Skip to main content

Multisensor Data Fusion

  • Chapter
  • First Online:
Springer Handbook of Robotics

Part of the book series: Springer Handbooks ((SHB))

Abstract

Multisensor data fusion is the process of combining observations from a number of different sensors to provide a robust and complete description of an environment or process of interest. Data fusion finds wide application in many areas of robotics such as object recognition, environment mapping, and localization.

This chapter has three parts: methods, architectures, and applications. Most current data fusion methods employ probabilistic descriptions of observations and processes and use Bayes’ rule to combine this information. This chapter surveys the main probabilistic modeling and fusion techniques including grid-based models, Kalman filtering, and sequential Monte Carlo techniques. This chapter also briefly reviews a number of nonprobabilistic data fusion methods. Data fusion systems are often complex combinations of sensor devices, processing, and fusion algorithms. This chapter provides an overview of key principles in data fusion architectures from both a hardware and algorithmic viewpoint. The applications of data fusion are pervasive in robotics and underly the core problem of sensing, estimation, and perception. We highlight two example applications that bring out these features. The first describes a navigation or self-tracking application for an autonomous vehicle. The second describes an application in mapping and environment modeling.

The essential algorithmic tools of data fusion are reasonably well established. However, the development and use of these tools in realistic robotics applications is still developing.

figure a

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-D:

two-dimensional

3-D:

three-dimensional

4-D:

four-dimensional

ASN:

active sensor network

CAN:

controller area network

CCI:

control command interpreter

COTS:

commercial off-the-shelf

COV:

characteristic output vector

DDF:

decentralized data fusion

DFRA:

distributed field robot architecture

EKF:

extended Kalman filter

GPS:

global positioning system

GUI:

graphical user interface

GV:

ground vehicle

HO:

human operator

ILLS:

instrumented logical sensor system

IR:

infrared

JDL:

joint directors of laboratories

LSS:

logical sensor system

MC:

Monte Carlo

MESSIE:

multi expert system for scene interpretation and evaluation

RCS:

real-time control system

SAR:

synthetic aperture radar

SFX:

sensor fusion effect

SIR:

sampling importance resampling

SMC:

sequential Monte Carlo

UAV:

fusing air vehicle

References

  1. S. Thrun, W. Burgard, D. Fox: Probabilistic Robotics (MIT Press, Cambridge 2005)

    MATH  Google Scholar 

  2. J.O. Berger: Statistical Decision Theory and Bayesian Analysis (Springer, Berlin, Heidelberg 1985)

    Book  MATH  Google Scholar 

  3. A. Elfes: Sonar-based real-world mapping and navigation, IEEE Trans. Robotics Autom. 3(3), 249–265 (1987)

    Article  Google Scholar 

  4. L. Matthies, A. Elfes: Integration of sonar and stereo range data using a grid-based representation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1988) pp. 727–733

    Google Scholar 

  5. L.D. Stone, C.A. Barlow, T.L. Corwin: Bayesian Multiple Target Tracking (Artech House, Norwood 1999)

    MATH  Google Scholar 

  6. Y. Bar-Shalom: Multi-Target Multi-Sensor Tracking (Artec House, Norwood 1990)

    Google Scholar 

  7. Y. Bar-Shalom, T.E. Fortmann: Tracking and Data Association (Academic, New York 1988)

    MATH  Google Scholar 

  8. P.S. Maybeck: Stochastic Models, Estimaton and Control (Academic, New York 1979)

    MATH  Google Scholar 

  9. W. Sorensen: Special issue on the applications of the Kalman filter, IEEE Trans. Autom. Control 28(3), 254–255 (1983)

    Article  Google Scholar 

  10. B.D.O. Anderson, J.B. Moore: Optimal Filtering (Prentice Hall, Englewood Cliffs 1979)

    MATH  Google Scholar 

  11. J. Manyika, H.F. Durrant-Whyte: Data Fusion and Sensor Management: An Information-Theoretic Approach (Ellis Horwood, New York 1994)

    Google Scholar 

  12. S. Sukkarieh, E. Nettleton, J.H. Kim, M. Ridley, A. Goktogan, H. Durrant-Whyte: The ANSER project: Data fusion across multiple uninhabited air vehicles, Int. J. Robotics Res. 22(7), 505–539 (2003)

    Article  Google Scholar 

  13. R.E. Moore: Interval Analysis (Prentice Hall, Englewood Cliffs 1966)

    MATH  Google Scholar 

  14. D. Dubois, H. Prade: Fuzzy Sets and Systems: Theory and Applications (Academic, New York 1980)

    MATH  Google Scholar 

  15. S. Blackman, R. Popoli: Design and Analysis of Modern Tracking Systems (Artec House, Boston 1999)

    MATH  Google Scholar 

  16. D. Pagac, E.M. Nebot, H. Durrant-Whyte: An evidential approach to map-building for autonomous vehicles, IEEE Trans. Robotics Autom. 14(4), 623–629 (1998)

    Article  Google Scholar 

  17. D. Hall, J. Llinas: Handbook of Multisensor Data Fusion (CRC, Boca Raton 2001)

    Book  Google Scholar 

  18. E.L. Waltz, J. Llinas: Sensor Fusion (Artec House, Boston 1991)

    Google Scholar 

  19. M. Kam, Z. Zhu, P. Kalata: Sensor fusion for mobile robot navigation, Proceedings IEEE 85, 108–119 (1997)

    Article  Google Scholar 

  20. H. Carvalho, W. Heinzelman, A. Murphy, C. Coelho: A general data fusion architecture, Proc. 6th Int. Conf. Inf. Fusion, Cairns (2003)

    Google Scholar 

  21. A. Makarenko: A Decentralized Architecture for Active Sensor Networks, Ph.D. Thesis (University of Sydney, Sydney 2004)

    Book  Google Scholar 

  22. M. Dekhil, T. Henderson: Instrumented logical sensors systems, Int. J. Robotics Res. 17(4), 402–417 (1998)

    Article  Google Scholar 

  23. J.A. Profeta: Safety-critical systems built with COTS, Computer 29(11), 54–60 (1996)

    Article  Google Scholar 

  24. H. Hu, J.M. Brady, F. Du, P. Probert: Distributed real-time control of a mobile robot, J. Intell. Autom. Soft Comput. 1(1), 63–83 (1995)

    Article  Google Scholar 

  25. S.A. Schneider, V. Chen, G. Pardo: ControlShell: A real-time software framework, AIAA Conf. Intell. Robotics Field Fact. Serv. Space (1994)

    Google Scholar 

  26. D. Simon, B. Espiau, E. Castillo, K. Kapellos: Computer-aided design of a generic robot controller handling reactivity and real-time issues, IEEE Trans. Control Syst. Technol. 4(1), 213–229 (1993)

    Article  Google Scholar 

  27. C. Giraud, B. Jouvencel: Sensor selection in a fusion process: a fuzzy approach, Proc. IEEE Int. Conf. Multisens. Fusion Integr., Las Vegas (1994) pp. 599–606

    Google Scholar 

  28. R. Kapur, T.W. Williams, E.F. Miller: System testing and reliability techniques for avoiding failure, Computer 29(11), 28–30 (1996)

    Google Scholar 

  29. K.H. Kim, C. Subbaraman: Fault-tolerant real-time objects, Communication ACM 40(1), 75–82 (1997)

    Article  Google Scholar 

  30. D.B. Stewart, P.K. Khosla: Mechanisms for detecting and handling timing errors, Communication ACM 40(1), 87–93 (1997)

    Article  Google Scholar 

  31. G. Weller, F. Groen, L. Hertzberger: A sensor processing model incorporating error detection and recovery. In: Traditional and Non-Traditional Robotic Sensors, ed. by T. Henderson (Springer, Berlin, Heidelberg 1990) pp. 351–363

    Chapter  Google Scholar 

  32. R.R. Brooks, S. Iyengar: Averaging Algorithm for Multi-Dimensional Redundant Sensor Arrays: Resolving Sensor Inconsistencies, Tech. Rep. (Louisiana State University, Baton Rouge 1993)

    Google Scholar 

  33. T.C. Henderson, M. Dekhil: Visual Target Based Wall Pose Estimation, Tech. Rep. UUCS-97-010 (University of Utah, Salt Lake City 1997)

    Google Scholar 

  34. S. Iyengar, D. Jayasimha, D. Nadig: A versatile architecture for the distributed sensor integration problem, Computer 43, 175–185 (1994)

    Google Scholar 

  35. D. Nadig, S. Iyengar, D. Jayasimha: A new architecture for distributed sensor integration, Proc. IEEE Southeastcon (1993)

    Google Scholar 

  36. L. Prasad, S. Iyengar, R.L. Kashyap, R.N. Madan: Functional characterization of fault tolerant integration in distributed sensor networks, IEEE Trans. Syst. Man Cybern. 25, 1082–1087 (1991)

    Article  Google Scholar 

  37. L. Prasad, S. Iyengar, R. Rao, R. Kashyap: Fault-tolerence sensor integration using multiresolution decomposition, Am. Phys. Soc. 49(4), 3452–3461 (1994)

    Google Scholar 

  38. H.F. Durrant-Whyte: Integration, Coordination, and Control of Multi-Sensor Robot Systems (Kluwer, Boston 1987)

    Book  Google Scholar 

  39. F. Groen, P. Antonissen, G. Weller: Model based robot vision, IEEE Instrum. Meas. Technol. Conf. (1993) pp. 584–588

    Google Scholar 

  40. R. Joshi, A.C. Sanderson: Model-based multisensor data fusion: A minimal representation approach, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1994)

    Google Scholar 

  41. A.J. Briggs, B.R. Donald: Automatic sensor configuration for task-directed planning, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1994) pp. 1345–1350

    Google Scholar 

  42. G. Hager: Task Directed Sensor Fusion and Planning (Kluwer, Boston 1990)

    Book  Google Scholar 

  43. G. Hager, M. Mintz: Computational methods for task-directed sensor data fusion and sensor planning, Int. J. Robotics Res. 10(4), 285–313 (1991)

    Article  Google Scholar 

  44. B. Donald: On information invariants in robotics, Artif. Intell. 72, 217–304 (1995)

    Article  MATH  Google Scholar 

  45. V. Braitenberg: Vehicles: Experiments in Synthetic Psychology (MIT Press, Cambridge 1984)

    Google Scholar 

  46. R.A. Brooks: A robust layered control system for a mobile robot, IEEE Trans. Robotics Autom. 2(1), 14–23 (1986)

    Article  Google Scholar 

  47. K.P. Valavanis, A.L. Nelson, L. Doitsidis, M. Long, R.R. Murphy: Validation of a Distributed Field Robot Architecture Integrated with a Matlab Based Control Theoretic Environment: A Case Study of Fuzzy Logic Based Robot Navigation, CRASAR Tech. Rep. 25 (University of South Florida, Tampa 2004)

    Google Scholar 

  48. R.R. Murphy: Introduction to AI Robotics (MIT Press, Cambridge 2000)

    Google Scholar 

  49. S. Lee: Sensor fusion and planning with perception-action network, Proc. IEEE Conf. Multisens. Fusion Integr. Intell. Syst., Washington (1996)

    Google Scholar 

  50. S. Lee, S. Ro: Uncertainty self-management with perception net based geometric data fusion, Proc. IEEE Conf. Robotics Autom. (ICRA), Albuquerque (1997)

    Google Scholar 

  51. B.A. Draper, A.R. Hanson, S. Buluswar, E.M. Riseman: Information acquisition and fusion in the mobile perception laboratory, Proc. SPIE Sens. Fusion VI (1993)

    Google Scholar 

  52. S.S. Shafer, A. Stentz, C.E. Thorpe: An architecture for sensor fusion in a mobile robot, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1986) pp. 2002–2007

    Google Scholar 

  53. S. Nagata, M. Sekiguchi, K. Asakawa: Mobile robot control by a structured hierarchical neural network, IEEE Control Syst. Mag. 10(3), 69–76 (1990)

    Article  Google Scholar 

  54. M. Pachter, P. Chandler: Challenges of autonomous control, IEEE Control Syst. Mag. 18(4), 92–97 (1998)

    Article  Google Scholar 

  55. R. Joshi, A.C. Sanderson: Multisensor Fusion (World Scientific, Singapore 1999)

    Book  MATH  Google Scholar 

  56. V. Berge-Cherfaoui, B. Vachon: Dynamic configuration of mobile robot perceptual system, Proc. IEEE Conf. Multisens. Fusion Integr. Intell. Syst., Las Vegas (1994)

    Google Scholar 

  57. V. Clement, G. Giraudon, S. Houzelle, F. Sandakly: Interpretation of Remotely Sensed Images in a Context of Multisensor Fusion Using a Multi-Specialist Architecture, Rapp. Rech.: No. 1768 (INRIA, Sophia-Antipolis 1992)

    Google Scholar 

  58. J. Albus: RCS: A cognitive architecture for intelligent multi-agent systems, Proc. IFAC Symp. Intell. Auton. Veh., Lisbon (2004)

    Google Scholar 

  59. R. Camden, B. Bodt, S. Schipani, J. Bornstein, R. Phelps, T. Runyon, F. French: Autonomous Mobility Technology Assessment, Interim Rep., ARL-MR 565 (Army Research Laboratory, Washington 2003)

    Google Scholar 

  60. T. Queeney, E. Woods: A generic architecture for real-time multisensor fusion tracking algorithm development and evaluation, Proc. SPIE Sens. Fusion VII, Vol. 2355 (1994) pp. 33–42

    Google Scholar 

  61. T. Henderson, E. Shilcrat: Logical sensor systems, J. Robotics Syst. 1(2), 169–193 (1984)

    Article  Google Scholar 

  62. T. Henderson, C. Hansen, B. Bhanu: The specification of distributed sensing and control, J. Robotics Syst. 2(4), 387–396 (1985)

    Article  Google Scholar 

  63. J.D. Elliott: Multisensor Fusion within an Encapsulated Logical Device Architecture, Master's Thesis (University of Waterloo, Waterloo 2001)

    Google Scholar 

  64. M.D. Naish: Elsa: An Intelligent Multisensor Integration Architecture for Industrial Grading Tasks, Master's Thesis (University of Western Ontario, London 1998)

    Google Scholar 

  65. A. Makarenko, A. Brooks, S. Williams, H. Durrant-Whyte, B. Grocholsky: A decentralized architecture for active sensor networks, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), New Orleans (2004) pp. 1097–1102

    Google Scholar 

  66. B. Grocholsky, A. Makarenko, H. Durrant-Whyte: Information-theoretic coordinated control of multiple sensor platforms, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Taipei (2003) pp. 1521–1527

    Google Scholar 

  67. R. Gregor, M. Lützeler, M. Pellkofer, K.-H. Siedersberger, E. Dickmanns: EMS-Vision: A perceptual system for autonomous vehicles, IEEE Trans. Intell. Transp. Syst. 3(1), 48–59 (2002)

    Article  MATH  Google Scholar 

  68. B. Rao, H. Durrant-Whyte, A. Sheen: A fully decentralized multi-sensor system for tracking and surveillance, Int. J. Robotics Res. 12(1), 20–44 (1993)

    Article  Google Scholar 

  69. B. Upcroft: Non-gaussian state estimation in an outdoor decentralised sensor network, Proc. IEEE Conf. Decis. Control (CDC) (2006)

    Google Scholar 

  70. S. Kumar, F. Ramos, B. Upcroft, H. Durrant-Whyte: A statistical framework for natural feature representation, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Edmonton (2005) pp. 1–6

    Google Scholar 

  71. S. Gao, Y. Zhong, W. Li: Random weighting method for multisensor data fusion, IEEE Sens. J. 11(9), 1955–1961 (2011)

    Article  Google Scholar 

  72. M. Lhuillier: Incremental fusion of structure-from-motion and GPS using constrained bundle adjustments, IEEE Trans. Pattern Anal. Mach. Intell. 34(12), 2489–2495 (2012)

    Article  Google Scholar 

  73. S. Yu, L. Tranchevent, X. Liu, W. Glanzel, J. Suykens, B. DeMoor, Y. Moreau: Optimized data fusion for kernel k-means clustering, IEEE Trans. Pattern Anal. Mach. Intell. 34(5), 1031–1039 (2012)

    Article  Google Scholar 

  74. K. Kolev: Fast joint estimation of silhouettes and dense 3D geometry from multiple images, IEEE Trans. Pattern Anal. Mach. Intell. 34(3), 493–505 (2012)

    Article  Google Scholar 

  75. C. Loy: Incremental activity modeling in multiple disjoint cameras, IEEE Trans. Pattern Anal. Mach. Intell. 34(9), 1799–1813 (2012)

    Article  Google Scholar 

  76. N. Poh, J. Kittler: A unified framework for biometric expert fusion incorporating quality measures, IEEE Trans. Pattern Anal. Mach. Intell. 34(1), 3–18 (2012)

    Article  Google Scholar 

  77. M.-F. Weng, Y.-Y. Chuang: Cross-domain multicue fusion for concept-based video indexing, IEEE Trans. Pattern Anal. Mach. Intell. 34(10), 1927–1941 (2012)

    Article  Google Scholar 

  78. M. Hwangbo, J.-S. Kim, T. Kanade: Gyro-aided feature tracking for a moving camera: fusion, auto-calibration and GPU implementation, Intl. J. Robotics Res. 30(14), 1755–1774 (2011)

    Article  Google Scholar 

  79. H. Seraji, N. Serrano: A multisensor decision fusion system for terrain safety assessment, IEEE Trans. Robotics 25(1), 99–108 (2009)

    Article  Google Scholar 

  80. H. Himberg, Y. Motai, A. Bradley: Interpolation volume calibration: a multisensor calibration technique for electromagnetic trackers, IEEE Trans. Robotics 28(5), 1120–1130 (2012)

    Article  Google Scholar 

  81. K. Zhou, S.I. Roumeliotis: Optimal motion strategies for range-Only constrained multisensor target tracking, IEEE Trans. Robotics 24(5), 1168–1185 (2008)

    Article  Google Scholar 

  82. N.R. Ahmed, E.M. Sample, M. Campbell: Bayesian multicategorical soft data fusion for human–robot collaboration, IEEE Trans. Robotics PP(99), 1–18 (2012)

    Google Scholar 

  83. H. Frigui, L. Zhang, P.D. Gader: Context-dependent multisensor fusion and its application to land mine detection, IEEE Trans. Geosci. Remote Sens. 48(6), 2528–2543 (2010)

    Article  Google Scholar 

  84. J.G. Garcia, A. Robertson, J.G. Ortega, R. Johansson: Sensor fusion for compliant robot motion control, IEEE Trans. Robotics 24(2), 430–441 (2008)

    Article  Google Scholar 

  85. R. Heliot, B. Espiau: Multisensor input for CPG-based sensory—motor coordination, IEEE Trans. Robotics 24(1), 191–195 (2008)

    Article  Google Scholar 

  86. S. Liu, R.X. Gao, D. John, J.W. Staudenmayer, P.S. Freedson: Multisensor data fusion for physical activity assessment, IEEE Trans. Bio-Med. Eng. 59(3), 687–696 (2012)

    Article  Google Scholar 

  87. A. Martinelli: Vision and IMU data fusion: closed-Form solutions for attitude, speed, absolute scale, and bias determination, IEEE Trans. Robotics 28(1), 44–60 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugh Durrant-Whyte .

Editor information

Editors and Affiliations

Video-References

Video-References

:

AnnieWay available from http://handbookofrobotics.org/view-chapter/35/videodetails/132

:

Application of visual odometry for sewer inspection robots available from http://handbookofrobotics.org/view-chapter/35/videodetails/638

:

Multisensor remote surface inspection available from http://handbookofrobotics.org/view-chapter/35/videodetails/639

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Durrant-Whyte, H., Henderson, T.C. (2016). Multisensor Data Fusion. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-32552-1_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32552-1_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32550-7

  • Online ISBN: 978-3-319-32552-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics