: Adv.Robot Kinematics: AnalysisControl, ed. by J. Lenarčič, M.L. Husty (Springer, Dordrecht 2000) pp. 355–364

    Google Scholar 

  77. A. Karger: Architecture singular planar parallel manipulators, Mech.Mach. Theory 38(11), 1149–1164 (2003)

    MATH  Google Scholar 

  78. K. Wohlhart: Mobile 6-SPS parallel manipulators, J. Robotic Syst. 20(8), 509–516 (2003)

    MATH  Google Scholar 

  79. C. Innocenti, V. Parenti-Castelli: Direct kinematics of the 6-4 fully parallel manipulator with position and orientation uncoupled, Eur. RoboticsIntell. Syst. Conf., Corfou (1991)

    Google Scholar 

  80. G. Gogu: Mobility of mechanisms: A critical review, Mech.Mach. Theory 40(10), 1068–1097 (2005)

    MathSciNet  MATH  Google Scholar 

  81. I. Zabalza, J. Ros, J.J. Gil, J.M. Pintor, J.M. Jimenez: Tri-Scott a new kinematic structure for a 6-DOF decoupled parallel manipulator, WorkshopFundam. IssuesFuture Res. Dir.Parallel Mech.Manip., Québec (2002) pp. 12–15

    Google Scholar 

  82. C. Gosselin: Determination of the workspace of 6-DOF parallel manipulators, ASME J. Mech. Des. 11(3), 331–336 (1990)

    Google Scholar 

  83. J.-P. Merlet: Geometrical determination of the workspace of a constrained parallel manipulator, Adv. Robot Kinemat., Ferrare (1992) pp. 326–329

    Google Scholar 

  84. F.A. Adkins, E.J. Haug: Operational envelope of a spatial Stewart platform, ASME J. Mech. Des. 119(2), 330–332 (1997)

    Google Scholar 

  85. E.J. Haugh, F.A. Adkins, C.M. Luh: Operational envelopes for working bodies of mechanisms and manipulators, ASME J. Mech. Des. 120(1), 84–91 (1998)

    Google Scholar 

  86. O. Bohigas, L. Ros, M. Manubens: A complete method for workspace boundary determination, Adv. Robot Kinemat., Piran (2010) pp. 329–338

    Google Scholar 

  87. J.-P. Merlet: Determination of 6D workspaces of Gough-type parallel manipulator and comparison between different geometries, Int. J. Robotics Res. 18(9), 902–916 (1999)

    Google Scholar 

  88. P. Wenger, D. Chablat: Workspace and assembly modes in fully parallel manipulators: A descriptive study. In: Advances in Robot Kinematics: AnalysisControl, ed. by J. Lenarčič, M.L. Husty (Springer, Dordrecht 1998) pp. 117–126

    MATH  Google Scholar 

  89. G. Moroz, F. Rouiller, D. Chablat, P. Wenger: On the determination of cusp points of 3-$R\underline{P}R$ parallel manipulators, Mech.Mach. Theory 45(11), 1555–1567 (2010)

    MATH  Google Scholar 

  90. S. Briot, V. Arakelian: Optimal force generation in parallel manipulators for passing through the singular positions, Int. J. Robotics Res. 27(2), 967–983 (2008)

    Google Scholar 

  91. J. Hesselbach, C. Bier, C. Budde, P. Last, J. Maaß, M. Bruhn: Parallel robot specific control fonctionalities, 2nd Int. Colloquium, Collab. Res. Centre, Braunschweig (2005) pp. 93–108

    Google Scholar 

  92. J.-P. Merlet: An efficient trajectory verifier for motion planning of parallel machine, Parallel Kinemat. Mach. Int. Conf., Ann Arbor (2000)

    Google Scholar 

  93. R. Ur-Rehman, S. Caro, D. Chablat, P. Wenger: Multi-objective path placement of parallel kinematics machines based on energy consumption, shaking forces and maximum actuator torques: Application to the Orthoglide, Mech.Mach. Theory 45(8), 1125–1141 (2010)

    MATH  Google Scholar 

  94. J. Cortés, T. Siméon: Probabilistic motion planning for parallel mechanisms, IEEE Int. Conf.RoboticsAutom. (ICRA), Taipei (2003) pp. 4354–4359

    Google Scholar 

  95. J.H. Yakey, S.M. LaValle, L.E. Kavraki: Randomized path planning for linkages with closed kinematic chains, IEEE Trans.RoboticsAutom. 17(6), 951–958 (2001)

    Google Scholar 

  96. J.-P. Merlet, M.-W. Perng, D. Daney: Optimal trajectory planning of a 5-axis machine tool based on a 6-axis parallel manipulator. In: Advances in Robot Kinematics, ed. by J. Lenarčič, M.L. Husty (Kluwer, Dordrecht 2000) pp. 315–322

    Google Scholar 

  97. D. Shaw, Y.-S. Chen: Cutting path generation of the Stewart platform-based milling machine using an end-mill, Int. J. Prod. Res. 39(7), 1367–1383 (2001)

    Google Scholar 

  98. Z. Wang, Z. Wang, W. Liu, Y. Lei: A study on workspace, boundary workspace analysis and workpiece positioning for parallel machine tools, Mech.Mach. Theory 36(6), 605–622 (2001)

    MATH  Google Scholar 

  99. D.R. Kerr: Analysis, properties, and design of a Stewart-platform transducer, J. Mech. Transm.Autom.Des. 111(1), 25–28 (1989)

    Google Scholar 

  100. C.C. Nguyen, S.S. Antrazi, Z.L. Zhou, C.E. Campbell: Analysis and experimentation of a Stewart platform-based force/torque sensor, Int. J. RoboticsAutom. 7(3), 133–141 (1992)

    Google Scholar 

  101. C. Reboulet, A. Robert: Hybrid control of a manipulator with an active compliant wrist, 3rd Int. Symp. Robotics Res., Gouvieux (1985) pp. 76–80

    Google Scholar 

  102. J. Duffy: Statics and Kinematics with Applications to Robotics (Cambridge Univ. Press, New York 1996)

    Google Scholar 

  103. C. Huang, W.-H. Hung, I. Kao: New conservative stiffness mapping for the Stewart Gough platform, IEEE Int. Conf.RoboticsAutom. (ICRA), Washington (2002) pp. 823–828

    Google Scholar 

  104. J.L. Herder: Energy-free systems: Theory, Conception and Design of Statically Balanced Spring Mechanisms, Ph.D. Thesis (Delft University of Technology, Delft 2001)

    Google Scholar 

  105. G.R. Dunlop, T.P. Jones: Gravity counter balancing of a parallel robot for antenna aiming, 6th Int. Symp. Robotics Manuf., Montpellier (1996) pp. 153–158

    Google Scholar 

  106. M. Jean, C. Gosselin: Static balancing of planar parallel manipulators, IEEE Int. Conf.RoboticsAutom. (ICRA), Minneapolis (1996) pp. 3732–3737

    Google Scholar 

  107. I. Ebert-Uphoff, C.M. Gosselin, T. Laliberté: Static balancing of spatial parallel platform-revisited, ASME J. Mech. Des. 122(1), 43–51 (2000)

    Google Scholar 

  108. C.M. Gosselin, J. Wang: Static balancing of spatial six-degree-of-freedom parallel mechanisms with revolute actuators, J. Robotic Syst. 17(3), 159–170 (2000)

    MATH  Google Scholar 

  109. M. Leblond, C.M. Gosselin: Static balancing of spatial and planar parallel manipulators with prismatic actuators, ASME Des. Eng. Tech. Conf., Atlanta (1998) pp. 5187–5193

    Google Scholar 

  110. B. Monsarrat, C.M. Gosselin: Workspace analysis and optimal design of a 3-leg 6-DOF parallel platform mechanism, IEEE Trans.RoboticsAutom. 19(6), 954–966 (2003)

    Google Scholar 

  111. J. Wang, C.M. Gosselin: Static balancing of spatial three-degree-of-freedom parallel mechanisms, Mech.Mach. Theory 34(3), 437–452 (1999)

    MathSciNet  MATH  Google Scholar 

  112. Y. Wu, C.M. Gosselin: Synthesis of reactionless spatial 3-DOF and 6-DOF mechanisms without separate counter-rotations, Int. J. Robotics Res. 23(6), 625–642 (2004)

    Google Scholar 

  113. M. Ait-Ahmed: Contribution à la Modélisation Géométrique et Dynamique des Robots Parallèles, Ph.D. Thesis (Univ. Paul Sabatier, Toulouse 1993)

    Google Scholar 

  114. G.F. Liu, X.Z. Wu, Z.X. Li: Inertial equivalence principle and adaptive control of redundant parallel manipulators, IEEE Int. Conf.RoboticsAutom. (ICRA), Washington (2002) pp. 835–840

    Google Scholar 

  115. R. Clavel: Conception d'un robot parallèle rapide à 4 degrés de liberté, Ph.D. Thesis (EPFL, Lausanne, 1991), No. 925.

    Google Scholar 

  116. J. Gallardo, J.M. Rico, A. Frisoli, D. Checcacci, M. Bergamasco: Dynamics of parallel manipulators by means of screw theory, Mech.Mach. Theory 38(11), 1113–1131 (2003)

    MathSciNet  MATH  Google Scholar 

  117. L.-W. Tsai: Solving the inverse dynamics of a Stewart Gough manipulator by the principle of virtual work, ASME J. Mech. Des. 122(1), 3–9 (2000)

    Google Scholar 

  118. J. Wang, C.M. Gosselin: A new approach for the dynamic analysis of parallel manipulators, Multibody Syst. Dyn. 2(3), 317–334 (1998)

    MathSciNet  MATH  Google Scholar 

  119. Z. Geng, L.S. Haynes: On the dynamic model and kinematic analysis of a class of Stewart platforms, RoboticsAuton. Syst. 9(4), 237–254 (1992)

    Google Scholar 

  120. K. Liu, F. Lewis, G. Lebret, D. Taylor: The singularities and dynamics of a Stewart platform manipulator, J. Intell.Robotic Syst. 8(3), 287–308 (1993)

    Google Scholar 

  121. K. Miller, R. Clavel: The Lagrange-based model of Delta-4 robot dynamics, Robotersysteme 8(1), 49–54 (1992)

    Google Scholar 

  122. H. Abdellatif, B. Heimann: Computational efficient inverse dynamics of 6-DOF fully parallel manipulators by using the Lagrangian formalism, Mech.Mach. Theory 44(1), 192–207 (2009)

    MATH  Google Scholar 

  123. K. Miller: Optimal design and modeling of spatial parallel manipulators, Int. J. Robotics Res. 23(2), 127–140 (2004)

    Google Scholar 

  124. A. Codourey, E. Burdet: A body oriented method for finding a linear form of the dynamic equations of fully parallel robot, IEEE Int. Conf.RoboticsAutom. (ICRA), Albuquerque (1997) pp. 1612–1618

    Google Scholar 

  125. B. Dasgupta, P. Choudhury: A general strategy based on the Newton Euler approach for the dynamic formulation of parallel manipulators, Mech.Mach. Theory 34(6), 801–824 (1999)

    MathSciNet  MATH  Google Scholar 

  126. P. Guglielmetti: Model-Based Control of Fast Parallel Robots: a Global Approach in Operational Space, Ph.D. Thesis (EPFL, Lausanne, 1994)

    Google Scholar 

  127. K. Harib, K. Srinivasan: Kinematic and dynamic analysis of Stewart platform-based machine tool structures, Robotica 21(5), 541–554 (2003)

    Google Scholar 

  128. W. Khalil, O. Ibrahim: General solution for the dynamic modeling of parallel robots, IEEE Int. Conf.RoboticsAutom. (ICRA), New Orleans (2004) pp. 3665–3670

    Google Scholar 

  129. C. Reboulet, T. Berthomieu: Dynamic model of a six degree of freedom parallel manipulator, Int. Conf. Adv. Robotics, Pise (1991) pp. 1153–1157

    Google Scholar 

  130. H. Abdellatif, B. Heimann: Experimental identification of the dynamics model for 6-DOF parallel manipulators, Robotica 28(3), 359–368 (2010)

    Google Scholar 

  131. H. Abdellatif, B. Heimann: Model based control for industrial robots: Uniform approaches for serial and parallel structures. In: Industrial Robotics: Theory, Modelling and Control, ed. by S. Cubero (pro literatur Verlag, Augsburg 2007) pp. 523–556

    Google Scholar 

  132. S. Tadokoro: Control of parallel mechanisms, Adv. Robotics 8(6), 559–571 (1994)

    Google Scholar 

  133. M. Honegger, A. Codourey, E. Burdet: Adaptive control of the Hexaglide, a 6 DOF parallel manipulator, IEEE Int. Conf. RoboticsAutom. (ICRA), Albuquerque (1997) pp. 543–548

    Google Scholar 

  134. S. Bhattacharya, H. Hatwal, A. Ghosh: An on-line estimation scheme for generalized Stewart platform type parallel manipulators, Mech.Mach. Theory 32(1), 79–89 (1997)

    MATH  Google Scholar 

  135. P. Guglielmetti, R. Longchamp: A closed-form inverse dynamics model of the Delta parallel robot, 4th IFAC Symp.Robot Control, Syroco, Capri (1994) pp. 51–56

    Google Scholar 

  136. K. Miller: Modeling of dynamics and model-based control of DELTA direct-drive parallel robot, J. RoboticsMechatron. 17(4), 344–352 (1995)

    Google Scholar 

  137. E. Burdet, M. Honegger, A. Codourey: Controllers with desired dynamic compensation and their implementation on a 6 DOF parallel manipulator, IEEE Int. Conf.Intell. RobotsSyst. (IROS), Takamatsu (2000)

    Google Scholar 

  138. K. Yamane, Y. Nakamura, M. Okada, N. Komine, K.I. Yoshimoto: Parallel dynamics computation and $h_{{\infty}}$ acceleration control of parallel manipulators for acceleration display, ASME J. Dyn. Syst. Meas.Control 127(2), 185–191 (2005)

    Google Scholar 

  139. J.E. McInroy: Modeling and design of flexure jointed Stewart platforms for control purposes, IEEE/ASME Trans.Mechatron. 7(1), 95–99 (2002)

    Google Scholar 

  140. F. Paccot, N. Andreff, P. Martinet: A review on the dynamic control of parallel kinematic machines: theory and experiments, Int. J. Robotics Res. 28(3), 395–416 (2009)

    Google Scholar 

  141. D. Corbel, M. Gouttefarde, O. Company, F. Pierrot: Towards 100G with PKM is actuation redundancy a good solution for pick-and-place?, IEEE Int. Conf. RoboticsAutom. (ICRA), Anchorage (2010) pp. 4675–4682

    Google Scholar 

  142. F. Xi: Dynamic balancing of hexapods for high-speed applications, Robotica 17(3), 335–342 (1999)

    Google Scholar 

  143. J. Angeles: The robust design of parallel manipulators, 1st Int. Colloquium, Collab. Res. Centre, Braunschweig (2002) pp. 9–30

    Google Scholar 

  144. S. Bhattacharya, H. Hatwal, A. Ghosh: On the optimum design of a Stewart platform type parallel manipulators, Robotica 13(2), 133–140 (1995)

    Google Scholar 

  145. K.E. Zanganeh, J. Angeles: Kinematic isotropy and the optimum design of parallel manipulators, Int. J. Robotics Res. 16(2), 185–197 (1997)

    Google Scholar 

  146. H. Fang, J.-P. Merlet: Multi-criteria optimal design of parallel manipulators based on interval analysis, Mech.Mach. Theory 40(2), 151–171 (2005)

    Google Scholar 

  147. S. Kamamura, W. Choe, S. Tanaka, S.R. Pandian: Development of an Ultrahigh Speed Robot FALCON using Wire Drive System, IEEE Int. Conf.RoboticsAutom. (ICRA) (1995) pp. 215–220

    Google Scholar 

  148. L.L. Cone: Skycam: An Aerial Robotic Camera System, Byte 10(10), 122–132 (1985)

    Google Scholar 

  149. J. Pusey, A. Farrah, S.K. Agrawal, E. Messina: Design and workspace analysis of a 6-6 cable-suspended parallel robot, Mech. Mach. Theory 39, 761–778 (2004)

    MATH  Google Scholar 

  150. C. Gosselin, S. Bouchard: A gravity-powered mechanism for extending the workspace of a cable-driven parallel mechanism: Application to the appearance modelling of objects, Int. J. Autom. Technol. 4(4), 372–379 (2010)

    Google Scholar 

  151. J. Lamaury, M. Gouttefarde: A tension distribution method with improved computational efficiency. In: Cable-Driven Parallel Robots, ed. by T. Bruckmann, A. Pott (Springer, Berlin, Heidelberg 2012) pp. 71–85

    Google Scholar 

  152. A.T. Riechel, I. Ebert-Uphoff: Force-feasible workspace analysis for underconstrained,point-mass cable robots, IEEE Int. Conf.RoboticsAutom. (ICRA) (2004) pp. 4956–4962

    Google Scholar 

  153. D. Cunningham, H. Asada: The Winch-Bot: A cable-suspended, under-actuated robot utilizing parametric self-excitation, IEEE Int. Conf.RoboticsAutom. (ICRA) (2009) pp. 1844–1850

    Google Scholar 

  154. S. Lefrançois, C. Gosselin: Point-to-point motion control of a pendulum-like 3-DOF underactuated cable-driven robot, IEEE Int. Conf.RoboticsAutom. (ICRA) (2010) pp. 5187–5193

    Google Scholar 

  155. D. Zanotto, G. Rosati, S.K. Agrawal: Modeling and control of a 3-DOF pendulum-like manipulator, IEEE Int. Conf.RoboticsAutom. (ICRA) (2011) pp. 3964–3969

    Google Scholar 

  156. C. Gosselin, P. Ren, S. Foucault: Dynamic trajectory planning of a two-DOF cable-suspended parallel robot, IEEE Int. Conf.RoboticsAutom. (ICRA) (2012) pp. 1476–1481

    Google Scholar 

  157. G. Barrette, C. Gosselin: Determination of the dynamic workspace of cable-driven planar parallel mechanisms, ASME J. Mech. Des. 127(2), 242–248 (2005)

    Google Scholar 

  158. M. Carricato, J.-P. Merlet: Direct geometrico-static problem of under-constrained cable-driven parallel robots with three cables, IEEE Int. Conf.RoboticsAutom. (ICRA) (2011) pp. 3011–3017

    Google Scholar 

  159. J.-F. Collard, P. Cardou: Computing the lowest equilibrium pose of a cable-suspended rigid body, Optim.Eng. 14, 457–476 (2013)

    MathSciNet  MATH  Google Scholar 

  160. S. Behzadipour, A. Khajepour: Trajectory planning in cable-based high-speed parallel robots, IEEE Trans.Robotics 22(3), 559–563 (2006)

    Google Scholar 

  161. M. Gouttefarde, C. Gosselin: Analysis of the wrench-closure workspace of planar parallel cable-driven mechanisms, IEEE Trans.Robotics 22(3), 434–445 (2006)

    Google Scholar 

  162. E. Stump, V. Kumar: Workspace delienation of cable-actuated parallel manipulators, ASME Int. Des. Eng. Tech. Conf. (2004)

    Google Scholar 

  163. M. Gouttefarde, D. Daney, J.-P. Merlet: Interval-analysis-based determination of the wrench-feasible workspace of parallel cable-driven robots, IEEE Trans.Robotics 27(1), 1–13 (2011)

    MATH  Google Scholar 

  164. K. Azizian, P. Cardou: The dimensional synthesis of planar parallel cable-driven mechanisms through convex relaxations, ASME J. Mech. Des. 4(3), 0310111–03101113 (2012)

    Google Scholar 

  165. S. Perreault, P. Cardou, C. Gosselin, M.J.D. Otis: Geometric determination of the interference-free constant-orientation workspace of parallel cable-driven mechanisms, ASME J. Mech.Robotics 2(3), 031016 (2010)

    Google Scholar 

  166. J.-P. Merlet: MARIONET, a family of modular wire-driven parallel robots, Adv.Robot Kinemat.: MotionManMach. (2010) pp. 53–61

    Google Scholar 

  167. The National Advanced Driving Simulator, The University of Iowa: http://www.nads-sc.uiowa.edu

  168. M. Girone, G. Burdea, M. Bouzit, V. Popescu, J.E. Deutsch: A Stewart platform-based system for ankle telerehabilitation, Auton. Robots 10(2), 203–212 (2001)

    MATH  Google Scholar 

  169. T. Nakano, M. Sugita, T. Ueta, Y. Tamaki, M. Mitsuishi: A parallel robot to assist vitreoretinal surgery, Int. J. Comput. Assist. Radiol. Surg. 4(6), 517–526 (2009)

    Google Scholar 

  170. M. Wu, T.G. Hornby, J.M. Landry, H. Roth, B.D. Schmit: A cable-driven locomotor training system for restoration of gait in human SCI, Gait Posture 33(2), 256–260 (2011)

    Google Scholar 

  171. J. Fink, N. Michael, S. Kim, V. Kumar: Planning and control for cooperative manipulation and transportation with aerial robots, Proc. Intl. Sym.Robot. Res., Luzern (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Merlet .

Editor information

Editors and Affiliations

Video-References

Video-References

:

3-DOF high-speed 3-RPS parallel robot available from http://handbookofrobotics.org/view-chapter/18/videodetails/43

:

6-DOF cable-suspended robot available from http://handbookofrobotics.org/view-chapter/18/videodetails/44

:

CoGiRo available from http://handbookofrobotics.org/view-chapter/18/videodetails/45

:

Parallel 5R robot available from http://handbookofrobotics.org/view-chapter/18/videodetails/46

:

Diamond available from http://handbookofrobotics.org/view-chapter/18/videodetails/47

:

6-DOF statically balanced parallel robot available from http://handbookofrobotics.org/view-chapter/18/videodetails/48

:

3-DOF dynamically balanced parallel robot available from http://handbookofrobotics.org/view-chapter/18/videodetails/49

:

IPAnema available from http://handbookofrobotics.org/view-chapter/18/videodetails/50

:

Par2 robot available from http://handbookofrobotics.org/view-chapter/18/videodetails/51

:

Quadrupteron robot available from http://handbookofrobotics.org/view-chapter/18/videodetails/52

:

R4 robot available from http://handbookofrobotics.org/view-chapter/18/videodetails/53

:

Tripteron robot available from http://handbookofrobotics.org/view-chapter/18/videodetails/54

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Merlet, JP., Gosselin, C., Huang, T. (2016). Parallel Mechanisms. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-32552-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32552-1_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32550-7

  • Online ISBN: 978-3-319-32552-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics