Skip to main content

Model Identification

  • Chapter
  • First Online:

Part of the book series: Springer Handbooks ((SHB))

Abstract

This chapter discusses how to determine the kinematic parameters and the inertial parameters of robot manipulators. Both instances of model identification are cast into a common framework of least-squares parameter estimation, and are shown to have common numerical issues relating to the identifiability of parameters, adequacy of the measurement sets, and numerical robustness. These discussions are generic to any parameter estimation problem, and can be applied in other contexts.

For kinematic calibration, the main aim is to identify the geometric Denavit–Hartenberg (GlossaryTerm

DH

) parameters, although joint-based parameters relating to the sensing and transmission elements can also be identified. Endpoint sensing or endpoint constraints can provide equivalent calibration equations. By casting all calibration methods as closed-loop calibration, the calibration index categorizes methods in terms of how many equations per pose are generated.

Inertial parameters may be estimated through the execution of a trajectory while sensing one or more components of force/torque at a joint. Load estimation of a handheld object is simplest because of full mobility and full wrist force-torque sensing. For link inertial parameter estimation, restricted mobility of links nearer the base as well as sensing only the joint torque means that not all inertial parameters can be identified. Those that can be identified are those that affect joint torque, although they may appear in complicated linear combinations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

3-D:

three-dimensional

BLUE:

best linear unbiased estimator

DH:

Denavit–Hartenberg

DOF:

degree of freedom

IV:

instrumental variable

LVDT:

linear variable differential transformer

RMS:

root mean square

References

  1. P.Z. Marmarelis, V.Z. Marmarelis: Analysis of Physiological Systems (Plenum, London 1978)

    Book  MATH  Google Scholar 

  2. C.W. Wampler, J.M. Hollerbach, T. Arai: An implicit loop method for kinematic calibration and its application to closed-chain mechanisms, IEEE Trans. Robotics Autom. 11, 710–724 (1995)

    Article  Google Scholar 

  3. J.P. Norton: An Introduction to Identification (Academic, London 1986)

    MATH  Google Scholar 

  4. G.H. Golub, C.F. Van Loan: Matrix Computations (Johns Hopkins Univ. Press, Baltimore 1989)

    MATH  Google Scholar 

  5. H. West, E. Papadopoulos, S. Dubowsky, H. Cheah: A method for estimating the mass properties of a manipulator by measuring the reaction moments at its base, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1989) pp. 1510–1516

    Google Scholar 

  6. R.P. Paul: Robot Manipulators: Mathematics, Programming, and Control (MIT Press, Cambridge 1981)

    Google Scholar 

  7. S.A. Hayati, M. Mirmirani: Improving the absolute positioning accuracy of robot manipulators, J. Robotics Syst. 2, 397–413 (1985)

    Article  Google Scholar 

  8. J.M. Hollerbach, C.W. Wampler: The calibration index and taxonomy of kinematic calibration methods, Int. J. Robotics Res. 15, 573–591 (1996)

    Article  Google Scholar 

  9. A. Goswami, A. Quaid, M. Peshkin: Identifying robot parameters using partial pose information, IEEE Control Syst. 13, 6–14 (1993)

    Article  Google Scholar 

  10. M.R. Driels, W.E. Swayze: Automated partial pose measurement system for manipulator calibration experiments, IEEE Trans. Robotics Autom. 10, 430–440 (1994)

    Article  Google Scholar 

  11. G.-R. Tang, L.-S. Liu: Robot calibration using a single laser displacement meter, Mechatronics 3, 503–516 (1993)

    Article  Google Scholar 

  12. D.E. Whitney, C.A. Lozinski, J.M. Rourke: Industrial robot forward calibration method and results, ASME J. Dyn. Syst. Meas. Control 108, 1–8 (1986)

    Article  MATH  Google Scholar 

  13. B.W. Mooring, Z.S. Roth, M.R. Driels: Fundamentals of Manipulator Calibration (Wiley, New York 1991)

    Google Scholar 

  14. K. Lau, R. Hocken, L. Haynes: Robot performance measurements using automatic laser tracking techniques, Robotics Comput. Manuf. 2, 227–236 (1985)

    Article  Google Scholar 

  15. C.H. An, C.H. Atkeson, J.M. Hollerbach: Model-Based Control of a Robot Manipulator (MIT Press, Cambridge 1988)

    Google Scholar 

  16. M. Vincze, J.P. Prenninger, H. Gander: A laser tracking system to measure position and orientation of robot end effectors under motion, Int. J. Robotics Res. 13, 305–314 (1994)

    Article  Google Scholar 

  17. J.M. McCarthy: Introduction to Theoretical Kinematics (MIT Press, Cambridge 1990)

    Google Scholar 

  18. D.J. Bennet, J.M. Hollerbach: Autonomous calibration of single-loop closed kinematic chains formed by manipulators with passive endpoint constraints, IEEE Trans. Robotics Autom. 7, 597–606 (1991)

    Article  Google Scholar 

  19. W.S. Newman, D.W. Osborn: A new method for kinematic parameter calibration via laser line tracking, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1993) pp. 160–165

    Google Scholar 

  20. X.-L. Zhong, J.M. Lewis: A new method for autonomous robot calibration, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1995) pp. 1790–1795

    Google Scholar 

  21. J.M. Hollerbach, D.M. Lokhorst: Closed-loop kinematic calibration of the RSI 6-DOF hand controller, IEEE Trans. Robotics Autom. 11, 352–359 (1995)

    Article  Google Scholar 

  22. A. Nahvi, J.M. Hollerbach, V. Hayward: Closed-loop kinematic calibration of a parallel-drive shoulder joint, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1994) pp. 407–412

    Google Scholar 

  23. O. Masory, J. Wang, H. Zhuang: On the accuracy of a Stewart platform – Part II Kinematic calibration and compensation, Proc. IEEE Int. Conf. Robotics Autom., Piscataway (1994) pp. 725–731

    Google Scholar 

  24. B. Armstrong-Helouvry: Control of Machines with Friction (Kluwer, Boston 1991)

    Book  MATH  Google Scholar 

  25. B. Armstrong-Helouvry, P. Dupont, C. de Canudas Wit: A survey of models, analysis tools and compensation methods for the control of machines with friction, Automatica 30, 1083–1138 (1994)

    Article  MATH  Google Scholar 

  26. F. Aghili, J.M. Hollerbach, M. Buehler: A modular and high-precision motion control system with an integrated motor, IEEE/ASME Trans. Mechatron. 12, 317–329 (2007)

    Article  Google Scholar 

  27. W.S. Newman, J.J. Patel: Experiments in torque control of the Adept One robot, Proc. IEEE Int. Conf. Robotics Autom., Piscataway (1991) pp. 1867–1872

    Google Scholar 

  28. W. Khalil, E. Dombre: Modeling, Identification and Control of Robots (Taylor Francis, New York 2002)

    MATH  Google Scholar 

  29. M. Gautier: Dynamic identification of robots with power model, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1997) pp. 1922–1927

    Google Scholar 

  30. W. Khalil, M. Gautier, P. Lemoine: Identification of the payload inertial parameters of industrial manipulators, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2007) pp. 4943–4948

    Google Scholar 

  31. J. Swevers, W. Verdonck, B. Naumer, S. Pieters, E. Biber: An Experimental Robot Load Identification Method for Industrial Application, Int. J. Robotics Res. 21(8), 701–712 (2002)

    Article  Google Scholar 

  32. P.P. Restrepo, M. Gautier: Calibration of drive chain of robot joints, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1995) pp. 526–531

    Google Scholar 

  33. P. Corke: In situ measurement of robot motor electrical constants, Robotica 23(14), 433–436 (1996)

    Article  Google Scholar 

  34. S. Van Huffel, J. Vandewalle: The Total Least Squares Problem: Computational Aspects and Analysis (SIAM, Philadelphia 1991)

    Book  MATH  Google Scholar 

  35. M. Gautier, S. Briot: Global identification of drive gains parameters of robots using a known payload, ASME J. Dyn. Syst. Meas. Control 136(5), 051026 (2014)

    Article  Google Scholar 

  36. W. Khalil, O. Ibrahim: General solution for the dynamic modeling of parallel robots, J. Intell. Robotics Syst. 49, 19–37 (2007)

    Article  Google Scholar 

  37. S. Guegan, W. Khalil, P. Lemoine: Identification of the dynamic parameters of the Orthoglide, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2003) pp. 3272–3277

    Google Scholar 

  38. K. Schröer: Theory of kinematic modelling and numerical procedures for robot calibration. In: Robot Calibration, ed. by R. Bernhardt, S.L. Albright (Chapman Hall, London 1993) pp. 157–196

    Google Scholar 

  39. H. Zhuang, Z.S. Roth: Camera-Aided Robot Calibration (CRC, Boca Raton 1996)

    Google Scholar 

  40. M. Gautier: Numerical calculation of the base inertial parameters, J. Robotics Syst. 8, 485–506 (1991)

    Article  MATH  Google Scholar 

  41. J.J. Dongarra, C.B. Mohler, J.R. Bunch, G.W. Stewart: LINPACK User's Guide (SIAM, Philadelphia 1979)

    Book  Google Scholar 

  42. W. Khalil, F. Bennis: Symbolic calculation of the base inertial parameters of closed-loop robots, Int. J. Robotics Res. 14, 112–128 (1995)

    Article  Google Scholar 

  43. W. Khalil, S. Guegan: Inverse and direct dynamic modeling of Gough–Stewart robots, IEEE Trans. Robotics Autom. 20, 754–762 (2004)

    Article  Google Scholar 

  44. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery: Numerical Recipes in C (Cambridge Univ. Press, Cambridge 1992)

    MATH  Google Scholar 

  45. C.L. Lawson, R.J. Hanson: Solving Least Squares Problems (Prentice Hall, Englewood Cliffs 1974)

    MATH  Google Scholar 

  46. P.R. Bevington, D.K. Robinson: Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York 1992)

    Google Scholar 

  47. B. Armstrong: On finding exciting trajectories for identification experiments involving systems with nonlinear dynamics, Int. J. Robotics Res. 8, 28–48 (1989)

    Article  Google Scholar 

  48. J. Fiefer, J. Wolfowitz: Optimum designs in regression problems, Ann. Math. Stat. 30, 271–294 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  49. Y. Sun, J.M. Hollerbach: Observability index selection for robot calibration, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Piscataway (2008) pp. 831–836

    Google Scholar 

  50. J.H. Borm, C.H. Menq: Determination of optimal measurement configurations for robot calibration based on observability measure, Int. J. Robotics Res. 10, 51–63 (1991)

    Article  Google Scholar 

  51. C.H. Menq, J.H. Borm, J.Z. Lai: Identification and observability measure of a basis set of error parameters in robot calibration, ASME J. Mech. Autom. Des. 111(4), 513–518 (1989)

    Article  Google Scholar 

  52. M. Gautier, W. Khalil: Exciting trajectories for inertial parameter identification, Int. J. Robotics Res. 11, 362–375 (1992)

    Article  Google Scholar 

  53. M.R. Driels, U.S. Pathre: Significance of observation strategy on the design of robot, J. Robotics Syst. 7, 197–223 (1990)

    Article  Google Scholar 

  54. A. Nahvi, J.M. Hollerbach: The noise amplification index for optimal pose selection in robot calibration, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1996) pp. 647–654

    Chapter  Google Scholar 

  55. D. Daney, B. Madeline, Y. Papegay: Choosing measurement poses for robot calibration with local convergence method and Tabu search, Int. J. Robotics Res. 24(6), 501–518 (2005)

    Article  Google Scholar 

  56. Y. Sun, J.M. Hollerbach: Active robot calibration algorithm, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Piscataway (2008) pp. 1276–1281

    Google Scholar 

  57. T.J. Mitchell: An algorithm for the construction of D-Optimal experimental designs, Technometrics 16(2), 203–210 (1974)

    MathSciNet  MATH  Google Scholar 

  58. J. Swevers, C. Ganseman, D.B. Tukel, J. De Schutter, H. Van Brussel: Optimal robot excitation and identification, IEEE Trans. Robotics Autom. 13, 730–740 (1997)

    Article  Google Scholar 

  59. P.O. Vandanjon, M. Gautier, P. Desbats: Identification of robots inertial parameters by means of spectrum analysis, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1995) pp. 3033–3038

    Google Scholar 

  60. E. Walter, L. Pronzato: Identification of Parametric Models from Experimental Data (Springer, London 1997)

    MATH  Google Scholar 

  61. D.G. Luenberger: Optimization by Vector Space Methods (Wiley, New York 1969)

    MATH  Google Scholar 

  62. H.W. Sorenson: Least-squares estimation: from Gauss to Kalman, IEEE Spectr. 7, 63–68 (1970)

    Article  Google Scholar 

  63. Z. Roth, B.W. Mooring, B. Ravani: An overview of robot calibration, IEEE J. Robotics Autom. 3, 377–386 (1987)

    Article  Google Scholar 

  64. A.E. Bryson Jr., Y.-C. Ho: Applied Optimal Control (Hemisphere, Washington 1975)

    Google Scholar 

  65. M. Gautier, P. Poignet: Extended Kalman fitering and weighted least squares dynamic identification of robot, Control Eng. Pract. 9, 1361–1372 (2001)

    Article  Google Scholar 

  66. D.J. Bennet, J.M. Hollerbach, D. Geiger: Autonomous robot calibration for hand-eye coordination, Int. J. Robotics Res. 10, 550–559 (1991)

    Article  Google Scholar 

  67. D.J. Bennet, J.M. Hollerbach, P.D. Henri: Kinematic calibration by direct estimation of the Jacobian matrix, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1992) pp. 351–357

    Google Scholar 

  68. P.T. Boggs, R.H. Byrd, R.B. Schnabel: A stable and efficient algorithm for nonlinear orthogonal distance regression, SIAM J. Sci. Stat. Comput. 8, 1052–1078 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  69. W.A. Fuller: Measurement Error Models (Wiley, New York 1987)

    Book  MATH  Google Scholar 

  70. J.-M. Renders, E. Rossignol, M. Becquet, R. Hanus: Kinematic calibration and geometrical parameter identification for robots, IEEE Trans. Robotics Autom. 7, 721–732 (1991)

    Article  Google Scholar 

  71. G. Zak, B. Benhabib, R.G. Fenton, I. Saban: Application of the weighted least squares parameter estimation method for robot calibration, J. Mech. Des. 116, 890–893 (1994)

    Article  Google Scholar 

  72. M. Gautier, A. Janot, P.O. Vandanjon: A New Closed-Loop Output Error Method for Parameter Identification of Robot Dynamics, IEEE Trans. Control Syst. Techn. 21, 428–444 (2013)

    Article  Google Scholar 

  73. A. Janot, P.O. Vandanjon, M. Gautier: A Generic Instrumental Variable Approach for Industrial Robots Identification, IEEE Trans. Control Syst. Techn. 22, 132–145 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Hollerbach .

Editor information

Editors and Affiliations

Video-References

Video-References

:

Calibration of ABB’s IRB 120 industrial robot available from http://handbookofrobotics.org/view-chapter/06/videodetails/422

:

Robot calibration using a touch probe available from http://handbookofrobotics.org/view-chapter/06/videodetails/425

:

Calibration and accuracy validation of a FANUC LR Mate 200iC industrial robot available from http://handbookofrobotics.org/view-chapter/06/videodetails/430

:

Dynamic identification of Staubli TX40: Trajectory without load available from http://handbookofrobotics.org/view-chapter/06/videodetails/480

:

Dynamic identification of Staubli TX40: Trajectory with load available from http://handbookofrobotics.org/view-chapter/06/videodetails/481

:

Dynamic identification of Kuka LWR: Trajectory without load available from http://handbookofrobotics.org/view-chapter/06/videodetails/482

:

Dynamic identification of Kuka LWR: Trajectory with load available from http://handbookofrobotics.org/view-chapter/06/videodetails/483

:

Dynamic identification of a parallel robot: Trajectory with load available from http://handbookofrobotics.org/view-chapter/06/videodetails/485

:

Dynamic identification of Kuka KR270: Trajectory without load available from http://handbookofrobotics.org/view-chapter/06/videodetails/486

:

Dynamic identification of Kuka KR270: trajectory with load available from http://handbookofrobotics.org/view-chapter/06/videodetails/487

:

Dynamic identification of a parallel robot: Trajectory without load available from http://handbookofrobotics.org/view-chapter/06/videodetails/488

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hollerbach, J., Khalil, W., Gautier, M. (2016). Model Identification. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-32552-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32552-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32550-7

  • Online ISBN: 978-3-319-32552-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics