Skip to main content

Micro-/Nanorobots

  • Chapter
  • First Online:

Part of the book series: Springer Handbooks ((SHB))

Abstract

The field of microrobotics covers the robotic manipulation of objects with dimensions in the millimeter to micron range as well as the design and fabrication of autonomous robotic agents that fall within this size range. Nanorobotics is defined in the same way only for dimensions smaller than a micron. With the ability to position and orient objects with micron- and nanometer-scale dimensions, manipulation at each of these scales is a promising way to enable the assembly of micro- and nanosystems, including micro- and nanorobots.

This chapter overviews the state of the art of both micro- and nanorobotics, outlines scaling effects, actuation, and sensing and fabrication at these scales, and focuses on micro- and nanorobotic manipulation systems and their application in microassembly, biotechnology, and the construction and characterization of micro and nanoelectromechanical systems (MEMS/NEMS). Material science, biotechnology, and micro- and nanoelectronics will also benefit from advances in these areas of robotics.

figure a

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

0-D:

zero-dimensional

1-D:

one-dimensional

2-D:

two-dimensional

3-D:

three-dimensional

ABF:

artificial bacterial flagella

AC:

alternating current

AFM:

atomic force microscope

AM:

actuator for manipulation

AP:

antipersonnel

ASIC:

application-specific integrated circuit

CCD:

charge-coupled device

CCW:

counterclockwise

CNT:

carbon nanotube

CU:

control unit

CVD:

chemical vapor deposition

CW:

clockwise

DNA:

deoxyribonucleic acid

DOF:

degree of freedom

DPN:

dip-pen nanolithography

DRIE:

deep reactive ion etching

e-beam:

electron-beam

EBID:

electron-beam induced deposition

EDM:

electrical discharge machining

FESEM:

field-emission SEM

HMDS:

hexamethyldisilazane

HRTEM:

high-resolution transmission electron microscope

IC:

integrated circuit

IR:

infrared

LIGA:

Lithographie, Galvanoumformung, Abformung

MBE:

molecular-beam epitaxy

MEMS:

microelectromechanical system

MITI:

Ministry of International Trade and Industry

MOCVD:

metallo-organic chemical vapor deposition

MST:

microsystem technology

MWNT:

multiwalled carbon nanotube

NEMS:

nanoelectromechanical system

NRM:

nanorobotic manipulator

OM:

optical microscope

PCI:

peripheral component interconnect

PID:

proportional–integral–derivative

PMMA:

polymethyl methacrylate

PR:

positive photoresist

PS:

power source

PVDF:

polyvinylidene fluoride

PVD:

physical vapor deposition

PZT:

lead zirconate titanate

QD:

quantum dot

RIE:

reactive-ion etching

RT:

room temperature

SEM:

scanning electron microscope

SET:

single electron transistor

SMA:

shape memory alloy

SNOM:

scanning near-field optical microscopy

SOI:

silicon-on-insulator

SPM:

scanning probe microscope

STM:

scanning tunneling microscope

SWNT:

single-walled carbon nanotube

TEM:

transmission electron microscope

UHV:

ultrahigh-vacuum

UV:

ultraviolet

vdW:

van der Waals

ZP:

zona pellucida

References

  1. R.P. Feynman: There's plenty of room at the bottom, Caltech Eng. Sci. 23, 22–36 (1960)

    Google Scholar 

  2. R.S. Muller: Microdynamics, Sens. Actuators A 21(1), 1–8 (1990)

    Article  Google Scholar 

  3. A.M. Flynn, R.A. Brooks, W.M. Wells, D.S. Barrett: The world's largest one cubic inch robot, IEEE Micro Electro Mech. Syst. (MEMS) (1989) pp. 98–101

    Google Scholar 

  4. W. Trimmer, R. Jebens: Actuators for micro robots, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1989) pp. 1547–1552

    Google Scholar 

  5. S. Fatikow, U. Rembold: An automated microrobot-based desktop station for micro assembly and handling of micro-objects, IEEE Conf. Emerg. Technol. Fact. Autom. (EFTA'96) (1996) pp. 586–592

    Google Scholar 

  6. B.J. Nelson, Y. Zhou, B. Vikramaditya: Sensor-based microassembly of hybrid MEMS devices, IEEE Control Syst. Mag. 18, 35–45 (1998)

    Article  Google Scholar 

  7. K. Suzumori, T. Miyagawa, M. Kimura, Y. Hasegawa: Micro inspection robot for 1-in pipes, IEEE/ASME Trans. Mechatron. 4, 286–292 (1999)

    Article  Google Scholar 

  8. M. Takeda: Applications of MEMS to industrial inspection, Proc. 14th IEEE Int. Conf. Micro Electro Mech. Syst. (MEMS) (2001) pp. 182–191

    Google Scholar 

  9. T. Frank: Two-Axis electrodynamic micropositioning devices, J. Micromech. Microeng. 8, 114–118 (1989)

    Article  Google Scholar 

  10. N. Kawahara, N. Kawahara, T. Suto, T. Hirano, Y. Ishikawa, T. Kitahara, N. Ooyama, T. Ataka: Microfactories: New applications of micromachine technology to the manufacture of small products, Res. J. Microsyst. Technol. 3, 37–41 (1997)

    Article  Google Scholar 

  11. Y. Sun, B.J. Nelson: Microrobotic cell injection, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2001) pp. 620–625

    Google Scholar 

  12. P. Dario, M.C. Carrozza, L. Lencioni, B. Magnani, S. Dapos Attanasio: A micro robotic system for colonoscopy, Proc. Int. Conf. Robotics Autom. (ICRA) (1997) pp. 1567–1572

    Google Scholar 

  13. F. Tendick, S.S. Sastry, R.S. Fearing, M. Cohn: Application of micromechatronics in minimally invasive surgery, IEEE/ASME Trans. Mechatron. 3, 34–42 (1998)

    Article  Google Scholar 

  14. G. Iddan, G. Meron, A. Glukhovsky, P. Swain: Wireless capsule endoscopy, Nature 405, 417 (2000)

    Article  Google Scholar 

  15. K.B. Yesin, K. Vollmers, B.J. Nelson: Analysis and design of wireless magnetically guided microrobots in body fluids, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2004) pp. 1333–1338

    Google Scholar 

  16. M.C. Roco, R.S. Williams, P. Alivisatos: Nanotechnology Research Directions. Vision for Nanotechnology in the Next Decade (Kluwer, Dordrecht 2000)

    Google Scholar 

  17. M.L. Downey, D.T. Moore, G.R. Bachula, D.M. Etter, E.F. Carey, L.A. Perine: National Nanotechnology Initiative: Leading to the Next Industrial Revolution, A Report by the Interagency Working Group on Nanoscience, Engineering and Technology (Committee on Technology, National Science and Technology Council, Washington 2000)

    Google Scholar 

  18. K. Drexler: Nanosystems: Molecular Machinery, Manufacturing and Computation (Wiley, New York 1992)

    Google Scholar 

  19. G. Binnig, H. Rohrer, C. Gerber, E. Weibel: Surface studies by scanning tunneling microscopy, Phys. Rev. Lett. 49, 57–61 (1982)

    Article  Google Scholar 

  20. W.F. Degrado: Design of peptides and proteins, Adv. Protein Chem. 39, 51–124 (1998)

    Article  Google Scholar 

  21. G.M. Whitesides, B. Grzybowski: Self-assembly at all scales, Science 295, 2418–2421 (2002)

    Article  Google Scholar 

  22. R. Fearing: Survey of sticking effects for micro-parts, Proc. IEEE/RSJ Int. Conf. Int. Robots Syst. (1995) pp. 212–217

    Google Scholar 

  23. E.L. Wolf: Nanophysics and Nanotechnology (Wiley-VCH, Weinheim 2004)

    Google Scholar 

  24. T. Ebefors, G. Stemme: Microrobotics. In: The MEMS Handbook, ed. by M. Gad-el-Hak (CRC, Boca Raton 2002)

    Google Scholar 

  25. C.-J. Kim, A.P. Pisano, R.S. Muller: Silicon-processed overhanging microgripper, IEEE/ASME J. Microelectromechanical Syst. 1, 31–36 (1992)

    Article  Google Scholar 

  26. C. Liu, T. Tsao, Y.-C. Tai, C.-M. Ho: Surface micromachined magnetic actuators, Proc. 7th IEEE Int. Conf. Micro Electro Mech. Syst. (MEMS) (1994) pp. 57–62

    Google Scholar 

  27. J. Judy, D.L. Polla, W.P. Robbins: A linear piezoelectric stepper motor with submicron displacement and centimeter travel, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37, 428–437 (1990)

    Article  Google Scholar 

  28. K. Nakamura, H. Ogura, S. Maeda, U. Sangawa, S. Aoki, T. Sato: Evaluation of the micro wobbler motor fabricated by concentric build-up process, Proc. 8th IEEE Int. Conf. Micro Electro Mech. Syst. (MEMS) (1995) pp. 374–379

    Google Scholar 

  29. A. Teshigahara, M. Watanabe, N. Kawahara, I. Ohtsuka, T. Hattori: Performance of a 7-mm microfabricated car, IEEE/ASME J. Microelectromechanical Syst. 4, 76–80 (1995)

    Article  Google Scholar 

  30. K.R. Udayakumar, S.F. Bart, A.M. Flynn, J. Chen, L.S. Tavrow, L.E. Cross, R.A. Brooks, D.J. Ehrlich: Ferroelectric thin film ultrasonic micromotors, Proc. 4th IEEE Int. Conf. Micro Electro Mech. Syst. (MEMS) (1991) pp. 109–113

    Google Scholar 

  31. P. Dario, R. Valleggi, M.C. Carrozza, M.C. Montesi, M. Cocco: Review – Microactuators for microrobots: A critical survey, J. Micromech. Microeng. 2, 141–157 (1992)

    Article  Google Scholar 

  32. I. Shimoyama: Scaling in microrobots, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (1995) pp. 208–211

    Google Scholar 

  33. R.S. Fearing: Powering 3-dimensional microrobots: power density limitations, tutorial on Micro Mechatronics and Micro Robotics, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1998)

    Google Scholar 

  34. R.G. Gilbertson, J.D. Busch: A survey of micro-actuator technologies for future spacecraft missions, J. Br. Interplanet. Soc. 49, 129–138 (1996)

    Google Scholar 

  35. M. Mehregany, P. Nagarkar, S.D. Senturia, J.H. Lang: Operation of microfabricated harmonic and ordinary side-drive motors, Proc. 3rd IEEE Int. Conf. Micro Electro Mech. Syst. (MEMS) (1990) pp. 1–8

    Google Scholar 

  36. Y.C. Tai, L.S. Fan, R.S. Mulle: IC-processed micro-motors: design, technology, and testing, Proc. 2nd IEEE Int. Conf. Micro Electro Mech. Syst. (MEMS) (1989) pp. 1–6

    Google Scholar 

  37. T. Ohnstein, T. Fukiura, J. Ridley, U. Bonne: Micromachined silicon microvalve, Proc. 3rd IEEE Int. Conf. Micro Electro Mech. Syst. (MEMS) (1990) pp. 95–99

    Google Scholar 

  38. L.Y. Chen, S.L. Zhang, J.J. Yao, D.C. Thomas, N.C. MacDonald: Selective chemical vapor deposition of tungsten for microdynamic structures, Proc. 2nd IEEE Int. Conf. Micro Electro Mech. Syst. (MEMS) (1989) pp. 82–87

    Google Scholar 

  39. K. Yanagisawa, H. Kuwano, A. Tago: An electromagnetically driven microvalve, Proc. 7th Int. Conf. Solid-State Sens. Actuators (1993) pp. 102–105

    Google Scholar 

  40. M. Esashi, S. Shoji, A. Nakano: Normally close microvalve and micropump fabricated on a silicon wafer, Proc. 2nd IEEE Int. Conf. Micro Electro Mech. Syst. (MEMS) (1989) pp. 29–34

    Google Scholar 

  41. R. Petrucci, K. Simmons: An introduction to piezoelectric crystals, Sens. J. Appl.Sens. Technol. 11(5), 26–31 (1994)

    Google Scholar 

  42. J. Goldstein, D. Newbury, D. Joy, C. Lyman, P. Echlin, E. Lifshin, L. Sawyer, J. Michael: Scanning Electron Microscopy and X-ray Microanalysis (Kluwer, New York 2003)

    Book  Google Scholar 

  43. G. Binnig, H. Rohrer: In touch with atoms, Rev. Mod. Phys. 71, S324–S330 (1999)

    Article  Google Scholar 

  44. G. Binnig, C.F. Quate, C. Gerber: Atomic force microscope, Phys. Rev. Lett. 56, 93–96 (1986)

    Article  Google Scholar 

  45. M.J. Doktycz, C.J. Sullivan, P.R. Hoyt, D.A. Pelletier, S. Wu, D.P. Allison: AFM imaging of bacteria in liquid media immobilized on gelatin coated mica surfaces, Ultramicroscopy 97, 209–216 (2003)

    Article  Google Scholar 

  46. S.A. Campbell: The Science and Engineering of Microelectronic Fabrication (Oxford Univ. Press, New York 2001)

    Google Scholar 

  47. C.J. Jaeger: Introduction to Microelectronic Fabrication (Prentice Hall, Upper Saddle River 2002)

    Google Scholar 

  48. J.D. Plummer, M.D. Deal, P.B. Griffin: Silicon VLSI Technology (Prentice Hall, Upper Saddle River 2000)

    Google Scholar 

  49. M. Gad-el-Hak (Ed.): The MEMS Handbook (CRC, Boca Raton 2002)

    MATH  Google Scholar 

  50. T.-R. Hsu: MEMS and Microsystems Design and Manufacture (McGraw-Hill, New York 2002)

    Google Scholar 

  51. G.T.A. Kovacs: Micromachined Transducers Sourcebook (McGraw-Hill, New York 1998)

    Google Scholar 

  52. G.T.A. Kovacs, N.I. Maluf, K.A. Petersen: Bulk micromachining of silicon, Proc. IEEE Int. Conf. Robotics Autom. (1998) pp. 1536–1551

    Google Scholar 

  53. P. Rai-Choudhury (Ed.): Handbook of Microlithography, Micromachining and Microfabrication (SPIE, Bellingham 1997)

    Google Scholar 

  54. S.Y. Chou: Nano-imprint lithography and lithographically induced self-assembly, MRS Bulletin 26, 512–517 (2001)

    Article  Google Scholar 

  55. M.A. Herman: Molecular Beam Epitaxy: Fundamentals and Current Status (Springer, New York 1996)

    Book  Google Scholar 

  56. J.S. Frood, G.J. Davis, W.T. Tsang: Chemical Beam Epitaxy and Related Techniques (Wiley, New York 1997)

    Google Scholar 

  57. S. Mahajan, K.S.S. Harsha: Principles of Growth and Processing of Semiconductors (McGraw-Hill, New York 1999)

    Google Scholar 

  58. C.A. Mirkin: Dip-pen nanolithography: automated fabrication of custom multicomponent, sub-100 nanometer surface architectures, MRS Bulletin 26, 535–538 (2001)

    Article  Google Scholar 

  59. C.A. Harper: Electronic Packaging and Interconnection Handbook (McGraw-Hill, New York 2000)

    Google Scholar 

  60. K.F. Bohringer, R.S. Fearing, K.Y. Goldberg: Microassembly. In: Handbook of Industrial Robotics, ed. by S. Nof (Wiley, New York 1999) pp. 1045–1066

    Chapter  Google Scholar 

  61. G. Yang, J.A. Gaines, B.J. Nelson: A supervisory wafer-level 3D microassembly system for hybrid MEMS fabrication, J. Intell. Robotics Syst. 37, 43–68 (2003)

    Article  Google Scholar 

  62. P. Dario, M. Carrozza, N. Croce, M. Montesi, M. Cocco: Non-traditional technologies for microfabrication, J. Micromech. Microeng. 5, 64–71 (1995)

    Article  Google Scholar 

  63. W. Benecke: Silicon microactuators: activation mechanisms and scaling problems, Proc. IEEE Int. Conf. Solid-State Sens. Actuators (1991) pp. 46–50

    Google Scholar 

  64. A. Menciassi, A. Eisinberg, M. Mazzoni, P. Dario: A sensorized electro discharge machined superelastic alloy microgripper for micromanipulation: simulation and characterization, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2002) pp. 1591–1595

    Google Scholar 

  65. T.R. Hsu: Packaging design of microsystems and meso-scale devices, IEEE Trans. Adv. Packag. 23, 596–601 (2000)

    Article  Google Scholar 

  66. L. Lin: MEMS post-packaging by localized heating and bonding, IEEE Trans. Adv. Packag. 23, 608–616 (2000)

    Article  Google Scholar 

  67. A. Tixier, Y. Mita, S. Oshima, J.P. Gouy, H. Fujita: 3-D microsystem packaging for interconnecting electrical, optical and mechanical microdevices to the external world, Proc. 13th IEEE Int. Conf. Micro Electro Mech. Syst. (MEMS) (2000) pp. 698–703

    Google Scholar 

  68. M.J. Madou: Fundamentals of Microfabrication (CRC, Boca Raton 2002)

    Google Scholar 

  69. I. Shimoyama, O. Kano, H. Miura: 3D micro-structures folded by Lorentz force, Proc. 11th IEEE Int. Conf. Micro Electro Mech. Syst. (MEMS) (1998) pp. 24–28

    Google Scholar 

  70. K.F. Bohringer, B.R. Donald, L. Kavraki, F.L. Lamiraux: Part orientation with one or two stable equilibria using programmable vector fields, IEEE Trans. Robot. Autom. 16, 157–170 (2000)

    Article  Google Scholar 

  71. V. Kaajakari, A. Lal: An electrostatic batch assembly of surface MEMS using ultrasonic triboelectricity, Proc. 14th IEEE Int. Conf. Micro Electro Mech. Syst. (MEMS) (2001) pp. 10–13

    Google Scholar 

  72. G. Yang, B.J. Nelson: Micromanipulation contact transition control by selective focusing and microforce control, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2003) pp. 3200–3206

    Google Scholar 

  73. G. Morel, E. Malis, S. Boudet: Impedance based combination of visual and force control, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1998) pp. 1743–1748

    Google Scholar 

  74. F. Arai, D. Andou, T. Fukuda: Adhesion forces reduction for micro manipulation based on micro physics, Proc. 9th IEEE Int. Conf. Micro Electro Mech. Syst. (MEMS) (1996) pp. 354–359

    Google Scholar 

  75. Y. Zhou, B.J. Nelson: The effect of material properties and gripping force on micrograsping, Proc. IEEE Int. Conf. Robotics Autom (ICRA) (2000) pp. 1115–1120

    Google Scholar 

  76. K. Kurata: Mass production techniques for optical modules, Proc. 48th IEEE Electronic Components and Technology Conf. (1998) pp. 572–580

    Google Scholar 

  77. V.T. Portman, B.-Z. Sandler, E. Zahavi: Rigid 6 ×6 parallel platform for precision 3-D micromanipulation: theory and design application, IEEE Trans. Robotics Autom. 16, 629–643 (2000)

    Article  Google Scholar 

  78. R.M. Haralick, L.G. Shapiro: Computer and Robot Vision (Addison-Wesley, Reading 1993)

    Google Scholar 

  79. A. Khotanzad, H. Banerjee, M.D. Srinath: A vision system for inspection of ball bonds and 2-D profile of bonding wires in integrated circuits, IEEE Trans. Semicond. Manuf. 7, 413–422 (1994)

    Article  Google Scholar 

  80. J.T. Feddema, R.W. Simon: CAD-driven microassembly and visual servoing, Proc. IEEE Int. Conf. Robotics Autom (ICRA) (1998), pp. 1212 -1219

    Google Scholar 

  81. E. Trucco, A. Verri: Introductory Techniques for 3-D Computer Vision (Prentice Hall, Upper Saddle River 1998)

    Google Scholar 

  82. S. Hutchinson, G.D. Hager, P.I. Corke: A tutorial on visual servo control, IEEE Trans. Robotics Autom. 12, 651–670 (1996)

    Article  Google Scholar 

  83. B. Siciliano, L. Villani: Robot Force Control (Kluwer, Dordrecht 2000)

    MATH  Google Scholar 

  84. T. Yoshikawa: Force control of robot manipulators, Proc. IEEE Int. Conf. Robotics Autom (ICRA) (2000) pp. 220–226

    Google Scholar 

  85. J.A. Thompson, R.S. Fearing: Automating microassembly with ortho-tweezers and force sensing, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2001) pp. 1327–1334

    Google Scholar 

  86. B.J. Nelson, P.K. Khosla: Force and vision resolvability for assimilating disparate sensory feedback, IEEE Trans. Robotics Autom. 12, 714–731 (1996)

    Article  Google Scholar 

  87. Y. Haddab, N. Chaillet, A. Bourjault: A microgripper using smart piezoelectric actuators, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2000) pp. 659–664

    Google Scholar 

  88. D. Popa, B.H. Kang, J. Sin, J. Zou: Reconfigurable micro-assembly system for photonics applications, Proc. IEEE Int. Conf. Robotics Autom (ICRA) (2002) pp. 1495–1500

    Google Scholar 

  89. A.P. Lee, D.R. Ciarlo, P.A. Krulevitch, S. Lehew, J. Trevin, M.A. Northrup: A practical microgripper by fine alignment, eutectic bonding and SMA actuation, Proc. IEEE Int. conf. Solid-State Sens. Actuators (1995) pp. 368–371

    Google Scholar 

  90. H. Seki: Modeling and impedance control of a piezoelectric bimorph microgripper, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (1992) pp. 958–965

    Google Scholar 

  91. W. Nogimori, K. Irisa, M. Ando, Y. Naruse: A laser-powered micro-gripper, Proc. 10th IEEE Int. Conf. Micro Electro Mech. Syst. (MEMS) (1997) pp. 267–271

    Google Scholar 

  92. S. Fatikow, U. Rembold: Microsystem Technology and Microrobotics (Springer, Berlin, Heidelberg 1997)

    Book  MATH  Google Scholar 

  93. T. Hayashi: Micro mechanism, J. Robotics Mechatr. 3, 2–7 (1991)

    Article  Google Scholar 

  94. S. Johansson: Micromanipulation for micro- and nanomanufacturing, INRIA/IEEE Symp. Emerging Technologies and Factory Automation (ETFA'95), Paris (1995) pp. 3–8

    Google Scholar 

  95. K.-T. Park, M. Esashi: A multilink active catheter with polyimide-based integrated CMOS interface circuits, J. Microelectromechanical Syst. 8, 349–357 (1999)

    Article  Google Scholar 

  96. Y. Haga, Y. Tanahashi, M. Esashi: Small diameter active catheter using shape memory alloy, Proc. IEEE 11th Int. Workshop on Micro Electro Mechanical Systems, Heidelberg (1998) pp. 419–424

    Google Scholar 

  97. E.W.H. Jager, O. Inganas, I. Lundstrom: Microrobots for micrometer-size objects in aqueous media: Potential tools for single cell manipulation, Science 288, 2335–2338 (2000)

    Article  Google Scholar 

  98. E.W.H. Jager, E. Smela, O. Inganas: Microfabricating conjugated polymer actuators, Science 290, 1540–1545 (2000)

    Article  Google Scholar 

  99. J.W. Suh, S.F. Glander, R.B. Darling, C.W. Storment, G.T.A. Kovacs: Organic thermal and electrostatic ciliary microactuator array for object manipulation, Sens. Actuators A 58, 51–60 (1997)

    Article  Google Scholar 

  100. E. Smela, M. Kallenbach, J. Holdenried: Electrochemically driven polypyrrole bilayers for moving and positioning bulk micromachined silicon plates, J. Microelectromechanical Syst. 8, 373–383 (1999)

    Article  Google Scholar 

  101. S. Konishi, H. Fujita: A conveyance system using air flow based on the concept of distributed micro motion systems, IEEE J. Microelectromechanical Syst. 3, 54–58 (1994)

    Article  Google Scholar 

  102. M. Ataka, A. Omodaka, N. Takeshima, H. Fujita: Fabrication and operation of polyimide bimorph actuators for a ciliary motion system, J. Microelectromechanical Syst. 2, 146–150 (1993)

    Article  Google Scholar 

  103. G.-X. Zhou: Swallowable or implantable body temperature telemeter-body temperature radio pill, Proc. IEEE 15th Annual Northeast Bioengineering Conf. (1989) pp. 165–166

    Chapter  Google Scholar 

  104. A. Uchiyama: Endoradiosonde needs micro machine technology, Proc. IEEE 6th Int. Symp. Micro Mach. Hum. Sci. (MHS) (1995) pp. 31–37

    Google Scholar 

  105. Y. Carts-Powell: Tiny Camera in a Pill Extends Limits of Endoscopy, OE-Rep. Aug., Vol. 200 (SPIE, Bellingham 2000)

    Google Scholar 

  106. R. Yeh, E.J.J. Kruglick, K.S.J. Pister: Surface-micromachined components for articulated microrobots, J. Microelectromechanical Syst. 5, 10–17 (1996)

    Article  Google Scholar 

  107. P.E. Kladitis, V.M. Bright, K.F. Harsh, Y.C. Lee: Prototype Microrobots for micro positioning in a manufacturing process and micro unmanned vehicles, Proc. IEEE 12th Int. Conf. Micro Electro Mech. Syst. (MEMS), Orlando (1999) pp. 570–575

    Google Scholar 

  108. D. Ruffieux, N.F. Rooij: A 3-DoF bimorph actuator array capable of locomotion, Proc. 13th Eur. Conf. Solid-State Transducers (Eurosensors), Hague (1999) pp. 725–728

    Google Scholar 

  109. J.-M. Breguet, P. Renaud: A 4 degrees-of-freedoms microrobot with nanometer resolution, Robotics 14, 199–203 (1996)

    Google Scholar 

  110. A. Flynn, L.S. Tavrow, S.F. Bart, R.A. Brooks, D.J. Ehrlich, K.R. Udayakumar, L.E. Cross: Piezoelectric micromotors for microrobots, J. Microelectromechanical Syst. 1, 44–51 (1992)

    Article  Google Scholar 

  111. A. Teshigahara, M. Watanabe, N. Kawahara, Y. Ohtsuka, T. Hattori: Performance of a 7 mm microfabricated car, J. Microelectromechanical Syst. 4, 76–80 (1995)

    Article  Google Scholar 

  112. T. Ebefors, J. Mattson, E. Kalvesten, G. Stemme: A walking silicon micro-robot, 10th Int. Conf. Solid-State Sens. Actuators (Transducers), Sendai (1999) pp. 1202–1205

    Google Scholar 

  113. N. Miki, I. Shimoyama: Flight performance of micro-wings rotating in an alternating magnetic field, Proc. IEEE 12th Int. Conf. Micro Electro Mech. Syst. (MEMS), Orlando (1999) pp. 153–158

    Google Scholar 

  114. Mainz: Micro-motors: The World's Tiniest Helicopter, http://phys.org/news/2004-08-world-lightest-micro-flying-robot-built.html

  115. K.I. Arai, W. Sugawara, T. Honda: Magnetic small flying machines, IEEE 8th Int. Conf. Solid-State Sens. Actuattors (1995) pp. 316–319

    Google Scholar 

  116. T. Fukuda, A. Kawamoto, F. Arai, H. Matsuura: Mechanism and swimming experiment of micro mobile robot in water, Proc. IEEE 7th Int. Workshop Micro Electro Mech. Syst. (MEMS), Oiso (1994) pp. 273–278

    Google Scholar 

  117. I. Shimoyama: Hybrid system of mechanical parts and living organisms for microrobots, Proc. IEEE 6th Int. Symp. Micro Mach. Hum. Sci. (MHS) (1995) p. 55

    Google Scholar 

  118. A. Ashkin: Acceleration and trapping of particles by radiation pressure, Phys. Rev. Lett. 24, 156–159 (1970)

    Article  Google Scholar 

  119. T.N. Bruican, M.J. Smyth, H.A. Crissman, G.C. Salzman, C.C. Stewart, J.C. Martin: Automated single-cell manipulation and sorting by light trapping, Appl. Opt. 26, 5311–5316 (1987)

    Article  Google Scholar 

  120. J. Conia, B.S. Edwards, S. Voelkel: The micro-robotic laboratory: Optical trapping and scissing for the biologist, J. Clin. Lab. Anal. 11, 28–38 (1997)

    Article  Google Scholar 

  121. W.H. Wright, G.J. Sonek, Y. Tadir, M.W. Berns: Laser trapping in cell biology, IEEE J. Quant. Electron. 26, 2148–2157 (1990)

    Article  Google Scholar 

  122. F. Arai, K. Morishima, T. Kasugai, T. Fukuda: Bio-micromanipulation (new direction for operation improvement), Proc. IEEE/RSJ Int. Conf. Intell. Robotics Syst. (IROS) (1997) pp. 1300–1305

    Google Scholar 

  123. M. Nishioka, S. Katsura, K. Hirano, A. Mizuno: Evaluation of cell characteristics by step-wise orientational rotation using optoelectrostatic micromanipulation, IEEE Trans. Ind. Appl. 33, 1381–1388 (1997)

    Article  Google Scholar 

  124. M. Washizu, Y. Kurahashi, H. Iochi, O. Kurosawa, S. Aizawa, S. Kudo, Y. Magariyama, H. Hotani: Dielectrophoretic measurement of bacterial motor characteristics, IEEE Trans. Ind. Appl. 29, 286–294 (1993)

    Article  Google Scholar 

  125. Y. Kimura, R. Yanagimachi: Intracytoplasmic sperm injection in the mouse, Biol. Reprod. 52, 709–720 (1995)

    Article  Google Scholar 

  126. M. Mischel, A. Voss, H.A. Pohl: Cellular spin resonance in rotating electric fields, J. Biol. Phys. 10, 223–226 (1982)

    Article  Google Scholar 

  127. W.M. Arnold, U. Zimmermann: Electro-Rotation: Development of a technique for dielectric measurements on individual cells and particles, J. Electrost. 21, 151–191 (1988)

    Article  Google Scholar 

  128. Y. Sun, B.J. Nelson: Autonomous injection of biological cells using visual servoing, Int. Symp. Experim. Robotics (ISER) (2000) pp. 175–184

    Google Scholar 

  129. Y. Sun, B.J. Nelson, D.P. Potasek, E. Enikov: A bulk microfabricated multi-axis capacitive cellular force sensor using transverse comb drives, J. Micromech. Microeng. 12, 832–840 (2002)

    Article  Google Scholar 

  130. Y. Sun, K. Wan, K.P. Roberts, J.C. Bischof, B.J. Nelson: Mechanical property characterization of mouse zona pellucida, IEEE Trans. Nanobiosci. 2, 279–286 (2003)

    Article  Google Scholar 

  131. E.M. Purcell: Life at low Reynolds-number, Am. J. Phy. 45, 3–11 (1977)

    Article  Google Scholar 

  132. R. Dreyfus, J. Baudry, M.L. Roper, M. Fermigier, H.A. Stone, J. Bibette: Microscopic artificial swimmers, Nature 437, 862–865 (2005)

    Article  MATH  Google Scholar 

  133. H.C. Berg, R.A. Anderson: Bacteria swim by rotating their flagellar filaments, Nature 245, 380–382 (1973)

    Article  Google Scholar 

  134. L. Zhang, J.J. Abbott, L.X. Dong, B.E. Kratochvil, D.J. Bell, B.J. Nelson: Artificial bacterial flagella: Fabrication and magnetic control, Appl. Phys. Lett. 94, 064107 (2009)

    Article  Google Scholar 

  135. L. Zhang, E. Deckhardt, A. Weber, C. Schonenberger, D. Grutzmacher: Controllable fabrication of SiGe/Si and SiGe/Si/Cr helical nanobelts, Nanotechnology 16, 655–663 (2005)

    Article  Google Scholar 

  136. V.Y. Prinz, V.A. Seleznev, A.K. Gutakovsky, A.V. Chehovskiy, V.V. Preobrazhenskii, M.A. Putyato, T.A. Gavrilova: Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays, Physica E Low-Dimen. Syst. Nanostructures 6, 828–831 (2000)

    Article  Google Scholar 

  137. F.B. Hagedorn, E.M. Gyorgy: Magnetic-Shape Anisotropy in Polygonal Prisms, J. Appl. Phys. 39, 995–997 (1968)

    Article  Google Scholar 

  138. H.C. Berg, D.A. Brown: Chemotaxis in escherichia-coli analyzed by 3-dimensional tracking, Nature 239, 500–504 (1972)

    Article  Google Scholar 

  139. A. Ashkin, J.M. Dziedzic: Optical trapping and manipulation of viruses and bacteria, Science 235, 1517–1520 (1987)

    Article  Google Scholar 

  140. F.H.C. Crick, A.F.W. Hughes: The physical properties of cytoplasm: A study by means of the magnetic particle method, Part I, Exp. Cell Res. 1, 37–80 (1950)

    Article  Google Scholar 

  141. M.F. Yu, M.J. Dyer, G.D. Skidmore, H.W. Rohrs, X.K. Lu, K.D. Ausman, J.R.V. Ehr, R.S. Ruoff: Three-dimensional manipulation of carbon nanotubes under a scanning electron microscope, Nanotechnology 10, 244–252 (1999)

    Article  Google Scholar 

  142. L.X. Dong, F. Arai, T. Fukuda: 3D nanorobotic manipulation of nano-order objects inside SEM, Proc. Int. Symp. Micromechatron. Hum. Sci. (MHS) (2000) pp. 151–156

    Google Scholar 

  143. D.M. Eigler, E.K. Schweizer: Positioning single atoms with a scanning tunneling microscope, Nature 344, 524–526 (1990)

    Article  Google Scholar 

  144. P. Avouris: Manipulation of matter at the atomic and molecular levels, Acc. Chem. Res. 28, 95–102 (1995)

    Article  Google Scholar 

  145. M.F. Crommie, C.P. Lutz, D.M. Eigler: Confinement of electrons to quantum corrals on a metal surface, Science 262, 218–220 (1993)

    Article  Google Scholar 

  146. L.J. Whitman, J.A. Stroscio, R.A. Dragoset, R.J. Cellota: Manipulation of adsorbed atoms and creation of new structures on room-temperature surfaces with a scanning tunneling microscope, Science 251, 1206–1210 (1991)

    Article  Google Scholar 

  147. I.-W. Lyo, P. Avouris: Field-induced nanometer-scale to atomic-scale manipulation of silicon surfaces with the STM, Science 253, 173–176 (1991)

    Article  Google Scholar 

  148. G. Dujardin, R.E. Walkup, P. Avouris: Dissociation of individual molecules with electrons from the tip of a scanning tunneling microscope, Science 255, 1232–1235 (1992)

    Article  Google Scholar 

  149. T.-C. Shen, C. Wang, G.C. Abeln, J.R. Tucker, J.W. Lyding, P. Avouris, R.E. Walkup: Atomic-scale desorption through electronic and vibrational-excitation mechanisms, Science 268, 1590–1592 (1995)

    Article  Google Scholar 

  150. M.T. Cuberes, R.R. Schittler, J.K. Gimzewsk: Room-temperature repositioning of individual C60 molecules at Cu steps: operation of a molecular counting device, Appl. Phys. Lett. 69, 3016–3018 (1996)

    Article  Google Scholar 

  151. H.J. Lee, W. Ho: Single-bond formation and characterization with a scanning tunneling microscope, Science 286, 1719–1722 (1999)

    Article  Google Scholar 

  152. T. Yamamoto, O. Kurosawa, H. Kabata, N. Shimamoto, M. Washizu: Molecular surgery of DNA based on electrostatic micromanipulation, IEEE Trans. Ind. Appl. 36, 1010–1017 (2000)

    Article  Google Scholar 

  153. C. Haber, D. Wirtz: Magnetic tweezers for DNA micromanipulation, Rev. Sci. Instrum. 71, 4561–4570 (2000)

    Article  Google Scholar 

  154. D.M. Schaefer, R. Reifenberger, A. Patil, R.P. Andres: Fabrication of two-dimensional arrays of nanometer-size clusters with the atomic force microscope, Appl. Phys. Lett. 66, 1012–1014 (1995)

    Article  Google Scholar 

  155. T. Junno, K. Deppert, L. Montelius, L. Samuelson: Controlled manipulation of nanoparticles with an atomic force microscope, Appl. Phys. Lett. 66, 3627–3629 (1995)

    Article  Google Scholar 

  156. P.E. Sheehan, C.M. Lieber: Nanomachining, manipulation and fabrication by force microscopy, Nanotechnology 7, 236–240 (1996)

    Article  Google Scholar 

  157. C. Baur, B.C. Gazen, B. Koel, T.R. Ramachandran, A.A.G. Requicha, L. Zini: Robotic nanomanipulation with a scanning probe microscope in a networked computing environment, J. Vac. Sci. Tech. B 15, 1577–1580 (1997)

    Article  Google Scholar 

  158. A.A.G. Requicha: Nanorobots, NEMS, and nanoassembly, Proceedings IEEE 91, 1922–1933 (2003)

    Article  Google Scholar 

  159. R. Resch, C. Baur, A. Bugacov, B.E. Koel, A. Madhukar, A.A.G. Requicha, P. Will: Building and manipulating 3-D and linked 2-D structures of nanoparticles using scanning force microscopy, Langmuir 14, 6613–6616 (1998)

    Article  Google Scholar 

  160. J. Hu, Z.-H. Zhang, Z.-Q. Ouyang, S.-F. Chen, M.-Q. Li, F.-J. Yang: Stretch and align virus in nanometer scale on an atomically flat surface, J. Vac. Sci. Tech. B 16, 2841–2843 (1998)

    Article  Google Scholar 

  161. M. Sitti, S. Horiguchi, H. Hashimoto: Controlled pushing of nanoparticles: modeling and experiments, IEEE/ASME Trans. Mechatron. 5, 199–211 (2000)

    Article  Google Scholar 

  162. M. Guthold, M.R. Falvo, W.G. Matthews, S. Paulson, S. Washburn, D.A. Erie, R. Superfine, J.F.P. Brooks, I.R.M. Taylor: Controlled manipulation of molecular samples with the nanoManipulator, IEEE/ASME Trans. Mechatron. 5, 189–198 (2000)

    Article  Google Scholar 

  163. G.Y. Li, N. Xi, M.M. Yu, W.K. Fung: Development of augmented reality system for AFM-based nanomanipulation, IEEE/ASME Trans. Mechatron. 9, 358–365 (2004)

    Article  Google Scholar 

  164. F. Arai, D. Andou, T. Fukuda: Micro manipulation based on micro physics–strategy based on attractive force reduction and stress measurement, Proc. IEEE/RSJ Int. Conf. Intell. Robotics Syst. (1995) pp. 236–241

    Google Scholar 

  165. H.W.P. Koops, J. Kretz, M. Rudolph, M. Weber, G. Dahm, K.L. Lee: Characterization and application of materials grown by electron-beam-induced deposition, Jpn. J. Appl. Phys. 33, 7099–7107 (1994)

    Article  Google Scholar 

  166. S. Iijima: Helical microtubules of graphitic carbon, Nature 354, 56–58 (1991)

    Article  Google Scholar 

  167. S.J. Tans, A.R.M. Verchueren, C. Dekker: Room-temperature transistor based on a single carbon nanotube, Nature 393, 49–52 (1998)

    Article  Google Scholar 

  168. R.H. Baughman, A.A. Zakhidov, W.A. de Heer: Carbon nanotubes-the route toward applications, Science 297, 787–792 (2002)

    Article  Google Scholar 

  169. M.J. Treacy, T.W. Ebbesen, J.M. Gibson: Exceptionally high Young's modulus observed for individual carbon nanotubes, Nature 381, 678–680 (1996)

    Article  Google Scholar 

  170. P. Poncharal, Z.L. Wang, D. Ugarte, W.A. de Heer: Electrostatic deflections and electromechanical resonances of carbon nanotubes, Science 283, 1513–1516 (1999)

    Article  Google Scholar 

  171. M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelley, R.S. Ruoff: Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science 287, 637–640 (2000)

    Article  Google Scholar 

  172. T.W. Ebbesen, H.J. Lezec, H. Hiura, J.W. Bennett, H.F. Ghaemi, T. Thio: Electrical conductivity of individual carbon nanotubes, Nature 382, 54–56 (1996)

    Article  Google Scholar 

  173. P. Kim, L. Shi, A. Majumdar, P.L. McEuen: Thermal transport measurements of individual multiwalled nanotubes, Phys. Rev. Lett. 87, 215502 (2001)

    Article  Google Scholar 

  174. W.J. Liang, M. Bockrath, D. Bozovic, J.H. Hafner, M. Tinkham, H. Park: Fabry-Perot interference in a nanotube electron waveguide, Nature 411, 665–669 (2001)

    Article  Google Scholar 

  175. X.B. Zhang, D. Bernaerts, G.V. Tendeloo, S. Amelincks, J.V. Landuyt, V. Ivanov, J.B. Nagy, P. Lambin, A.A. Lucas: The texture of catalytically grown coil-shaped carbon nanotubules, Europhys. Lett. 27, 141–146 (1994)

    Article  Google Scholar 

  176. X.Y. Kong, Z.L. Wang: Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts, Nano Lett. 3, 1625–1631 (2003)

    Article  Google Scholar 

  177. S.V. Golod, V.Y. Prinz, V.I. Mashanov, A.K. Gutakovsky: Fabrication of conducting GeSi/Si micro- and nanotubes and helical microcoils, Semicond. Sci. Technol. 16, 181–185 (2001)

    Article  Google Scholar 

  178. L. Zhang, E. Deckhardt, A. Weber, C. Schönenberger, D. Grützmacher: Controllable fabrication of SiGe/Si and SiGe/Si/Cr helical nanobelts, Nanotechnology 16, 655–663 (2005)

    Article  Google Scholar 

  179. L. Zhang, E. Ruh, D. Grützmacher, L.X. Dong, D.J. Bell, B.J. Nelson, C. Schönenberger: Anomalous coiling of SiGe/Si and SiGe/Si/Cr helical nanobelts, Nano Lett. 6, 1311–1317 (2006)

    Article  Google Scholar 

  180. D.J. Bell, L.X. Dong, B.J. Nelson, M. Golling, L. Zhang, D. Grützmacher: Fabrication and characterization of three-dimensional InGaAs/GaAs nanosprings, Nano Lett. 6, 725–729 (2006)

    Article  Google Scholar 

  181. D.J. Bell, Y. Sun, L. Zhang, L.X. Dong, B.J. Nelson, D. Grutzmacher: Three-dimensional nanosprings for electromechanical sensors, Sens. Actuators A Phys. 130, 54–61 (2006)

    Article  Google Scholar 

  182. R. Martel, T. Schmidt, H.R. Shea, T. Herte, P. Avouris: Single- and multi-wall carbon nanotube field-effect transistors, Appl. Phys. Lett. 73, 2447–2449 (1998)

    Article  Google Scholar 

  183. N.R. Franklin, Y.M. Li, R.J. Chen, A. Javey, H.J. Dai: Patterned growth of single-walled carbon nanotubes on full 4-inch wafers, Appl. Phys. Lett. 79, 4571–4573 (2001)

    Article  Google Scholar 

  184. T. Rueckes, K. Kim, E. Joselevich, G.Y. Tseng, C.-L. Cheung, C.M. Lieber: Carbon nanotube-based non-volatile random access memory for molecular computing science, Science 289, 94–97 (2000)

    Article  Google Scholar 

  185. A. Subramanian, B. Vikramaditya, L.X. Dong, D.J. Bell, B.J. Nelson: Micro and nanorobotic assembly using dielectrophoresis. In: Robotics Sci. Syst, ed. by S. Thrun, G.S. Sukhatme, S. Schaal, O. Brock (MIT Press, Cambridge 2005) pp. 327–334

    Google Scholar 

  186. C.K.M. Fung, V.T.S. Wong, R.H.M. Chan, W.J. Li: Dielectrophoretic batch fabrication of bundled carbon nanotube thermal sensors, IEEE Trans. Nanotechnol. 3, 395–403 (2004)

    Article  Google Scholar 

  187. T. Fukuda, F. Arai, L.X. Dong: Assembly of nanodevices with carbon nanotubes through nanorobotic manipulations, Proceedings IEEE 91, 1803–1818 (2003)

    Article  Google Scholar 

  188. E.W. Wong, P.E. Sheehan, C.M. Lieber: Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes, Science 277, 1971–1975 (1997)

    Article  Google Scholar 

  189. M.R. Falvo, G.J. Clary, R.M. Taylor, V. Chi, F.P. Brooks, S. Washburn, R. Superfine: Bending and buckling of carbon nanotubes under large strain, Nature 389, 582–584 (1997)

    Article  Google Scholar 

  190. H.W.C. Postma, A. Sellmeijer, C. Dekker: Manipulation and imaging of individual single-walled carbon nanotubes with an atomic force microscope, Adv. Mater. 12, 1299–1302 (2000)

    Article  Google Scholar 

  191. T. Hertel, R. Martel, P. Avouris: Manipulation of individual carbon nanotubes and their interaction with surfaces, J. Phys. Chem. B 102, 910–915 (1998)

    Article  Google Scholar 

  192. P. Avouris, T. Hertel, R. Martel, T. Schmidt, H.R. Shea, R.E. Walkup: Carbon nanotubes: nanomechanics, manipulation, and electronic devices, Appl. Surf. Sci. 141, 201–209 (1999)

    Article  Google Scholar 

  193. M. Ahlskog, R. Tarkiainen, L. Roschier, P. Hakonen: Single-electron transistor made of two crossing multiwalled carbon nanotubes and its noise properties, Appl. Phys. Lett. 77, 4037–4039 (2000)

    Article  Google Scholar 

  194. M.R. Falvo, R.M.I. Taylor, A. Helser, V. Chi, F.P.J. Brooks, S. Washburn, R. Superfine: Nanometre-scale rolling and sliding of carbon nanotubes, Nature 397, 236–238 (1999)

    Article  Google Scholar 

  195. B. Bhushan, V.N. Koinkar: Nanoindentation hardness measurements using atomic-force microscopy, Appl. Phys. Lett. 64, 1653–1655 (1994)

    Article  Google Scholar 

  196. P. Vettiger, G. Cross, M. Despont, U. Drechsler, U. Durig, B. Gotsmann, W. Haberle, M.A. Lantz, H.E. Rothuizen, R. Stutz, G.K. Binnig: The millipede - Nanotechnology entering data storage, IEEE Trans. Nanotechnol. 1, 39–55 (2002)

    Article  Google Scholar 

  197. L.X. Dong: Nanorobotic manipulations of carbon nanotubes. Ph.D. Thesis Ser (Nagoya Univ., Nagoya 2003)

    Google Scholar 

  198. J.H. Hafner, C.-L. Cheung, T.H. Oosterkamp, C.M. Lieber: High-yield assembly of individual single-walled carbon nanotube tips for scanning probe microscopies, J. Phys. Chem. B 105, 743–746 (2001)

    Article  Google Scholar 

  199. L.X. Dong, F. Arai, T. Fukuda: Electron-beam-induced deposition with carbon nanotube emitters, Appl. Phys. Lett. 81, 1919–1921 (2002)

    Article  Google Scholar 

  200. L.X. Dong, F. Arai, T. Fukuda: 3D nanorobotic manipulations of multi-walled carbon nanotubes, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2001) pp. 632–637

    Google Scholar 

  201. L.X. Dong, F. Arai, T. Fukuda: Destructive constructions of nanostructures with carbon nanotubes through nanorobotic manipulation, IEEE/ASME Trans. Mechatron. 9, 350–357 (2004)

    Article  Google Scholar 

  202. J. Cumings, P.G. Collins, A. Zettl: Peeling and sharpening multiwall nanotubes, Nature 406, 58 (2000)

    Article  Google Scholar 

  203. J. Cumings, A. Zettl: Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes, Science 289, 602–604 (2000)

    Article  Google Scholar 

  204. A. Kis, K. Jensen, S. Aloni, W. Mickelson, A. Zettl: Interlayer forces and ultralow sliding friction in multiwalled carbon nanotubes, Phys. Rev. Lett. 97, 025501 (2006)

    Article  Google Scholar 

  205. L.X. Dong, F. Arai, T. Fukuda: Nanoassembly of carbon nanotubes through mechanochemical nanorobotic manipulations, Jpn. J. Appl. Phys. 42, 295–298 (2003)

    Article  Google Scholar 

  206. L. Chico, V.H. Crespi, L.X. Benedict, S.G. Louie, M.L. Cohen: Pure carbon nanoscale devices: Nanotube heterojunctions, Phys. Rev. Lett. 76, 971–974 (1996)

    Article  Google Scholar 

  207. Z. Yao, H.W.C. Postma, L. Balents, C. Dekker: Carbon nanotube intramolecular junctions, Nature 402, 273–276 (1999)

    Article  Google Scholar 

  208. H.W.C. Postma, T. Teepen, Z. Yao, M. Grifoni, C. Dekker: Carbon nanotube single-electron transistors at room temperature, Science 293, 76–79 (2001)

    Article  Google Scholar 

  209. M.S. Fuhrer, J. Nygård, L. Shih, M. Forero, Y.-G. Yoon, M.S.C. Mazzoni, H.J. Choi, J. Ihm, S.G. Louie, A. Zettl, P.L. McEuen: Crossed nanotube junctions, Science 288, 494–497 (2000)

    Article  Google Scholar 

  210. T. Rueckes, K. Kim, E. Joselevich, G.Y. Tseng, C.-L. Cheung, C.M. Lieber: Carbon nanotube-based nonvolatile random access memory for molecular computing science, Science 289, 94–97 (2000)

    Article  Google Scholar 

  211. A.G. Rinzler, J.H. Hafner, P. Nikolaev, L. Lou, S.G. Kim, D. Tománek, P. Nordlander, D.T. Colbert, R.E. Smalley: Unraveling nanotubes: field emission from an atomic wire, Science 269, 1550–1553 (1995)

    Article  Google Scholar 

  212. S.C. Minne, G. Yaralioglu, S.R. Manalis, J.D. Adams, J. Zesch, A. Atalar, C.F. Quate: Automated parallel high-speed atomic force microscopy, Appl. Phys. Lett. 72, 2340–2342 (1998)

    Article  Google Scholar 

  213. G.D. Skidmore, E. Parker, M. Ellis, N. Sarkar, R. Merkle: Exponential assembly, Nanotechnology 11, 316–321 (2001)

    Article  Google Scholar 

  214. H.J. Dai, J.H. Hafner, A.G. Rinzler, D.T. Colbert, R.E. Smalley: Nanotubes as nanoprobes in scanning probe microscopy, Nature 384, 147–150 (1996)

    Article  Google Scholar 

  215. J.H. Hafner, C.L. Cheung, C.M. Lieber: Growth of nanotubes for probe microscopy tips, Nature 398, 761–762 (1999)

    Article  Google Scholar 

  216. L.X. Dong, B.J. Nelson, T. Fukuda, F. Arai: Towards Nanotube Linear Servomotors, IEEE Trans. Autom. Sci. Eng. 3, 228–235 (2006)

    Article  Google Scholar 

  217. Y.H. Gao, Y. Bando: Carbon nanothermometer containing gallium, Nature 415, 599 (2002)

    Article  Google Scholar 

  218. L.X. Dong, X.Y. Tao, L. Zhang, B.J. Nelson, X.B. Zhang: Nanorobotic spot welding: Controlled metal deposition with attogram precision from Copper-filled carbon nanotubes, Nano Lett. 7, 58–63 (2007)

    Article  Google Scholar 

  219. S.W. Lee, D.S. Lee, R.E. Morjan, S.H. Jhang, M. Sveningsson, O.A. Nerushev, Y.W. Park, E.E.B. Campbell: A three-terminal carbon nano-relay, Nano Lett. 4, 2027–2030 (2004)

    Article  Google Scholar 

  220. A.M. Fennimore, T.D. Yuzvinsky, W.-Q. Han, M.S. Fuhrer, J. Cumings, A. Zettl: Rotational actuators based on carbon nanotubes, Nature 424, 408–410 (2003)

    Article  Google Scholar 

  221. A. Subramanian, L.X. Dong, J. Tharian, U. Sennhauser, B.J. Nelson: Batch fabrication of carbon nanotube bearings, Nanotechnology 18, 075703 (2007)

    Article  Google Scholar 

  222. P. Kim, C.M. Lieber: Nanotube nanotweezers, Science 286, 2148–2150 (1999)

    Article  Google Scholar 

  223. L.X. Dong, A. Subramanian, D. Hugentobler, B.J. Nelson, Y. Sun: Nano Encoders based on Vertical Arrays of Individual Carbon Nanotubes, Adv. Robotics 20, 1281–1301 (2006)

    Article  Google Scholar 

  224. L.X. Dong, B.J. Nelson: Robotics in the small, Part II: Nanorobotics, IEEE Robotics Autom. Mag. 14, 111–121 (2007)

    Article  Google Scholar 

  225. I. Asimov: Fantastic Voyage (Bantam Books, New York 1966)

    Google Scholar 

  226. R.A. Freitas: Nanomedicine, Volume I: Basic Capabilities (Landes Bioscience, Austin 1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradley J. Nelson .

Editor information

Editors and Affiliations

Video-References

Video-References

:

Artificial bacterial flagella available from http://handbookofrobotics.org/view-chapter/27/videodetails/11

:

The electromagnetic control of an untethered microrobot available from http://handbookofrobotics.org/view-chapter/27/videodetails/12

:

A transversely magnetized rod-shaped microrobot available from http://handbookofrobotics.org/view-chapter/27/videodetails/13

:

Attogram mass delivery from a carbon nanotube available from http://handbookofrobotics.org/view-chapter/27/videodetails/489

:

Multi-beam bilateral teleoperation of holographic optical tweezers available from http://handbookofrobotics.org/view-chapter/27/videodetails/490

:

High-speed magnetic microrobot actuation in a microfluidic chip by a fine V-groove surface available from http://handbookofrobotics.org/view-chapter/27/videodetails/491

:

Linear-to-rotary motion converters for three-dimensional microscopy available from http://handbookofrobotics.org/view-chapter/27/videodetails/492

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nelson, B.J., Dong, L., Arai, F. (2016). Micro-/Nanorobots. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-32552-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32552-1_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32550-7

  • Online ISBN: 978-3-319-32552-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics