Skip to main content

Networked Robots

  • Chapter
  • First Online:

Part of the book series: Springer Handbooks ((SHB))

Abstract

As of 2013, almost all robots have access to computer networks that offer extensive computing, memory, and other resources that can dramatically improve performance. The underlying enabling framework is the focus of this chapter: networked robots. Networked robots trace their origin to telerobots or remotely controlled robots. Telerobots are widely used to explore undersea terrains and outer space, to defuse bombs and to clean up hazardous waste. Until 1994, telerobots were accessible only to trained and trusted experts through dedicated communication channels. This chapter will describe relevant network technology, the history of networked robots as it evolves from teleoperation to cloud robotics, properties of networked robots, how to build a networked robot, example systems. Later in the chapter, we focus on the recent progress on cloud robotics, and topics for future research.

figure a

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

2-D:

two-dimensional

3-D:

three-dimensional

ADSL:

asymmetric digital subscriber line

B/S:

browser/server

C/S:

client/server

CA:

collision avoidance

CAD:

computer-aided drafting

CD:

collision detection

CGI:

common gateway interface

CONE:

Collaborative Observatory for Nature Environments

CORBA:

common object request broker architecture

CPU:

central processing unit

CSMA:

carrier-sense multiple-access

DNA:

deoxyribonucleic acid

DOD:

Department of Defense

EEG:

electroencephalography

FIFO:

first-in first-out

FMBT:

feasible minimum buffering time

FTTH:

fiber to the home

HDSL:

high data rate digital subscriber line

HPC:

high-performance computing

HTML:

hypertext markup language

HTTP:

hypertext transmission protocol

IEEE:

Institute of Electrical and Electronics Engineers

IIS:

Internet Information Services

IP:

internet protocol

ISDN:

integrated services digital network

ISP:

Internet service provider

JSP:

Java server pages

MOMR:

multiple operator multiple robot

MOSR:

multiple operator single robot

OS:

operating system

PRoP:

personal roving presence

QOS:

quality of service

QT:

quasistatic telerobotics

R&D:

research and development

RFID:

radio frequency identification

RF:

radio frequency

ROS:

robot operating system

SDK:

software development kit

SDV:

spatial dynamic voting

SOMR:

single operator multiple robot

SOSR:

single operator single robot

TCP:

transmission control protocol

UAV:

unmanned aerial vehicle

UDP:

user data protocol

URC:

Ubiquitous Robotic Companion

URL:

uniform resource locator

VRML:

virtual reality modeling language

WAN:

wide-area network

WML:

wireless markup language

WWW:

world wide web

XHTML:

extensible hyper text markup language

XML:

extensible markup language

References

  1. K. Goldberg, R. Siegwart (Eds.): Beyond Webcams: An Introduction to Online Robots (MIT Press, Cambridge 2002)

    Google Scholar 

  2. IEEE Technical Committee on Networked Robots: http://tab.ieee-ras.org/

  3. N. Tesla: Method of and apparatus for controlling mechanism of moving vessels or vehicles, US Patent 613809 A (1898)

    Google Scholar 

  4. R. Goertz, R. Thompson: Electronically controlled manipulator, Nucleonics 12(11), 46–47 (1954)

    Google Scholar 

  5. R.D. Ballard: A last long look at titanic, Nat. Geogr. 170(6), 698–727 (1986)

    Google Scholar 

  6. A.K. Bejczy: Sensors, controls, and man-machine interface for advanced teleoperation, Science 208(4450), 1327–1335 (1980)

    Article  Google Scholar 

  7. R.S. Mosher: Industrial manipulators, Sci. Am. 211(4), 88–96 (1964)

    Article  Google Scholar 

  8. R. Tomovic: On man-machine control, Automatica 5, 401–404 (1969)

    Article  Google Scholar 

  9. A. Bejczy, G. Bekey, R. Taylor, S. Rovetta: A research methodology for tele-surgery with time delays, 1st Int. Symp. Med. Robotics Comput. Assist. Surg. (MRCAS) (1994)

    Google Scholar 

  10. M. Gertz, D. Stewart, P. Khosla: A human-machine interface for distributed virtual laboratories, IEEE Robotics Autom. Mag. 1, 5–13 (1994)

    Article  Google Scholar 

  11. T. Sato, J. Ichikawa, M. Mitsuishi, Y. Hatamura: A new micro-teleoperation system employing a hand-held force feedback pencil, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1994)

    Google Scholar 

  12. T.B. Sheridan: Telerobotics, Automation, and Human Supervisory Control (MIT Press, Cambridge 1992)

    Google Scholar 

  13. FirstWebcam: http://www.cl.cam.ac.uk/coffee/qsf/timeline.html. (1993)

  14. K. Goldberg, M. Mascha, S. Gentner, N. Rothenberg, C. Sutter, J. Wiegley: Robot teleoperation via WWW, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1995)

    Google Scholar 

  15. K. Goldberg, M. Mascha, S. Gentner, N. Rothenberg, C. Sutter, J. Wiegley: Beyond the web: Manipulating the physical world via the WWW, Comput. Netw. ISDN Syst. J. 28(1), 209–219 (1995)

    Article  Google Scholar 

  16. B. Dalton, K. Taylor: A framework for internet robotics, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (1998)

    Google Scholar 

  17. K. Taylor, J. Trevelyan: The telelabs project, http://telerobot.mech.uwa.edu.au (1994)

  18. H. Hu, L. Yu, P.W. Tsui, Q. Zhou: Internet-based robotic systems for teleoperation, Assem. Automat. 21(2), 143–151 (2001)

    Article  Google Scholar 

  19. R. Safaric, M. Debevc, R. Parkin, S. Uran: Telerobotics experiments via internet, IEEE Trans. Ind. Electron. 48(2), 424–431 (2001)

    Article  Google Scholar 

  20. S. Jia, K. Takase: A corba-based internet robotic system, Adv. Robotics 15(6), 663–673 (2001)

    Article  Google Scholar 

  21. S. Jia, Y. Hada, G. Ye, K. Takase: Distributed telecare robotic systems using corba as a communication architecture, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2002)

    Google Scholar 

  22. J. Kim, B. Choi, S. Park, K. Kim, S. Ko: Remote control system using real-time MPEG-4 streaming technology for mobile robot, IEEE Int. Conf. Consum. Electron. (2002)

    Google Scholar 

  23. T. Mirfakhrai, S. Payandeh: A delay prediction approach for teleoperation over the internet, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2002)

    Google Scholar 

  24. K. Han, Y. Kim, J. Kim, S. Hsia: Internet control of personal robot between KAIST and UC Davis, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2002)

    Google Scholar 

  25. L. Ngai, W.S. Newman, V. Liberatore: An experiment in internet-based, human-assisted robotics, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2002)

    Google Scholar 

  26. R.C. Luo, T.M. Chen: Development of a multibehavior-based mobile robot for remote supervisory control through the internet, IEEE/ASME Trans. Mechatron. 5(4), 376–385 (2000)

    Article  Google Scholar 

  27. D. Aarno, S. Ekvall, D. Kragi: Adaptive virtual fixtures for machine-assisted teleoperation tasks, IEEE Int. Conf. Robotics Autom. (ICRA) (2005) pp. 1151–1156

    Google Scholar 

  28. I. Belousov, S. Chebukov, V. Sazonov: Web-based teleoperation of the robot interacting with fast moving objects, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2005) pp. 685–690

    Google Scholar 

  29. Z. Cen, A. Goradia, M. Mutka, N. Xi, W. Fung, Y. Liu: Improving the operation efficiency of supermedia enhanced internet based teleoperation via an overlay network, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2005) pp. 691–696

    Google Scholar 

  30. N.P. Jouppi, S. Thomas: Telepresence systems with automatic preservation of user head height, local rotation, and remote translation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2005) pp. 62–68

    Google Scholar 

  31. B. Ricks, C.W. Nielsen, M.A. Goodrich: Ecological displays for robot interaction: A new perspective, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Vol. 3 (2004) pp. 2855–2860

    Google Scholar 

  32. D. Ryu, S. Kang, M. Kim, J. Song: Multi-modal user interface for teleoperation of ROBHAZ-DT2 field robot system, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Vol. 1 (2004) pp. 168–173

    Google Scholar 

  33. J. Su, Z. Luo: Incremental motion compression for telepresent walking subject to spatial constraints, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2005) pp. 69–74

    Google Scholar 

  34. I. Toshima, S. Aoki: Effect of driving delay with an acoustical tele-presence robot, telehead, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2005) pp. 56–61

    Google Scholar 

  35. N. Chong, T. Kotoku, K. Ohba, K. Komoriya, N. Matsuhira, K. Tanie: Remote coordinated controls in multiple telerobot cooperation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 4 (2000) pp. 3138–3343

    Google Scholar 

  36. P. Cheng, V. Kumar: An almost communication-less approach to task allocation for multiple unmanned aerial vehicles, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2008) pp. 1384–1389

    Google Scholar 

  37. X. Ding, M. Powers, M. Egerstedt, S. Young, T. Balch: Executive decision support, IEEE Robotics Autom. Mag. 16(2), 73–81 (2009)

    Article  Google Scholar 

  38. J. Liu, L. Sun, T. Chen, X. Huang, C. Zhao: Competitive multi-robot teleoperation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2005)

    Google Scholar 

  39. Z. Zhang, Q. Cao, L. Zhang, C. Lo: A CORBA-based cooperative mobile robot system, Ind. Robot Int. J. 36(1), 36–44 (2009)

    Article  Google Scholar 

  40. Y. Xu, D. Song: Systems and algorithms for autonomous and scalable crowd surveillance using robotic PTZ cameras assisted by a wide-angle camera, Auton. Robots 29(1), 53–66 (2010)

    Article  Google Scholar 

  41. D. Sanders, J. Graham-Jones, A. Gegov: Improving ability of tele-operators to complete progressively more difficult mobile robot paths using simple expert systems and ultrasonic sensors, Ind. Robot Int. J. 37(5), 431–440 (2010)

    Article  Google Scholar 

  42. S. Faridani, B. Lee, S. Glasscock, J. Rappole, D. Song, K. Goldberg: A networked telerobotic observatory for collaborative remote observation of avian activity and range change, IFAC Workshop Netw. Robots (2009)

    Google Scholar 

  43. R. Bogue: Robots for monitoring the environment, Ind. Robot Int. J. 38(6), 560–566 (2011)

    Article  Google Scholar 

  44. R. Murphy, J. Burke: From remote tool to shared roles, IEEE Robotics Autom. Mag. 15(4), 39–49 (2008)

    Article  Google Scholar 

  45. E. Paulos, J. Canny, F. Barrientos: Prop: Personal roving presence, SIGGRAPH Vis. Proc. (1997) p. 99

    Google Scholar 

  46. L. Takayama, E. Marder-Eppstein, H. Harris, J. Beer: Assisted driving of a mobile remote presence system: System design and controlled user evaluation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2011) pp. 1883–1889

    Google Scholar 

  47. D. Lazewatsky, W. Smart: An inexpensive robot platform for teleoperation and experimentation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2011) pp. 1211–1216

    Google Scholar 

  48. K. Taylor, J.P. Trevelyan: Australia’s telerobot on the web, 26th Symp. Ind. Robotics (1995) pp. 39–44

    Google Scholar 

  49. A. Khamis, D.M. Rivero, F. Rodriguez, M. Salichs: Pattern-based architecture for building mobile robotics remote laboratories, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2003) pp. 3284–3289

    Google Scholar 

  50. C. Cosma, M. Confente, D. Botturi, P. Fiorini: Laboratory tools for robotics and automation education, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2003) pp. 3303–3308

    Google Scholar 

  51. K.W. Dorman, J.L. Pullen, W.O. Keksz, P.H. Eismann, K.A. Kowalski, J.P. Karlen: The servicing aid tool: A teleoperated robotics system for space applications, 7th Annu. Workshop Space Operat. Appl. Res. (SOAR), Vol. 1 (1994)

    Google Scholar 

  52. C. Pollak, H. Hutter: A webcam as recording device for light microscopes, J. Comput.-Assist. Microsc. 10(4), 179–183 (1998)

    Article  Google Scholar 

  53. K. Goldberg, D. Song, A. Levandowski: Collaborative teleoperation using networked spatial dynamic voting, Proceedings IEEE 91(3), 430–439 (2003)

    Article  Google Scholar 

  54. J.J. Kuffner: Cloud-Enabled Robots, IEEE-RAS Int. Conf. Humanoid Robots (2010)

    Google Scholar 

  55. K. Goldberg, M. Mascha, S. Gentner, N. Rothenberg, C. Sutter, J. Wiegley: Desktop teleoperation via the World Wide Web, Proc. IEEE Int. Conf. Robotics Autom., Vol. 1 (1995) pp. 654–659

    Google Scholar 

  56. G. McKee: What is networked robotics?, Inf. Control Autom. Robotics 15, 35–45 (2008)

    Article  Google Scholar 

  57. E. Guizzo: Cloud robotics: Connected to the cloud, robots get smarter, IEEE Spectrum http://spectrum.ieee.org/automaton/robotics/robotics-software/cloud-robotics (2011)

  58. M. Tenorth, A.C. Perzylo, R. Lafrenz, M. Beetz: The RoboEarth language: Representing and exchanging knowledge about actions, objects, and environments, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2012) pp. 1284–1289

    Google Scholar 

  59. R. Arumugam, V.R. Enti, L. Bingbing, W. Xiaojun, K. Baskaran, F.F. Kong, A.S. Kumar, K.D. Meng, G.W. Kit: DAvinCi: A cloud computing framework for service robots, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2010) pp. 3084–3089

    Google Scholar 

  60. Z. Du, W. Yang, Y. Chen, X. Sun, X. Wang, C. Xu: Design of a robot cloud center, Int. Symp. Auton. Decentralized Syst. (2011) pp. 269–275

    Google Scholar 

  61. G. Hu, W.P. Tay, Y. Wen: Cloud robotics: Architecture, challenges and applications, IEEE Network 26(3), 21–28 (2012)

    Article  Google Scholar 

  62. K. Kamei, S. Nishio, N. Hagita, M. Sato: Cloud networked robotics, IEEE Network 26(3), 28–34 (2012)

    Article  Google Scholar 

  63. D. Hunziker, M. Gajamohan, M. Waibel, R. D’Andrea: Rapyuta: The RoboEarth cloud engine, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2013)

    Google Scholar 

  64. M. Waibel, M. Beetz, J. Civera, R. D’Andrea, J. Elfring, D. Gálvez-López, K. Häussermann, R. Janssen, J.M.M. Montiel, A. Perzylo, B. le Schieß, M. Tenorth, O. Zweigle, R. De Molengraft: RoboEarth, IEEE Robotics Autom. Mag. 18(2), 69–82 (2011)

    Article  Google Scholar 

  65. RoboEarth: What is RoboEarth?, http://www.roboearth.org/what-is-roboearth

  66. L. Atzori, A. Iera, G. Morabito: The internet of things: A survey, Comput. Netw. 54(15), 2787–2805 (2010)

    Article  MATH  Google Scholar 

  67. J. Walrand, P. Varaiya: High-Performance Communication Networks, 2nd edn. (Morgan Kaufmann Press, San Francisco 2000)

    MATH  Google Scholar 

  68. M.A. Peshkin, A.C. Sanderson: Minimization of energy in quasi-static manipulation, IEEE Trans. Robotics Autom. 5(1), 53–60 (1989)

    Article  Google Scholar 

  69. M.T. Mason: On the scope of quasi-static pushing, 3rd Int. Symp. Robotics Res. (1986)

    Google Scholar 

  70. E. Ladd, J. O’Donnell: Using Html 4, Xml, and Java 1.2 (QUE Press, Indianapolis 1998)

    Google Scholar 

  71. H. Friz: Design of an Augmented Reality User Interface for an Internet based Telerobot using Multiple Monoscopic Views, Ph.D. Thesis (Technical Univ. Clausthal, Clausthal-Zellerfeld 2000)

    Google Scholar 

  72. T. Fong, C. Thorpe: Vehicle teleoperation interfaces, Auton. Robots 11, 9–18 (2001)

    Article  MATH  Google Scholar 

  73. A. Birk, N. Vaskevicius, K. Pathak, S. Schwertfeger, J. Poppinga, H. Buelow: 3-D perception and modeling, IEEE Robotics Autom. Mag. 16(4), 53–60 (2009)

    Article  Google Scholar 

  74. A. Kellyo, N. Chan, H. Herman, D. Huber, R. Meyers, P. Rander, R. Warner, J. Ziglar, E. Capstick: Real-time photorealistic virtualized reality interface for remote mobile robot control, Int. J. Robotics Res. 30(3), 384–404 (2011)

    Article  Google Scholar 

  75. L. Conway, R.A. Volz, M.W. Walker: Teleautonomous systems: Projecting and coordinating intelligent action at a distance, IEEE Trans. Robotics Autom. 6(20), 146–158 (1990)

    Article  Google Scholar 

  76. J. Larsson, M. Broxvall, A. Saffiotti: An evaluation of local autonomy applied to teleoperated vehicles in underground mines, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2010) pp. 1745–1752

    Google Scholar 

  77. L.B. Rosenberg: Virtual fixtures: Perceptual tools for telerobotic manipulation, IEEE Virtual Real. Annu. Int. Symp. (VRAIS) (1993) pp. 76–82

    Chapter  Google Scholar 

  78. P. Marayong, M. Li, A. Okamura, G. Hager: Spatial motion constraints: Theory and demonstrations for robot guidance using virtual fixtures, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 2 (2003) pp. 1954–1959

    Google Scholar 

  79. A. Bettini, P. Marayong, S. Lang, A. Okamura, G. Hager: Vision-assisted control for manipulation using virtual fixtures, IEEE Trans. Robotics 20(6), 953–966 (2004)

    Article  Google Scholar 

  80. R. Azuma: A survey of augmented reality, Presence 6(4), 355–385 (1997)

    Article  Google Scholar 

  81. K. Goldberg, B. Chen, R. Solomon, S. Bui, B. Farzin, J. Heitler, D. Poon, G. Smith: Collaborative teleoperation via the internet, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 2 (2000) pp. 2019–2024

    Google Scholar 

  82. D. Song: Systems and Algorithms for Collaborative Teleoperation, Ph.D. Thesis (Univ. California, Berkeley 2004)

    Google Scholar 

  83. D. Song: Sharing a Vision: Systems and Algorithms for Collaboratively-Teleoperated Robotic Cameras (Springer, Berlin, Heidelberg 2009)

    Google Scholar 

  84. K. Goldberg, B. Chen: Collaborative teleoperation via the internet, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2001)

    Google Scholar 

  85. K. Goldberg, D. Song: Tele-Actor http://www.tele-actor.net, Univ. of California, Berkeley

  86. D. Song, A. Pashkevich, K. Goldberg: Sharecam part II: Approximate and distributed algorithms for a collaboratively controlled robotic webcam, Proc. IEEE/RSJ Int. Conf. Intell. Robots (IROS), Vol. 2 (2003) pp. 1087–1093

    Google Scholar 

  87. D. Song, K. Goldberg: Sharecam part I: Interface, system architecture, and implementation of a collaboratively controlled robotic webcam, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Vol. 2 (2003) pp. 1080–1086

    Google Scholar 

  88. D. Song, K. Goldberg: Approximate algorithms for a collaboratively controlled robotic camera, IEEE Trans. Robotics 23(5), 1061–1070 (2007)

    Article  Google Scholar 

  89. D. Song, A.F. van der Stappen, K. Goldberg: Exact algorithms for single frame selection on multi-axis satellites, IEEE Trans. Autom. Sci. Eng. 3(1), 16–28 (2006)

    Article  Google Scholar 

  90. Y. Xu, D. Song, J. Yi: An approximation algorithm for the least overlapping p-frame problem with non-partial coverage for networked robotic cameras, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2008)

    Google Scholar 

  91. D. Song, N. Qin, K. Goldberg: Systems, control models, and codec for collaborative observation of remote environments with an autonomous networked robotic camera, Auton. Robots 24(4), 435–449 (2008)

    Article  Google Scholar 

  92. K. Goldberg, D. Song, I.Y. Song, J. McGonigal, W. Zheng, D. Plautz: Unsupervised scoring for scalable internet-based collaborative teleoperation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2004)

    Google Scholar 

  93. J. Rappole, S. Glasscock, K. Goldberg, D. Song, S. Faridani: Range change among new world tropical and subtropical birds, Bonn. Zool. Monogr. 57, 151–167 (2011)

    Google Scholar 

  94. D. Goldberg, http://goldberg.berkeley.edu/cloud-robotics/, UC Berkeley

  95. C. Goldfeder, M. Ciocarlie, P.K. Allen: The Columbia grasp database, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2009) pp. 1710–1716

    Google Scholar 

  96. A. Kasper, Z. Xue, R. Dillmann: The KIT object models database: An object model database for object recognition, localization and manipulation in service robotics, Int. J. Robotics Res. 31(8), 927–934 (2012)

    Article  Google Scholar 

  97. H. Dang, J. Weisz, P.K. Allen: Blind grasping: Stable robotic grasping using tactile feedback and hand kinematics, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2011) pp. 5917–5922

    Google Scholar 

  98. H. Dang, P.K. Allen: Learning grasp stability, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2012) pp. 2392–2397

    Google Scholar 

  99. J. Weisz, P.K. Allen: Pose error robust grasping from contact wrench space metrics, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2012) pp. 557–562

    Google Scholar 

  100. M. Popovic, G. Kootstra, J.A. Jorgensen, D. Kragic, N. Kruger: Grasping unknown objects using an Early Cognitive Vision system for general scene understanding, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2011) pp. 987–994

    Google Scholar 

  101. B. Kehoe, A. Matsukawa, S. Candido, J. Kuffner, K. Goldberg: Cloud-based robot grasping with the Google object recognition engine, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2013)

    Google Scholar 

  102. M. Ciocarlie, C. Pantofaru, K. Hsiao, G. Bradski, P. Brook, E. Dreyfuss: A side of data with my robot, IEEE Robotics Autom. Mag. 18(2), 44–57 (2011)

    Article  Google Scholar 

  103. M.A. Moussa, M.S. Kamel: An experimental approach to robotic grasping using a connectionist architecture and generic grasping functions, IEEE Trans. Syst. Man Cybern. C 28(2), 239–253 (1998)

    Article  Google Scholar 

  104. K. Huebner, K. Welke, M. Przybylski, N. Vahrenkamp, T. Asfour, D. Kragic: Grasping known objects with humanoid robots: A box-based approach, Int. Conf. Adv. Robotics (2009)

    Google Scholar 

  105. C. Goldfeder, P.K. Allen: Data-driven grasping, Auton. Robots 31(1), 1–20 (2011)

    Article  Google Scholar 

  106. M. Ciocarlie, K. Hsiao, E.G. Jones, S. Chitta, R.B. Rusu, I.A. Sucan: Towards reliable grasping and manipulation in household environments, Intl. Symp. Exp. Robotics (2010) pp. 1–12

    Google Scholar 

  107. Google Goggles, http://www.google.com/mobile/goggles/

  108. S. Dalibard, A. Nakhaei, F. Lamiraux, J.-P. Laumond: Manipulation of documented objects by a walking humanoid robot, IEEE-RAS Int. Conf. Humanoid Robots (2010) pp. 518–523

    Google Scholar 

  109. K. Lai, D. Fox: Object recognition in 3-D point clouds using web data and domain adaptation, Int. J. Robotics Res. 29(8), 1019–1037 (2010)

    Article  Google Scholar 

  110. S. Gammeter, A. Gassmann, L. Bossard, T. Quack, L. Van Gool: Server-side object recognition and client-side object tracking for mobile augmented reality, IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (2010) pp. 1–8

    Google Scholar 

  111. M. Armbrust, I. Stoica, M. Zaharia, A. Fox, R. Griffith, A.D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin: A view of cloud computing, Communication ACM 53(4), 50 (2010)

    Article  Google Scholar 

  112. Amazon Web Services, http://aws.amazon.com

  113. Amazon Elastic Cloud (EC2), http://aws.amazon.com/ec2/

  114. Google Compute Engine, https://cloud.google.com/products/compute-engine

  115. Microsoft Azure, http://www.windowsazure.com

  116. G. Juve, E. Deelman, G.B. Berriman, B.P. Berman, P. Maechling: An evaluation of the cost and performance of scientific workflows on Amazon EC2, J. Grid Comput. 10(1), 5–21 (2012)

    Article  Google Scholar 

  117. P. Mehrotra, J. Djomehri, S. Heistand, R. Hood, H. Jin, A. Lazanoff, S. Saini, R. Biswas: Performance evaluation of Amazon EC2 for NASA HPC applications, Proc. 3rd Workshop Sci. Cloud Comput. Date (ScienceCloud) (2012)

    Google Scholar 

  118. R. Tudoran, A. Costan, G. Antoniu, L. Bougé: A performance evaluation of Azure and Nimbus clouds for scientific applications, Proc. 2nd Int. Workshop Cloud Comput. Platf. (CloudCP) (2012) pp. 1–6

    Google Scholar 

  119. TOP500 List, http://www.top500.org/list/2012/06/100 (June 2012)

  120. N.K. Jangid: Real time cloud computing, Proc. 1st Natl. Conf. Data Manag. Secur., Jaipur (2011)

    Google Scholar 

  121. J. Glover, D. Rus, N. Roy: Probabilistic models of object geometry for grasp planning. In: Robotics: Science and Systems IV, ed. by O. Brock, J. Trinkle, F. Ramos (MIT Press, Cambridge 2008)

    Google Scholar 

  122. H. Wang, Y. Ma, G. Pratx, L. Xing: Toward real-time Monte Carlo simulation using a commercial cloud computing infrastructure, Phys. Med. Biol. 56(17), 175–181 (2011)

    Article  Google Scholar 

  123. M. Sevior, T. Fifield, N. Katayama: Belle monte-carlo production on the Amazon EC2 cloud, J. Phys. 219(1), 012003 (2010)

    Google Scholar 

  124. D. Nister, H. Stewenius: Scalable recognition with a vocabulary tree, IEEE Comput. Soc. Conf. Comp. Vis. Pattern Recognit., Vol. 2 (2006) pp. 2161–2168

    Google Scholar 

  125. J. Philbin, O. Chum, M. Isard, J. Sivic, A. Zisserman: Object retrieval with large vocabularies and fast spatial matching, IEEE Conf. Comput. Vis. Pattern Recognit. (2007) pp. 1–8

    Google Scholar 

  126. B. Bhargava, P. Angin, L. Duan: A mobile-cloud pedestrian crossing guide for the blind, Int. Conf. Adv. Comput. Commun. (2011)

    Google Scholar 

  127. J.J.S. García: Using cloud computing as a HPC platform for embedded systems, http://www.atc.us.es/descargas/tfmHPCCloud_OnlinePDF.pdf (2011)

  128. J. van den Berg, P. Abbeel, K. Goldberg: LQG-MP: Optimized path planning for robots with motion uncertainty and imperfect state information, Int. J. Robotics Res. 30(7), 895–913 (2011)

    Article  Google Scholar 

  129. B. Kehoe, D. Berenson, K. Goldberg: Estimating part tolerance bounds based on adaptive cloud-based grasp planning with slip, Proc. IEEE Int. Conf. Automat. Sci. Eng. (2012)

    Google Scholar 

  130. B. Kehoe, D. Berenson, K. Goldberg: Toward cloud-based grasping with uncertainty in shape: Estimating lower bounds on achieving force closure with zero-slip push grasps, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2012) pp. 576–583

    Google Scholar 

  131. D. Berenson, P. Abbeel, K. Goldberg: A robot path planning framework that learns from experience, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2012) pp. 3671–3678

    Google Scholar 

  132. MyRobots.com, http://myrobots.com

  133. What is MyRobots?, http://myrobots.com/wiki/About

  134. L. Dabbish, C. Stuart, J. Tsay, J. Herbsleb: Social coding in GitHub: transparency and collaboration in an open software repository, Proc. ACM Conf. Comp. Support. Coop. Work (2012) pp. 1277–1286

    Google Scholar 

  135. A. Hars: Working for free? Motivations of participating in open source projects, Proc. 34th Annu. Hawaii Int. Conf. Syst. Sci. (2001)

    Google Scholar 

  136. D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, D. Zagorodnov: The Eucalyptus open-source cloud-computing system, IEEE/ACM Int. Symp. Clust. Comput. Grid (2009) pp. 124–131

    Google Scholar 

  137. ROS (Robot Operating System), http://ros.org.

  138. M. Quigley, B. Gerkey: ROS: An open-source robot operating system, ICRA Workshop Open Source Softw. (2009)

    Google Scholar 

  139. rosjava, an implementation of ROS in pure Java with Android support, http://cloudrobotics.com

  140. The African Robotics Network (AFRON): Ten Dollar Robot design challenge winners, http://robotics-africa.org/design_challenge.html (2012)

  141. Bullet Physics Library, http://bulletphysics.org

  142. OpenRAVE, http://openrave.org/

  143. Gazebo, http://gazebosim.org

  144. E. Plaku, K.E. Bekris, L.E. Kavraki: OOPS for motion planning: An online, open-source, programming system, Proc. IEEE Int. Conf. Robotics Autom. (2007) pp. 3711–3716

    Google Scholar 

  145. A.T. Miller, P.K. Allen: GraspIt! A versatile simulator for robotic grasping, IEEE Robotics Autom. Mag. 11(4), 110–122 (2004)

    Article  Google Scholar 

  146. A. Sorokin, D. Berenson, S.S. Srinivasa, M. Hebert: People helping robots helping people: Crowdsourcing for grasping novel objects, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2010) pp. 2117–2122

    Google Scholar 

  147. S. Davidson: Open-source hardware, IEEE Des. Test Comput. 21(5), 456–456 (2004)

    Article  Google Scholar 

  148. E. Rubow: Open Source Hardware, Tech. Rep. http://cseweb.ucsd.edu/classes/fa08/cse237a/topicresearch/erubow_tr_report_OnlinePDF.pdf (2008)

  149. Arduino: http://www.arduino.cc

  150. H.H. King, L. Cheng, P. Roan, D. Friedman, S. Nia, J. Ma, D. Glozman, J. Rosen, B. Hannaford: Raven II: Open platform for surgical robotics research, Hamlyn Symp. Med. Robotics (2012)

    Google Scholar 

  151. An open-source robo-surgeon, The Economist, http://www.economist.com/node/21548489 (2012)

  152. L. von Ahn: Human computation, Des. Autom. Conf. (2009) pp. 418–419

    Google Scholar 

  153. J.C. Gamboa Higuera, A. Xu, F. Shkurti, G. Dudek: Socially-driven collective path planning for robot missions, 9th Conf. Comput. Robot Vis. (2012) pp. 417–424

    Google Scholar 

  154. Y. Gingold, A. Shamir, D. Cohen-Or: Micro perceptual human computation for visual tasks, ACM Trans. Graphics 31(5), 1–12 (2012)

    Article  Google Scholar 

  155. M. Johnson-Roberson, J. Bohg, G. Skantze, J. Gustafson, R. Carlson, B. Rasolzadeh, D. Kragic: Enhanced visual scene understanding through human-robot dialog, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2011) pp. 3342–3348

    Google Scholar 

  156. A. Sorokin, D. Forsyth: Utility data annotation with Amazon Mechanical Turk, IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. Workshops (2008) pp. 1–8

    Google Scholar 

  157. C. Escolano, J. Antelis, J. Minguez: Human brain-teleoperated robot between remote places, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2009) pp. 4430–4437

    Google Scholar 

  158. A. Akce, M. Johnson, T. Bretl: Remote teleoperation of an unmanned aircraft with a brain-machine interface: Theory and preliminary results, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2010) pp. 5322–5327

    Google Scholar 

  159. J. Roselln, R. Suárez, C. Rosales, A. Pérez: Autonomous motion planning of a hand-arm robotic system based on captured human-like hand postures, Auton. Robots 31(1), 87–102 (2011)

    Article  Google Scholar 

  160. K. Onda, F. Arai: Parallel teleoperation of holographic optical tweezers using multi-touch user interface, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2012) pp. 1069–1074

    Google Scholar 

  161. P.X. Liu, M. Meng, S.X. Yang: Data communications for internet robots, Auton. Robots 15, 213–223 (2003)

    Article  Google Scholar 

  162. W. Fung, N. Xi, W. Lo, B. Song, Y. Sun, Y. Liu, I.H. Elhajj: Task driven dynamic QOS based bandwidth allcoation for real-time teleoperation via the internet, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2003)

    Google Scholar 

  163. F. Zeiger, N. Kraemer, K. Schilling: Commanding mobile robots via wireless ad-hoc networks – A comparison of four ad-hoc routing protocol implementations, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2008) pp. 590–595

    Google Scholar 

  164. M. Amoretti, S. Bottazzi, M. Reggiani, S. Caselli: Evaluation of data distribution techniques in a corba-based telerobotic system, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2003)

    Google Scholar 

  165. S. Bottazzi, S. Caselli, M. Reggiani, M. Amoretti: A software framework based on real time COBRA for telerobotics systems, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2002)

    Google Scholar 

  166. J. Chen, E. Haas, M. Barnes: Human performance issues and user interface design for teleoperated robots, IEEE Trans. Syst. Man Cybern. C 37(6), 1231–1245 (2007)

    Article  Google Scholar 

  167. Y. Jia, N. Xi, Y. Wang, X. Li: Online identification of quality of teleoperator (QoT) for performance improvement of telerobotic operations, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2012) pp. 451–456

    Google Scholar 

  168. S. Livatino, G. Muscato, S. Sessa, C. Koffel, C. Arena, A. Pennisi, D. Di Mauro, F. Malkondu: Mobile robotic teleguide based on video images, IEEE Robotics Autom. Mag. 15(4), 58–67 (2008)

    Article  Google Scholar 

  169. G. Podnar, J. Dolan, A. Elfes, S. Stancliff, E. Lin, J. Hosier, T. Ames, J. Moisan, T. Moisan, J. Higinbotham, E. Kulczycki: Operation of robotic science boats using the telesupervised adaptive ocean sensor fleet system, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2008) pp. 1061–1068

    Google Scholar 

  170. Y. Kwon, S. Rauniar: E-quality for manufacturing (EQM) within the framework of internet-based systems, IEEE Trans. Syst. Man Cybern. C 37(6), 1365–1372 (2007)

    Article  Google Scholar 

  171. L. Wang: Wise-shopfloor: An integrated approach for web-based collaborative manufacturing, IEEE Trans. Syst. Man Cybern. C 38(4), 562–573 (2008)

    Article  Google Scholar 

  172. P. Debenest, M. Guarnieri, K. Takita, E. Fukushima, S. Hirose, K. Tamura, A. Kimura, H. Kubokawa, N. Iwama, F. Shiga: Expliner – Robot for inspection of transmission lines, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2008) pp. 3978–3984

    Google Scholar 

  173. N. Pouliot, S. Montambault: Linescout technology: From inspection to robotic maintenance on live transmission power lines, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2009) pp. 1034–1040

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dezhen Song .

Editor information

Editors and Affiliations

Video-References

Video-References

:

A heterogeneous multiple-operator-multiple-robot system available from http://handbookofrobotics.org/view-chapter/44/videodetails/81

:

Teleoperation of a mini-excavator available from http://handbookofrobotics.org/view-chapter/44/videodetails/82

:

Tele-Actor available from http://handbookofrobotics.org/view-chapter/44/videodetails/83

:

A multi-operator-multi-robot teleoperation system available from http://handbookofrobotics.org/view-chapter/44/videodetails/84

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Song, D., Goldberg, K., Chong, NY. (2016). Networked Robots. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-32552-1_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32552-1_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32550-7

  • Online ISBN: 978-3-319-32552-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics