Skip to main content

Force and Tactile Sensing

  • Chapter
  • First Online:

Part of the book series: Springer Handbooks ((SHB))

Abstract

This chapter provides an overview of force and tactile sensing, with the primary emphasis placed on tactile sensing. We begin by presenting some basic considerations in choosing a tactile sensor and then review a wide variety of sensor types, including proximity, kinematic, force, dynamic, contact, skin deflection, thermal, and pressure sensors. We also review various transduction methods, appropriate for each general sensor type. We consider the information that these various types of sensors provide in terms of whether they are most useful for manipulation, surface exploration or being responsive to contacts from external agents.

Concerning the interpretation of tactile information, we describe the general problems and present two short illustrative examples. The first involves intrinsic tactile sensing, i. e., estimating contact locations and forces from force sensors. The second involves contact pressure sensing, i. e., estimating surface normal and shear stress distributions from an array of sensors in an elastic skin. We conclude with a brief discussion of the challenges that remain to be solved in packaging and manufacturing damage-tolerant tactile sensors.

figure a

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

2-D:

two-dimensional

CCD:

charge-coupled device

CMOS:

complementary metal-oxide-semiconductor

DOF:

degree of freedom

FSR:

force sensing resistor

IR:

infrared

MEMS:

microelectromechanical system

PC:

personal computer

PSD:

position sensing device

PVDF:

polyvinylidene fluoride

RTD:

resistance temperature devices

SEM:

scanning electron microscope

References

  1. M.I. Tiwana, S.J. Redmond, N.H. Lovell: A review of tactile sensing technologies with applications in biomedical engineering, Sens. Actuators A Phys. 179, 17–31 (2012)

    Article  Google Scholar 

  2. H. Yousef, M. Boukallel, K. Althoefer: Tactile sensing for dexterous in-hand manipulation in robotics – A review, Sens. Actuators A Phys. 167(2), 171–187 (2011)

    Article  Google Scholar 

  3. R.S. Dahiya, G. Metta, M. Valle, G. Sandini: Tactile sensing – From humans to humanoids, IEEE Trans. Robotics 26(1), 1–20 (2010)

    Article  Google Scholar 

  4. C. Lucarotti, C.M. Oddo, N. Vitiello, M.C. Carrozza: Synthetic and bio-artificial tactile sensing: A review, Sensors 13(2), 1435–1466 (2013)

    Article  Google Scholar 

  5. M.H. Lee: Tactile sensing: new directions, new challenges, Int. J. Robotic Res. 19(7), 636–643 (2000)

    Google Scholar 

  6. M.H. Lee, H.R. Nicholls: Tactile sensing for mechatronics-a state of the art survey, Mechatronics 9(1), 1–31 (1999)

    Article  Google Scholar 

  7. L.D. Harmon: Automated tactile sensing, Int. J. Robotics Res. 1(2), 3–32 (1982)

    Article  Google Scholar 

  8. J.-P. Uldry, R.A. Russell: Developing conductive elastomers for applications in robotic tactile sensing, Adv. Robotics 6(2), 255–271 (1992)

    Article  Google Scholar 

  9. T.V. Papakostas, J. Lima, M. Lowe: A large area force sensor for smart skin applications, Proc. IEEE Sens., Vol. 2 (2002) pp. 1620–1624

    Chapter  Google Scholar 

  10. M. Shimojo, A. Namiki, M. Ishikawa, R. Makino, K. Mabuchi: A tactile sensor sheet using pressure conductive rubber with electrical-wires stitched method, IEEE Sens. J. 4(5), 589–596 (2004)

    Article  Google Scholar 

  11. D. De Rossi, A. Della Santa, A. Mazzoldi: Dressware: wearable piezo- and thermoresistive fabrics for ergonomics and rehabilitation, Proc. 19th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., Vol. 5 (1997) pp. 1880–1883

    Google Scholar 

  12. A. Tognetti, F. Lorussi, M. Tesconi, D. De Rossi: Strain sensing fabric characterization, Proc. IEEE Sens., Vol. 1 (2004) pp. 527–530

    Google Scholar 

  13. R.S. Fearing, T.O. Binford: Using a cylindrical tactile sensor for determining curvature, IEEE Trans. Robotics Autom. 7(6), 806–817 (1991)

    Article  Google Scholar 

  14. Pressure Profile Systems: http://www.pressureprofile.com/

  15. H.-K. Lee, S.-I. Chang, E. Yoon: A flexible polymer tactile sensor: Fabrication and modular expandability for large area deployment, J. Microelectromechanical Syst. 15(6), 1681–1686 (2006)

    Article  Google Scholar 

  16. T. Hoshi, H. Shinoda: A sensitive skin based on touch-area-evaluating tactile elements, Proc. 14th Symp. Haptic Interfaces Virtual Env. Teleoperator Syst. (2006) pp. 89–94

    Chapter  Google Scholar 

  17. P. Maiolino, M. Maggiali, G. Cannata, G. Metta, L. Natale: A flexible and robust large scale capacitive tactile system for robots, IEEE Sens. J. 13(10), 3910–3917 (2013)

    Article  Google Scholar 

  18. T. Sekitani, M. Takamiya, Y. Noguchi, S. Nakano, Y. Kato, T. Sakurai, T. Someya: A large-area wireless power-transmission sheet using printed organic transistors and plastic MEMS switches, Nat. Mater. 6(6), 413–417 (2007)

    Article  Google Scholar 

  19. R.S. Dahiya, D. Cattin, A. Adami, C. Collini, L. Barboni, M. Valle, L. Lorenzelli, R. Oboe, G. Metta, F. Brunetti: Towards tactile sensing system on chip for robotic applications, IEEE Sens. J. 11(12), 3216–3226 (2011)

    Article  Google Scholar 

  20. K. Takei, T. Takahashi, J.C. Ho, H. Ko, A.G. Gillies, P.W. Leu, R.S. Fearing, A. Javey: Nanowire active-matrix circuitry for low-voltage macroscale artificial skin, Nat. Mater. 9(10), 821–826 (2010)

    Article  Google Scholar 

  21. K. Kamiyama, H. Kajimoto, N. Kawakami, S. Tachi: Evaluation of a vision-based tactile sensor, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 2 (2004) pp. 1542–1547

    Google Scholar 

  22. M. Quigley, C. Salisbury, A.Y. Ng, J.K. Salisbury: Mechatronic design of an integrated robotic hand, Int. J. Robobotics Res. 33(5), 706–720 (2014)

    Article  Google Scholar 

  23. N.J. Ferrier, R.W. Brockett: Reconstructing the shape of a deformable membrane from image data, Int. J. Robotics Res. 19(9), 795–816 (2000)

    Article  Google Scholar 

  24. C.H. Lin, T.W. Erickson, J.A. Fishel, N. Wettels, G.E. Loeb: Signal processing and fabrication of a biomimetic tactile sensor array with thermal, force and microvibration modalities, Proc. IEEE Int. Conf. Robotics Biomim. (ROBIO) (2009) pp. 129–134

    Google Scholar 

  25. W.C. Nowlin: Experimental results on Bayesian algorithms for interpreting compliant tactile sensing data, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 1 (1991) pp. 378–383

    Google Scholar 

  26. R.A. Russell, S. Parkinson: Sensing surface shape by touch, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 1 (1993) pp. 423–428

    Google Scholar 

  27. R.A. Russell: Compliant-skin tactile sensor, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1987) pp. 1645–1648

    Google Scholar 

  28. W.R. Provancher, M.R. Cutkosky: Sensing local geometry for dexterous manipulation, Proc. Intl. Symp. Exp. Robotics (2002) pp. 507–516

    Google Scholar 

  29. P. Dario, R. Lazzarini, R. Magni, S.R. Oh: An integrated miniature fingertip sensor, Proc. 7th Int. Symp. Micro Mach. Hum. Sci. (1996) pp. 91–97

    Google Scholar 

  30. R.D. Howe, M.R. Cutkosky: Dynamic tactile sensing: perception of fine surface features with stress rate sensing, IEEE Trans. Robotics Autom. 9(2), 140–151 (1993)

    Article  Google Scholar 

  31. R.D. Howe, M.R. Cutkosky: Sensing skin acceleration for texture and slip perception, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 1 (1989) pp. 145–150

    Google Scholar 

  32. J.M. Romano, K. Hsiao, G. Niemeyer, S. Chitta, K.J. Kuchenbecker: Human-inspired robotic grasp control with tactile sensing, IEEE Trans. Robotics 27(6), 1067–1079 (2011)

    Article  Google Scholar 

  33. J. Lee, S.N. Sponberg, O.Y. Loh, A.G. Lamperski, R.J. Full, N.J. Cowan: Templates and anchors for antenna-based wall following in cockroaches and robots, IEEE Trans. Robotics 24(1), 130–143 (2008)

    Article  Google Scholar 

  34. T.J. Prescott, M.J. Pearson, B. Mitchinson, J.C. Sullivan, A. Pipe: Whisking with robots: from rat vibrissae to biomimetic technology for active touch, IEEE Robotics Autom. Mag. 16(3), 42–50 (2009)

    Article  Google Scholar 

  35. R.A. Russell: Using tactile whiskers to measure surface contours, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1992) pp. 1295–1299

    Google Scholar 

  36. M. Kaneko, N. Kanayama, T. Tsuji: Active antenna for contact sensing, IEEE Trans. Robotics Autom. 14(2), 278–291 (1998)

    Article  Google Scholar 

  37. T.N. Clements, C.D. Rahn: Three-dimensional contact imaging with an actuated whisker, IEEE Trans. Robotics 22(4), 844–848 (2006)

    Article  Google Scholar 

  38. T.J. Prescott, M.J. Pearson, B. Mitchinson, J.C. Sullivan, A. Pipe: Tactile discrimination using active whisker sensors, IEEE Sens. J. 12(2), 350–362 (2012)

    Article  Google Scholar 

  39. J.M. Vranish, R.L. McConnell, S. Mahalingam: Capaciflector collision avoidance sensors for robots, Comput. Electr. Eng. 17(3), 173–179 (1991)

    Article  Google Scholar 

  40. E. Cheung, V. Lumelsky: A sensitive skin system for motion control of robot arm manipulators, Robotics Auton. Syst. 10(1), 9–32 (1992)

    Article  Google Scholar 

  41. D. Um, V. Lumelsky: Fault tolerance via component redundancy for a modularized sensitive skin, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1999) pp. 722–727

    Google Scholar 

  42. S. Walker, K. Loewke, M. Fischer, C. Liu, J.K. Salisbury: An optical fiber proximity sensor for haptic exploration, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2007) pp. 473–478

    Google Scholar 

  43. P. Wei, L. Zhizeng: A design of miniature strong anti-jamming proximity sensor, Proc. Int. Conf. Comp. Sci. Electron. Eng. (ICCSEE) (2012) pp. 327–331

    Google Scholar 

  44. E. Guglielmelli, V. Genovese, P. Dario, G. Morana: Avoiding obstacles by using a proximity US/IR sensitive skin, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (1993) pp. 2207–2214

    Google Scholar 

  45. D. Wegerif, D. Rosinski: Sensor based whole arm obstacle avoidance for kinematically redundant robots, Proc. SPIE – Int. Soc. Opt. Eng. 1828, 417–426 (1992)

    Google Scholar 

  46. G. Buttazzo, P. Dario, R. Bajcsy: Finger based explorations, Proc. SPIE 0726, Intell. Robots Comput. Vis. V, ed. by D.P. Casadent (1986) pp. 338–345

    Google Scholar 

  47. D. Siegel, I. Garabieta, J. Hollerbach: An integrated tactile and thermal sensor, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1986) pp. 1286–1291

    Google Scholar 

  48. R.A. Russell: A thermal sensor array to provide tactile feedback for robots, Int. J. Robotics Res. 5(3), 35–39 (1985)

    Article  Google Scholar 

  49. F. Castelli: An integrated tactile-thermal robot sensor with capacitive tactile array, IEEE Trans. Ind. Appl. 38(1), 85–90 (2002)

    Article  Google Scholar 

  50. D.G. Caldwell, C. Gosney: Enhanced tactile feedback (Tele-taction) using a multi-functional sensory system, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) 1, 955–960 (1993)

    Google Scholar 

  51. G.J. Monkman, P.M. Taylor: Thermal tactile sensing, IEEE Trans. Robotics Autom. 9(3), 313–318 (1993)

    Article  Google Scholar 

  52. J. Engel, J. Chen, X. Wang, Z. Fan, C. Liu, D. Jones: Technology development of integrated multi-modal and flexible tactile skin for robotics applications, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Vol. 3 (2003) pp. 2359–2364

    Google Scholar 

  53. P. Bergveld: Development and application of chemical sensors in liquids. In: Sensors and Sensory Systems for Advanced Robots, NATO ASI Series, Vol. 43, ed. by P. Dario (Springer, Berlin, Heidelberg 1988) pp. 397–414

    Chapter  Google Scholar 

  54. T. Nakamoto, A. Fukuda, T. Moriizumi: Perfume and flavor identification by odor sensing system using quartz-resonator sensor array and neural-network pattern recognition, Proc. 6th Int. Conf. Solid-State Sens. Actuators (TRANSDUCERS '91) (1991)

    Google Scholar 

  55. R.A. Russell: Survey of robotic applications for odor-sensing technology, Int. J. Robotics Res. 20(2), 144–162 (2001)

    Article  Google Scholar 

  56. A.J. Lilienthal, A. Loutfi, T. Duckett: Airborne chemical sensing with mobile robots, Sensors 6(11), 1616–1678 (2006)

    Article  Google Scholar 

  57. B.A. Auld, A.J. Bahr: A novel multifunction robot sensor, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1986) pp. 1791–1797

    Google Scholar 

  58. H. Clergeot, D. Placko, J.M. Detriche: Electrical proximity sensors. In: Sensors and Sensory Systems for Advanced Robots, NATO ASI Series, Vol. 43, ed. by P. Dario (Springer, Berlin, Heidelberg 1988) pp. 295–308

    Chapter  Google Scholar 

  59. M. Kaneko, K. Tanie: Contact point detection for grasping of an unknown object using self-posture changeability (SPC), IEEE Trans. Robotics Autom., Vol. 10 (1994) pp. 355–367

    Google Scholar 

  60. A.M. Dollor, L.P. Jentoft, J.H. Cao, R.D. Howe: Contact sensing and grasping performance of compliant hands, Auton. Robots 28(1), 65–75 (2010)

    Article  Google Scholar 

  61. J.K. Salisbury: Appendix to kinematic and force analysis of articulated hands. In: Robot Hands and the Mechanics of manipulation, ed. by M.T. Mason, J.K. Salisbury (MIT Press, Cambridge 1985)

    Google Scholar 

  62. G. Palli, C. Melchiorri, G. Vassura, U. Scarcia, L. Moriello, G. Berselli, A. Cavallo, G. De Maria, C. Natale, S. Pirozzi, C. May, F. Ficuciello, B. Siciliano: The DEXMART hand: Mechatronic design and experimental evaluation of synergy-based control for human-like grasping, Int. J. Robotics Res. 33(5), 799–824 (2014)

    Article  Google Scholar 

  63. A. Pugh (Ed.): Robot Sensors, Volume 2: Tactile and Non-Vision (IFS Publ./Springer, New York 1986)

    Google Scholar 

  64. J.G. Webster: Tactile Sensors for Robotics and Medicine (Wiley, New York 1988)

    Google Scholar 

  65. J.K. Salisbury: Interpretation of contact geometries from force measurements. In: Robotics Res. First Int. Symp, ed. by M. Brady, R.P. Paul (MIT Press, Cambridge 1984)

    Google Scholar 

  66. D. Brock, S. Chiu: Environment perception of an articulated robot hand using contact sensors, ASME Winter Annu. Meet. Robotics Manuf. Automa., Vol. 15 (1985) pp. 89–96

    Google Scholar 

  67. J. Butterfass, M. Grebenstein, H. Liu, G. Hirzinger: DLR-Hand II: next generation of a dextrous robot hand, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 1 (2001) pp. 109–114

    Google Scholar 

  68. F.W. Sinden, R.A. Boie: A planar capacitive force sensor with six degrees of freedom, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1986) pp. 1806–1813

    Google Scholar 

  69. B.B. Edin, L. Beccai, L. Ascari, S. Roccella, J.J. Cabibihan, M.C. Carrozza: A bio-inspired approach for the design and characterization of a tactile sensory system for a cybernetic prosthetic hand, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2006) pp. 1354–1358

    Google Scholar 

  70. Y.-L. Park, S.C. Ryu, R.J. Black, K.K. Chau, B. Moslehi, M.R. Cutkosky: Exoskeletal force-sensing end-effectors with embedded optical fiber-bragg-grating sensors, IEEE Trans. Robotics 25(6), 1319–1331 (2009)

    Article  Google Scholar 

  71. A. Bicchi: A criterion for optimal design of multiaxis force sensors, Robotics Auton. Syst. 10(4), 269–286 (1992)

    Article  Google Scholar 

  72. M. Uchiyama, E. Bayo, E. Palma-Villalon: A mathematical approach to the optimal structural design of a robot force sensor, Proc. USA-Japan Symp. Flexible Automation (1998) pp. 539–546

    Google Scholar 

  73. A. Bicchi, J.K. Salisbury, P. Dario: Augmentation of grasp robustness using intrinsic tactile sensing, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 1 (1989) pp. 302–307

    Google Scholar 

  74. J.S. Son, M.R. Cutkosky, R.D. Howe: Comparison of contact sensor localization abilities during manipulation, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Vol. 2 (1995) pp. 96–103

    Google Scholar 

  75. R.S. Johansson, J.R. Flanagan: Coding and use of tactile signals from the fingertips in object manipulation tasks, Nat. Rev. Neurosci. 10(5), 345–359 (2009)

    Article  Google Scholar 

  76. M. Ueda: Tactile sensors for an industrial robot to detect a slip, Proc. 2nd Int. Symp. Ind. Robots (1972) pp. 63–70

    Google Scholar 

  77. R. Matsuda: Slip sensor of industrial robot and its application, Electric. Eng. Jap. 96(5), 129–136 (1976)

    Article  Google Scholar 

  78. J. Rebman, J.-E. Kallhammer: A Search for Precursors of Slip in Robotic Grasp, Intelligent Robots and Computer Vision: Fifth in a Series, Cambridge, ed. by E. Casaent (1986) pp. 329–337

    Google Scholar 

  79. P. Dario, D. De Rossi: Tactile sensors and the gripping challenge, IEEE Spectrum 22(8), 46–52 (1985)

    Article  Google Scholar 

  80. R.W. Patterson, G.E. Nevill: The induced vibration touch sensor – A new dynamic touch sensing concept, Robotica 4(01), 27–31 (1986)

    Article  Google Scholar 

  81. M.R. Cutkosky, J. Ulmen: Dynamic Tactile Sensing. In: The Human Hand as an Inspiration for Robot Hand Development, Springer Tracts in Advanced Robotics 95, ed. by R. Balasubramanian, V.J. Santos (Springer, Cham 2014) pp. 389–403

    Chapter  Google Scholar 

  82. D. Dornfeld, C. Handy: Slip detection using acoustic emission signal analysis, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 3 (1987) pp. 1868–1875

    Google Scholar 

  83. X.A. Wu, N. Burkhard, B. Heyneman, R. Valen, M.R. Cutkosky: Contact event detection for robotic oil drilling, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2014) pp. 2255–2261

    Google Scholar 

  84. S. Omata: Real time robotic tactile sensor system for the determination of the physical properties of biomaterials, Sens. Actuators A Phys. 112(2/3), 278–285 (2004)

    Article  Google Scholar 

  85. S.B. Backus, A.M. Dollar: Robust resonant frequency-based contact detection with applications in robotic reaching and grasping, IEEE/ASME Trans. Mechatron. 19(5), 1552–1561 (2014)

    Article  Google Scholar 

  86. M.R. Tremblay, M.R. Cutkosky: Estimating friction using incipient slip sensing during a manipulation task, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 1 (1993) pp. 429–434

    Google Scholar 

  87. E.G.M. Holweg, H. Hoeve, W. Jongkind, L. Marconi, C. Melchiorri, C. Bonivento: Slip detection by tactile sensors: Algorithms and experimental results, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 4 (1996) pp. 3234–3239

    Chapter  Google Scholar 

  88. I. Fujimoto, Y. Yamada, T. Maeno, T. Morizono, Y. Umetani: Identification of incipient slip phenomena based on the circuit output signals of PVDF film strips embedded in artificial finger ridges, Trans. Soc. Instrum. Control Eng. 40(6), 648–655 (2004)

    Article  Google Scholar 

  89. B. Choi, H.R. Choi, S. Kang: Development of tactile sensor for detecting contact force and slip, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2005) pp. 2638–2643

    Google Scholar 

  90. P.A. Schmidt, E. Maël, R.P. Würtz: A sensor for dynamic tactile information with applications in human–robot interaction and object exploration, Robotics Auton. Syst. 54(12), 1005–1014 (2006)

    Article  Google Scholar 

  91. R.D. Howe: Tactile sensing and control of robotic manipulation, Adv. Robotics 8(3), 245–261 (1993)

    Article  Google Scholar 

  92. C. Melchiorri: Slip detection and control using tactile and force sensors, IEEE/ASME Trans. Mechatron. 5(3), 235–243 (2000)

    Article  Google Scholar 

  93. C.M. Oddo, L. Beccai, G.G. Muscolo, M.C. Carrozza: A biomimetic MEMS-based tactile sensor array with fingerprints integrated in a robotic fingertip for artificial roughness encoding, Proc. IEEE Int. Conf. Robotics Biomim. (2009) pp. 894–900

    Google Scholar 

  94. A. Schmitz, M. Maggiali, L. Natale, B. Bonino, G. Metta: A tactile sensor for the fingertips of the humanoid robot iCub, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (2010) pp. 2212–2217

    Google Scholar 

  95. L.P. Jentoft, Y. Tenzer, D. Vogt, R.J. Wood, R.D. Howe: Flexible, stretchable tactile arrays from MEMS barometers, Proc. 16th Int. Conf. Adv. Robotics (2013) pp. 1–6

    Google Scholar 

  96. R.S. Fearing, J.M. Hollerbach: Basic solid mechanics for tactile sensing, Int. J. Robotics Res. 4(3), 40–54 (1985)

    Article  Google Scholar 

  97. W. Griffin, W.M. Provancher, M.R. Cutkosky: Feedback strategies for telemanipulation with shared control of object handling forces, Presence Teleoperations Virtual Environ. 14(6), 720–731 (2005)

    Article  Google Scholar 

  98. H. Maekawa, K. Tanie, K. Komoriya, M. Kaneko, C. Horiguchi, T. Sugawara: Development of a finger-shaped tactile sensor and its evaluation by active touch, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 2 (1992) pp. 1327–1334

    Google Scholar 

  99. R.S. Fearing: Tactile sensing mechanisms, Int. J. Robotics Res. 9(3), 3–23 (1987)

    Article  Google Scholar 

  100. G. Cannata, M. Maggiali, G. Metta, G. Sandini: An embedded artificial skin for humanoid robots, Proc. IEEE Int. Conf. Muiltisens. Fusion Integr. Intell. Syst. (2008) pp. 434–438

    Google Scholar 

  101. M.-Y. Cheng, X.-H. Huang, C.-W. Ma, Y.-J. Yang: A flexible capacitive tactile sensing array with floating electrodes, J. Micromechanics Microengineering 19(11), 115001 (2009)

    Article  Google Scholar 

  102. Y. Hasegawa, M. Shikida, D. Ogura, Y. Suzuki, K. Sato: Fabrication of a wearable fabric tactile sensor produced by artificial hollow fiber, J. Micromechanics Microengineering 18(8), 085014 (2008)

    Article  Google Scholar 

  103. D. McConnell Aukes, M.R. Cutkosky, S. Kim, J. Ulmen, P. Garcia, H. Stuart, A. Edsinger: Design and testing of a selectively compliant underactuated hand, Int. J. Robotics Res. 33(5), 721–735 (2014)

    Article  Google Scholar 

  104. O. Kerpa, K. Weiss, H. Worn: Development of a flexible tactile sensor system for a humanoid robot, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2003) pp. 1–6

    Google Scholar 

  105. D. Bloor, A. Graham, E.J. Williams, P.J. Laughlin, D. Lussey: Metal–polymer composite with nanostructured filler particles and amplified physical properties, Appl. Phys. Lett. 88(10), 102103 (2006)

    Article  Google Scholar 

  106. Peratech: Peratech QTC, http://www.peratech.com/standard-products/ (2014)

  107. T. Someya: Integration of organic field-effect transistors and rubbery pressure sensors for artificial skin applications, Proc. IEEE Int. Electron. Dev. Meet. (2003) pp. 8–14

    Google Scholar 

  108. H. Alirezaei, A. Nagakubo, Y. Kuniyoshi: A tactile distribution sensor which enables stable measurement under high and dynamic stretch, Proc. IEEE Symp. 3D User Interfaces (2009) pp. 87–93

    Google Scholar 

  109. Y.-L. Park, B.-R. Chen, R.J. Wood: Design and fabrication of soft artificial skin using embedded microchannels and liquid conductors, IEEE Sens. J. 12(8), 2711–2718 (2012)

    Article  Google Scholar 

  110. R. Kageyama, S. Kagami, M. Inaba, H. Inoue: Development of soft and distributed tactile sensors and the application to a humanoid robot, Proc. IEEE Int. Conf. Syst. Man Cybern., Vol. 2 (1999) pp. 981–986

    Google Scholar 

  111. B.J. Kane, M.R. Cutkosky, G.T.A. Kovacs: A traction stress sensor array for use in high-resolution robotic tactile imaging, J. Microelectromechanical Syst. 9(4), 425–434 (2000)

    Article  Google Scholar 

  112. H. Takao, K. Sawada, M. Ishida: Monolithic silicon smart tactile image sensor with integrated strain sensor array on pneumatically swollen single-diaphragm structure, IEEE Trans. Electron. Dev. 53(5), 1250–1259 (2006)

    Article  Google Scholar 

  113. K. Noda, I. Shimoyama: A Shear stress sensing for robot hands -Orthogonal arrayed piezoresistive cantilevers standing in elastic material-, Proc. 14th Symp. Haptic Interfaces Virtual Env. Teleoperator Syst. (2006) pp. 63–66

    Chapter  Google Scholar 

  114. M.-Y. Cheng, C.-L. Lin, Y.-J. Yang: Tactile and shear stress sensing array using capacitive mechanisms with floating electrodes, 2010 IEEE 23rd Int. Conf. Micro Electro Mech. Syst. (2010) pp. 228–231

    Google Scholar 

  115. P. Valdastri, S. Roccella, L. Beccai, E. Cattin, A. Menciassi, M.C. Carrozza, P. Dario: Characterization of a novel hybrid silicon three-axial force sensor, Sens. Actuators A 123/124, 249–257 (2005)

    Article  Google Scholar 

  116. S.C.B. Mannsfeld, B.C.-K. Tee, R.M. Stoltenberg, C.V.H.H. Chen, S. Barman, B.V.O. Muir, A.N. Sokolov, C. Reese, Z. Bao: Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers, Nat. Mater. 9(10), 859–864 (2010)

    Article  Google Scholar 

  117. R. Brockett: Robotic hands with rheological surfaces, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1985) pp. 942–946

    Google Scholar 

  118. K.B. Shimoga, A.A. Goldenberg: Soft robotic fingertips. I. A comparison of construction materials, Int. J. Rob, Res. 15(4), 320–350 (1996)

    Google Scholar 

  119. A. Mazid, R. Russell: A robotic opto-tactile sensor for assessing object surface texture, IEEE Conf. Robotics Autom. Mechatronics (2006) pp. 1–5

    Google Scholar 

  120. L.S. Lincoln, S.J.M. Bamberg, E. Parsons, C. Salisbury, J. Wheeler: An elastomeric insole for 3-axis ground reaction force measurement, Proc. IEEE RAS/EMBS Int. Conf. Biomedical Robotics Biomech. (2012) pp. 1512–1517

    Google Scholar 

  121. H. Shinoda, K. Matsumoto, S. Ando: Acoustic resonant tensor cell for tactile sensing, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 4 (1997) pp. 3087–3092

    Google Scholar 

  122. H. Shinoda, S. Sasaki, K. Nakamura: Instantaneous evaluation of friction based on ARTC tactile sensor, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 3 (2000) pp. 2173–2178

    Google Scholar 

  123. S. Ando, H. Shinoda, A. Yonenaga, J. Terao: Ultrasonic six-axis deformation sensing, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 48(4), 1031–1045 (2001)

    Article  Google Scholar 

  124. P. Dario, D. De Rossi, C. Domenici, R. Francesconi: Ferroelectric polymer tactile sensors with anthropomorphic features, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1984) pp. 332–340

    Google Scholar 

  125. D.M. Siegel: Contact sensors for dextrous robotic hands, MIT Artificial Intelligence Laboratory Tech. Rep., no. 900 (MIT Press, Cambridge 1986)

    Google Scholar 

  126. J.S. Son, E.A. Monteverde, R.D. Howe: A tactile sensor for localizing transient events in manipulation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 1 (1994) pp. 471–476

    Google Scholar 

  127. B.S. Eberman, J.K. Salisbury: Determination of Manipulator Contact Information from Joint Torque Measurements. In: Experimental Robotics I, The First International Symposium, ed. by V. Hayward, O. Khatib (Springer, Montreal 1990)

    Google Scholar 

  128. A. Bicchi: Intrinsic contact sensing for soft fingers, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1990) pp. 968–973

    Chapter  Google Scholar 

  129. P. Dario: Tactile sensing for robots: Present and future. In: The Robotics Review 1, ed. by O. Khatib, J. Craig, T. Lozano-Perez (MIT Press, Cambridge 1989) pp. 133–146

    Google Scholar 

  130. J.R. Phillips, K.O. Johnson: Tactile spatial resolution III: A continuum mechanics model of skin predicting mechanoreceptor responses to bars, edges and gratings, J. Neurophysiol. 46(6), 1204–1225 (1981)

    Article  Google Scholar 

  131. T. Speeter: A tactile sensing system for robotic manipulation, Int. J. Robotics Res. 9(6), 25–36 (1990)

    Article  Google Scholar 

  132. K.L. Johnson: Contact Mechanics (Cambridge Univ. Press, Cambridge 1985)

    Book  MATH  Google Scholar 

  133. S. Timoshenko, J.N.N. Goodier: Theory of Elasticity (McGraw-Hill, New York 1951)

    MATH  Google Scholar 

  134. G. Kenaly, M. Cutkosky: Electrorheological fluid-based fingers with tactile sensing, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1989) pp. 132–136

    Google Scholar 

  135. R.D. Howe: Dynamic Tactile Sensing, Ph.D. Thesis (Stanford University, Stanford 1990)

    Google Scholar 

  136. R.M. Voyles, B.L. Stavnheim, B. Yap: Practical electrorheological fluid-based fingers for robotic applications, IASTED Int. Symp. Robotics Manuf. (1989)

    Google Scholar 

  137. J.J. Clark: A magnetic field based compliance matching sensor for high resolution, high compliance tactile sensing, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1989) pp. 772–777

    Google Scholar 

  138. T.H. Speeter: Analysis and Control of Robotic Manipulation, Ph.D. Thesis (Case Western Reserve University, Cleveland 1987)

    Google Scholar 

  139. R. Fearing: Tactile sensing for shape interpretation. In: Dextrous Robot Hands, ed. by S.T. Venkataraman, T. Iberall (Springer, Berlin, Heidelberg 1990) pp. 209–238

    Chapter  Google Scholar 

  140. A.J. Worth, R.R. Spencer: A neural network for tactile sensing: The hertzian contact problem, Proc. Int. Jt. Conf. Neural Netw. (1989) pp. 267–274

    Chapter  Google Scholar 

  141. W.E.L. Grimson, T. Lozano-Perez: Model-based recognition and localization from sparse range or tactile data, Int. J. Robotics Res. 3(3), 3–35 (1984)

    Article  Google Scholar 

  142. P.C. Gaston, T. Lozano-Perez: Tactile recognition and localization using object models: The case of polyhedra on a plane, Proc. IEEE Trans. Pattern Anal. Mach. Intell. (1984) pp. 257–266

    Google Scholar 

  143. J.L. Schneiter: An objective sensing strategy for object recognition and localization, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1986) pp. 1262–1267

    Google Scholar 

  144. R. Cole, C. Yap: Shape from probing, J. Algorithm. 8(1), 19–38 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  145. P.K. Allen: Mapping haptic exploratory procedures to multiple shape representations, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1990) pp. 1679–1684

    Chapter  Google Scholar 

  146. R.E. Ellis: Extraction of tactile features by passive and active sensing, Proc. SPIE 0521 (1985) p. 289

    Google Scholar 

  147. S.J. Lederman, R. Browse: The physiology and psychophysics of touch. In: Sensors and Sensory Systems for Advanced Robotics, ed. by P. Dario (Springer, Berlin, Heidelberg 1986) pp. 71–91

    Google Scholar 

  148. H. Ozaki, S. Waku, A. Mohri, M. Takata: Pattern recognition of a grasped object by unit-vector distribution, IEEE Trans. Syst. Man Cybern. 12(3), 315–324 (1982)

    Article  Google Scholar 

  149. R.L. Klatzky, R. Bajcsy, S.J. Lederman: Object exploration in one and two fingered robots, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1987) pp. 1806–1809

    Google Scholar 

  150. D. Siegel: Finding the pose of an object in the hand, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1991) pp. 406–411

    Google Scholar 

  151. D. Taddeucci, C. Laschi, R. Lazzarini, R. Magni, P. Dario, A. Starita: An approach to integrated tactile perception, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 4 (1997) pp. 3100–3105

    Google Scholar 

  152. A. Schneider, J. Sturm, C. Stachniss, M. Reisert, H. Burkhardt, W. Burgard: Object identification with tactile sensors using bag-of-features, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2009) pp. 243–248

    Google Scholar 

  153. N. Gorges, S.E. Navarro, D. Göger, H. Wörn: Haptic object recognition using passive joints and haptic key features, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2010) pp. 2349–2355

    Google Scholar 

  154. Y. Bekiroglu, J. Laaksonen, J.A. Jorgensen, V. Kyrki, D. Kragic: Assessing grasp stability based on learning and haptic data, IEEE Trans. Robotics 27(3), 616–629 (2011)

    Article  Google Scholar 

  155. V.S. Gurfinkel: Tactile sensitizing of manipulators, Eng. Cybern. 12(6), 47–56 (1974)

    Google Scholar 

  156. R. Ellis: Acquiring tactile data for the recognition of planar objects, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 4 (1987) pp. 1799–1805

    Google Scholar 

  157. A. Cameron: Optimal tactile sensor placement, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1989) pp. 308–313

    Google Scholar 

  158. P. Dario: Sensing body structures by an advanced robot system, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1988) pp. 1758–1763

    Google Scholar 

  159. S.A.A. Stansfield: Robotic grasping of unknown objects: A knowledge-based approach, Int. J. Robotics Res. 10(4), 314–326 (1991)

    Article  Google Scholar 

  160. A. Petrovskaya, O. Khatib: Global localization of objects via touch, IEEE Trans. Robotics 27(3), 569–585 (2011)

    Article  Google Scholar 

  161. N.F. Lepora, U. Martinez-Hernandez, H. Barron-Gonzalez, M. Evans, G. Metta, T.J. Prescott: Embodied hyperacuity from Bayesian perception: Shape and position discrimination with an iCub fingertip sensor, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2012) pp. 4638–4643

    Google Scholar 

  162. C. Muthukrishnan, D. Smith, D. Meyers, J. Rebman, A. Koivo: Edge detection in tactile images, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1987) pp. 1500–1505

    Google Scholar 

  163. A.D. Berger, P.K. Khosla: Using tactile data for real-time feedback, Int. J. Robotics Res. 10(2), 88–102 (1991)

    Article  Google Scholar 

  164. K. Pribadi, J.S. Bay, H. Hemami: Exploration and dynamic shape estimation by a robotic probe, IEEE Trans. Syst. Man Cybern. 19(4), 840–846 (1989)

    Article  Google Scholar 

  165. H. Zhang, N.N. Chen: Control of contact via tactile sensing, IEEE Trans. Robotics Autom. 16(5), 482–495 (2000)

    Article  Google Scholar 

  166. A.M. Okamura, M.R. Cutkosky: Feature detection for haptic exploration with robotic fingers, Int. J. Robotics Res. 20(12), 925–938 (2001)

    Article  Google Scholar 

  167. K. Suwanratchatamanee, M. Matsumoto, S. Hashimoto: Robotic tactile sensor system and applications, IEEE Trans. Ind. Electron. 57(3), 1074–1087 (2010)

    Article  Google Scholar 

  168. K. Yamada, K. Goto, Y. Nakajima, N. Koshida, H. Shinoda: A sensor skin using wire-free tactile sensing elements based on optical connection, Proc. 41st SICE Annu. Conf., Vol. 1 (2002) pp. 131–134

    Google Scholar 

  169. M. Schoepfer, C. Schuermann, M. Pardowitz, H. Ritter: Using a piezo-resistive tactile sensor for detection of incipient slippage, Proc. ISR/ROBOTIK 41st Int. Symp. Robotics (2010) pp. 14–20

    Google Scholar 

  170. B. Heyneman, M.R. Cutkosky: Slip interface classification through tactile signal coherence, IEEE/RSJ IEEE Int. Conf. Intell. Robots Syst. (IROS) (2013) pp. 801–808

    Google Scholar 

  171. P. Dario, P. Ferrante, G. Giacalone, L. Livaldi, B. Allotta, G. Buttazzo, A.M. Sabatini: Planning and executing tactile exploratory procedures, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Vol. 3 (1992) pp. 1896–1903

    Google Scholar 

  172. S.C. Jacobsen, J.E. Wood, D.F. Knutti, K.B. Biggers: The Utah/MIT dextrous hand: Work in progress. In: First International Conference on Robotics Research, ed. by M. Brady, R.P. Paul (MIT Press, Cambridge 1984) pp. 601–653

    Google Scholar 

  173. H. Shinoda, H. Oasa: Passive wireless sensing element for sensitive skin, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Vol. 2 (2000) pp. 1516–1521

    Google Scholar 

  174. M. Hakozaki, H. Shinoda: Digital tactile sensing elements communicating through conductive skin layers, Proc. IEEE Int. Conf. Robotics Autom. (ICRA’02), Vol. 4 (2002) pp. 3813–3817

    Google Scholar 

  175. L. Ascari, P. Corradi, L. Beccai, C. Laschi: A miniaturized and flexible optoelectronic sensing system for a tactile skin, Int. J. Micromechanics Microengineering 17, 2288–2298 (2007)

    Article  Google Scholar 

  176. M. Zillich, W. Feiten: A versatile tactile sensor system for covering large and curved surface areas, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2012) pp. 20–24

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark R. Cutkosky .

Editor information

Editors and Affiliations

Video-References

Video-References

:

The effect of twice dropping, and then gently placing, a two gram weight on a small capacitive tactile array available from http://handbookofrobotics.org/view-chapter/28/videodetails/14

:

Capacitive tactile sensing available from http://handbookofrobotics.org/view-chapter/28/videodetails/15

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cutkosky, M.R., Provancher, W. (2016). Force and Tactile Sensing. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-32552-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32552-1_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32550-7

  • Online ISBN: 978-3-319-32552-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics