Skip to main content

Physical Human–Robot Interaction

  • Chapter
  • First Online:

Part of the book series: Springer Handbooks ((SHB))

Abstract

Over the last two decades, the foundations for physical human–robot interaction (GlossaryTerm

pHRI

) have evolved from successful developments in mechatronics, control, and planning, leading toward safer lightweight robot designs and interaction control schemes that advance beyond the current capacities of existing high-payload and high-precision position-controlled industrial robots. Based on their ability to sense physical interaction, render compliant behavior along the robot structure, plan motions that respect human preferences, and generate interaction plans for collaboration and coaction with humans, these novel robots have opened up novel and unforeseen application domains, and have advanced the field of human safety in robotics.

This chapter gives an overview on the state of the art in pHRI. First, the advances in human safety are outlined, addressing topics in human injury analysis in robotics and safety standards for pHRI. Then, the foundations of human-friendly robot design, including the development of lightweight and intrinsically flexible force/torque-controlled machines together with the required perception abilities for interaction are introduced. Subsequently, motion-planning techniques for human environments, including the domains of biomechanically safe, risk-metric-based, human-aware planning are covered. Finally, the rather recent problem of interaction planning is summarized, including the issues of collaborative action planning, the definition of the interaction planning problem, and an introduction to robot reflexes and reactive control architecture for pHRI.

figure a

The original version of this chapter was revised. The erratum to this chapter is available at DOI https://dx.doi.org/10.1007/978-3-319-32552-1_81

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

3-D:

three-dimensional

AO:

Arbeitsgemeinschaft für Ostheosynthesefragen

CC:

compression criterion

CHMM:

continuous hidden Markov model

COMAN:

compliant humanoid platform

DARPA:

Defense Advanced Research Projects Agency

DC:

dynamic constrained

DHMM:

discrete hidden Markov model

DLR:

Deutsches Zentrum für Luft- und Raumfahrt

DNF:

dynamic neural field

DOF:

degree of freedom

DPC:

dynamic partially constrained

DU:

dynamic unconstrained

fs:

force sensor

HASY:

hand arm system

HIC:

head injury criterion

HIII:

Hybrid III dummy

HMM:

hidden Markov model

IIT:

Istituto Italiano di Tecnologia

IM:

injury measure

ISO:

International Organization for Standardization

LWR:

light-weight robot

MRI:

magnetic resonance imaging

NASA:

National Aeronautics and Space Agency

PCA:

principal component analysis

pHRI:

physical human–robot interaction

PI:

possible injury

POI:

point of interest

QSC:

quasistatic constrained

RGB-D:

red–green–blue–depth

SEA:

series elastic actuator

SME:

small and medium enterprises

SMU:

safe motion unit

TORO:

torque controlled humanoid robot

TS:

technical specification

UBC:

University of British Columbia

VAS:

visual analog scale

VIA:

variable impedance actuator

VSA:

variable stiffness actuator

WCF:

worst-case factor

WCR:

worst-case range

References

  1. M.A. Goodrich, A.C. Schultz: Human-robot interaction: A survey, Found. Trends Hum.-Comput. Interact. 1(3), 203–275 (2007)

    Article  MATH  Google Scholar 

  2. M.A. Peshkin, J.E. Colgate, W. Wannasuphoprasit, C.A. Moore, R.B. Gillespie, P. Akella: Cobot architecture, IEEE Trans. Robotics Autom. 17(4), 377–390 (2001)

    Article  Google Scholar 

  3. T. Shibata, T. Mitsui, K. Wada, A. Touda: Mental commit robot and its application to therapy of children, IEEE/ASME Int. Conf. Adv. Intell. Mechatron. (2001) pp. 1053–1058

    Google Scholar 

  4. S. Yohanan, K.E. MacLean: The role of affective touch in human-robot interaction: Human intent and expectations in touching the haptic creature, Int. J. Soc. Robotics 4(2), 163–180 (2011)

    Article  Google Scholar 

  5. Y. Iwamura, M. Shiomi, T. Kanda, H. Ishiguro, N. Hagita: Do elderly people prefer a conversational humanoid as a shopping assistant partner in supermarkets?, ACM Int. Conf. Hum.-Robot Interact. (2011) p. 449

    Google Scholar 

  6. T. Ende, S. Haddadin, S. Parusel, W. Tilo, M. Hassenzahl, A. Albu-Schäffer: A human-centered approach to robot gesture based communication within collaborative working processes, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2011) pp. 3367–3374

    Google Scholar 

  7. A.L. Thomaz, C. Chao: Turn-taking based on information flow for fluent human-robot interaction, AI Mag. 32(4), 53–63 (2011)

    Google Scholar 

  8. B. Gleeson, K. MacLean, A. Haddadi, E. Croft, J. Alcazar: Gestures for industry Intuitive human-robot communication from human observation, ACM/IEEE Int. Conf. Hum.-Robot Interact. (2013) pp. 349–356

    Google Scholar 

  9. S. Haddadin, S. Parusel, R. Belder, A. Albu-Schäffer: It is (almost) all about human safety: A novel paradigm for robot design, control, and planning, Lect. Notes Comput. Sci. 8153, 202–215 (2013)

    Article  Google Scholar 

  10. J. Mainprice, D. Berenson: Human-robot collaborative manipulation planning using early prediction of human motion, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2013) pp. 299–306

    Google Scholar 

  11. M. Cakmak, S.S. Srinivasa, M.K. Lee, S. Kiesler, J. Forlizzi: Using spatial and temporal contrast for fluent robot-human hand-overs, ACM/IEEE Int. Conf. Hum.-Robot Interact. (2011) pp. 489–496

    Google Scholar 

  12. E.A. Sisbot, R. Alami: A human-aware manipulation planner, IEEE Trans. Robotics 28(5), 1045–1057 (2012)

    Article  Google Scholar 

  13. W.P. Chan, C.A.C. Parker, H.F.M. Van der Loos, E.A. Croft: A human-inspired object handover controller, Int. J. Robotics Res. 32(8), 972–984 (2013)

    Article  Google Scholar 

  14. M.S. Erden, T. Tomiyama: Human-intent detection and physically interactive control of a robot without force sensors, IEEE Trans. Robotics 26(2), 370–382 (2010)

    Article  Google Scholar 

  15. A. Thobbi, Y. Gu, W. Sheng: Using human motion estimation for human-robot cooperative manipulation, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2011) pp. 2873–2878

    Google Scholar 

  16. P. Evrard, E. Gribovskaya, S. Calinon, A. Billard, A. Kheddar: Teaching physical collaborative tasks: Object-lifting case study with a humanoid, IEEE-RAS Int. Conf. Humanoid Robots (2009) pp. 399–404

    Google Scholar 

  17. S. Ikemoto, H. Ben Amor, T. Minato, H. Ishiguro, B. Jung: Mutual learning and adaptation in physical human-robot interaction, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2012) pp. 24–335

    Google Scholar 

  18. D. Lee, C. Ott: Incremental kinesthetic teaching of motion primitives using the motion refinement tube, Auton. Robots 31(2–3), 115–131 (2011)

    Article  Google Scholar 

  19. S. Haddadin, A. Albu-Schäffer, G. Hirzinger: Requirements for safe robots: Measurements, analysis & new insights, Int. J. Robotics Res. 28(11-12), 1507–1527 (2009)

    Article  Google Scholar 

  20. A. Bicchi, G. Tonietti: Fast and soft arm tactics: Dealing with the safety-performance trade-off in robot arms design and control, IEEE Robotics Autom. Mag. 11, 22–33 (2004)

    Article  Google Scholar 

  21. M. Zinn, O. Khatib, B. Roth: A new actuation approach for human friendly robot design, Int. J. Robotics Res. 23, 379–398 (2004)

    Article  Google Scholar 

  22. S. Haddadin, A. Albu-Schäffer, G. Hirzinger: Safety evaluation of physical human-robot interaction via crash-testing, Proc. Robotics Sci. Syst. Conf. (2007) pp. 217–224

    Google Scholar 

  23. S. Oberer, R.-D. Schraft: Robot-dummy crash tests for robot safety assessment, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2007) pp. 2934–2939

    Google Scholar 

  24. S. Haddadin, A. Albu-Schäffer, F. Haddadin, J. Roßmann, G. Hirzinger: Study on soft-tissue injury in robotics, IEEE Robotics Autom. Mag. 18(4), 20–34 (2011)

    Article  Google Scholar 

  25. S. Haddadin, S. Haddadin, A. Khoury, T. Rokahr, S. Parusel, R. Burgkart, A. Bicchi, A. Albu-Schäffer: On making robots understand safety: Embedding injury knowledge into control, Int. J. Robotics Res. 31, 1578–1602 (2012)

    Article  Google Scholar 

  26. S. Haddadin: Towards safe robots – Approaching Asimov's 1st law, Springer Tracts Adv. Robotics 90, 1–343 (2014)

    Article  Google Scholar 

  27. D.C. Schneider, A.M. Nahum: Impact studies of facial bones and skull, Proc. 16th Stapp Car Crash Conf. (1972) pp. 186–204

    Google Scholar 

  28. A.M. Nahum, J.D. Gatts, C.W. Gadd, J. Danforth: Impact tolerance of the skull and face, Proc. Stapp Car Crash Conf. (1968)

    Google Scholar 

  29. D. Allsop, T.R. Perl, C. Warner: Force/deflection and fracture characteristics of the temporo-parietal region of the human head, SAE Transactions (1991) pp. 2009–2018

    Google Scholar 

  30. J. Cormier, S. Manoogian, J. Bisplinghoff, S. Rowson, A. Santago, C. McNally, S. Duma, J.I.V. Bolte: The tolerance of the nasal bone to blunt impact, Ann. Adv. Automot. Med (2010) p. 3

    Google Scholar 

  31. H. Delye, P. Verschueren, B. Depreitere, I. Verpoest, D. Berckmans, J. Vander Sloten, G. Van Der Perre, J. Goffin: Biomechanics of frontal skull fracture, J. Neurotrauma 24(10), 1576–1586 (2007)

    Article  Google Scholar 

  32. G.W. Nyquist, J.M. Cavanaugh, S.J. Goldberg, A.I. King: Facial impact tolerance and response, Proc. 30th Stapp Car Crash Conf. (1986) pp. 733–754

    Google Scholar 

  33. D.L. Allsop, C.Y. Warner, M.G. Wille, D.C. Schneider, A.M. Nahum: Facial Impact response – A comparison of the hybrid III dummy and human cadaver, Proc. Stapp Car Crash Conf. (1988) pp. 781–797

    Google Scholar 

  34. V.R. Hodgson, L.M. Thomas: Comparison of head acceleration injury indices in cadaver skull fracture, Proc. Stapp Car Crash Conf. (1971) pp. 299–307

    Google Scholar 

  35. A.M. Nahum, R.W. Smith: An experimental model for closed head impact injury, Proc. Stapp Car Crash Conf. (1976)

    Google Scholar 

  36. S. Haddadin, A. Albu-Schäffer, M. Frommberger, J. Rossmann, G. Hirzinger: The DLR Crash Report: Towards a standard crash-testing protocol for robot safety – Part I: Results, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2009) pp. 272–279

    Google Scholar 

  37. S. Haddadin, A. Albu-Schäffer, M. Frommberger, J. Rossmann, G. Hirzinger: The “DLR Crash Report”: Towards a standard crash-testing protocol for robot safety – Part II: Discussions, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2009) pp. 280–287

    Google Scholar 

  38. C.K. Kroell, D.C. Schneider, A.M. Nahum: Impact tolerance and response of the human thorax I, Proc. Stapp Car Crash Conf. (1971)

    Google Scholar 

  39. C.K. Kroell, D.C. Scheider, A.M. Nahum: Impact tolerance and response of the human thorax II, Proc. Stapp Car Crash Conf. (1974) pp. 383–457

    Google Scholar 

  40. L.M. Patrick: Impact force deflection of the human thorax, Proc. 25th Stapp Car Crash Conf. (1981) pp. 471–496

    Google Scholar 

  41. A.M. Nahum, C.W. Gadd, D.C. Schneider, C. Kroell: Deflection of the human thorax under sternal impact, Int. Automot. Saf. Conf. (1970)

    Google Scholar 

  42. J.M. Cavanaugh, G.W. Nyquist, S.J. Goldberg, A.I. King: Lower abdominal impact tolerance and response, Proc. Stapp Car Crash Conf. (1986)

    Google Scholar 

  43. S.M. Duma, P. Schreiber, J. McMaster, J. Crandall, C. Bass, W. Pilkey: Dynamic injury tolerances for long bones of the female upper extremity, Int. Res. Council Biomech. Inj. (IRCOBI) (1998) pp. 189–201

    Google Scholar 

  44. S.M. Duma, J.R. Crandall, S.R. Hurwitz, W.D. Pilkey: Small female upper extremity interaction with the deploying side air bag, Proc. Stapp Car Crash Conf. (1998) pp. 47–63

    Google Scholar 

  45. R. Behrens, N. Elkmann: Study on meaningful and verified thresholds for minimizing the consequences of human-robot collisions, IEEE Int. Conf. Robotics Autom. (ICRA) (2014) pp. 3378–3383

    Google Scholar 

  46. J.A. Spadaro, F.W. Werner, R.A. Brenner, M.D. Fortino, L.A. Fay, W.T. Edwards: Cortical and trabecular bone contribute strength to the osteopenic distal radius, J. Orthop. Res. 12, 211–218 (1994)

    Article  Google Scholar 

  47. O. Khatib: Inertial properties in robotic manipulation: An object-level framework, Int. J. Robotics Res. 14(1), 19–36 (1995)

    Article  Google Scholar 

  48. T.E. Lobdell, C.K. Kroell, D.C. Scheider, W.E. Hering: Impact response of the human thorax, Symp. Hum. Impact Response (1972) pp. 201–245

    Google Scholar 

  49. T.P. Ruedi, W.M. Murphy: AO Principles of Fracture Management, Vol. 1 (Thieme, Stuttgart 2007)

    Google Scholar 

  50. I.V. Lau, D.C. Viano: Role of impact velocity and chest compression in thoraic injury, Avia. Space Environ. Med. 56, 16–21 (1983)

    Google Scholar 

  51. ISO: ISO12100:2010: Safety of Machinery – General Principles for Design – Risk Assessment and Risk Reductions (Int. Organization for Standardization, Geneva 2010)

    Google Scholar 

  52. ISO: ISO13849-1:2006: Safety of Machinery – Safety-Related Parts of Control Systems – Part 1: General Principles for Design (Int. Organization for Standardization, Geneva 2006)

    Google Scholar 

  53. ISO: ISO13855:2010: Safety of Machinery – Positioning of Safeguards With Respect to the Approach Speeds of Parts of the Human Body (Int. Organization for Standardization, Geneva 2010)

    Google Scholar 

  54. ISO: ISO10218-1:2011: Robots and Robotic Devices – Safety Requirements for Industrial Robots – Part 1: Robots (Int. Organization for Standardization, Geneva 2011)

    Google Scholar 

  55. ISO/DTS 15066: Robots and Robotic Devices – Safety Requirements for Industrial Robots – Collaborative operation (Int. Organization for Standardization, Geneva) under development

    Google Scholar 

  56. ISO: ISO13482:2014: Robots and Robotic Devices – Safety Requirements for Personal Care Robots (Int. Organization for Standardization, Geneva 2014)

    Google Scholar 

  57. C. Gosselin, T. Laliberte, B. Mayer-St-Onge, S. Foucault, A. Lecours, V. Duchaine, N. Paradis, D. Gao, R. Menassa: A friendly beast of burden: A human-assistive robot for handling large payloads, IEEE Robotics Autom. Mag. 20(4), 139–147 (2013)

    Article  Google Scholar 

  58. G. Hirzinger, A. Albu-Schäffer: Lightweight robots, Scholarpedia 3, 3889 (2008)

    Article  Google Scholar 

  59. W.T. Townsend, J.K. Salisbury: Mechanical design for whole-arm manipulation, Proc. NATO Adv. Workshop Robots Biol. Syst, ed. by P. Dario, G. Sandini, P. Aebischer (1993) pp. 153–164

    Google Scholar 

  60. A. Albu-Schäffer, S. Haddadin, C. Ott, A. Stemmer, T. Wimböck, G. Hirzinger: The DLR lightweight robot – Lightweight design and soft robotics control concepts for robots in human environments, Ind. Robot J. 34(5), 376–385 (2007)

    Article  Google Scholar 

  61. KUKA Roboter GmbH: http://www.kuka-lbr-iiwa.com (2015)

  62. A.S. Shafer, M.R. Kermani: Design and validation of a magneto-rheological clutch for practical control applications in human-friendly manipulation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2011) pp. 4266–4271

    Google Scholar 

  63. G. Hirzinger, J. Butterfaß, M. Fischer, M. Grebenstein, M. Hähnle, H. Liu, I. Schaefer, N. Sporer: A mechatronics approach to the design of light-weight arms and multi-fingered hands, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2000)

    Google Scholar 

  64. M.A. Diftler, J.S. Mehling, M.E. Abdallah, N.A. Radford, L.B. Bridgwater, A.M. Sanders, R.S. Askew, D.M. Linn, J.D. Yamokoski, F.A. Permenter, B.K. Hargrave, R. Piatt, R.T. Savely, R.O. Ambrose: Robonaut 2 – The first humanoid robot in space, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2011) pp. 2178–2183

    Google Scholar 

  65. M. Bluethmann, R. Ambrose, R. Askew, M. Goza, C. Lovechik, D. Magruder, M.A. Differ, F. Rehnmark: Robonaut: A robotic astronaut's assistant, Int. Conf. Adv. Robotics (2001)

    Google Scholar 

  66. C. Ott, B. Henze, D. Lee: Kinesthetic teaching of humanoid motion based on whole-body compliance control with interaction-aware balancing, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2013) pp. 4615–4621

    Google Scholar 

  67. C. Ott, O. Eiberger, W. Friedl, B. Bauml, U. Hillenbrand, C. Borst, A. Albu-Schäffer, B. Brunner, H. Hirschmuller, S. Kielhofer, S. Kielhofer, R. Konietschke, M. Suppa, T. Wimbock, F. Zacharias, G. Hirzinger: A humanoid two-arm system for dexterous manipulation, IEEE-RAS Int. Conf. Humanoid Robots (2006) pp. 276–283

    Google Scholar 

  68. M.W. Spong: Modeling and control of elastic joint robots, ASME J. Dyn. Syst. Meas. Control 109(4), 310–319 (1987)

    Article  MATH  Google Scholar 

  69. G. Hirzinger, N. Sporer, M. Schedl, J. Butterfaß, M. Grebenstein: Torque-controlled lightweight arms and articulated hands: Do we reach technological limits now?, Int. J. Robotics Res. 23(4/5), 331–340 (2004)

    Article  Google Scholar 

  70. B. Vanderborght, B. Verrelst, R.V. Ham, M.V. Damme, D. Lefeber, B.M.Y. Duran, P. Beyl: Exploiting natural dynamics to reduce energy consumption by controlling the compliance of soft actuators, Int. J. Robotics Res. 25(4), 343–358 (2006)

    Article  Google Scholar 

  71. S. Haddadin, M. Weis, A. Albu-Schäffer, S. Wolf: Optimal control for maximizing link velocity of robotic variable stiffness joints, IFAC World Congr. (2011) pp. 3175–3182

    Google Scholar 

  72. S. Haddadin, T. Laue, U. Frese, S. Wolf, A. Albu-Schäffer, G. Hirzinger: Kick it like a safe robot: Requirements for 2050, Robotics Auton. Syst. 57, 761–775 (2009)

    Article  Google Scholar 

  73. A. Albu-Schäffer, O. Eiberger, M. Grebenstein, S. Haddadin, C. Ott, T. Wimböck, S. Wolf, G. Hirzinger: Soft robotics: From torque feedback controlled lightweight robots to intrinsically compliant systems, IEEE Robotics Autom. Mag. 15(3), 20–30 (2008)

    Article  Google Scholar 

  74. B. Vanderborght, A. Albu-Schäffer, A. Bicchi, E. Burdet, D.G. Caldwell, R. Carloni, M.G. Catalano, O. Eiberger, W. Friedl, G. Ganesh, M. Garabini, M. Grebenstein, G. Grioli, S. Haddadin, H. Hoppner, A. Jafari, M. Laffranchi, D. Lefeber, F. Petit, S. Stramigioli, N.G. Tsagarakis, M.V. Damme, R.V. Ham, L.C. Visser, S. Wolf: Variable impedance actuators: A review, Robotics Auton. Syst. 61(12), 1601–1614 (2013)

    Article  Google Scholar 

  75. G.A. Pratt, M. Williamson: Series elastics actuators, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (1995) pp. 399–406

    Google Scholar 

  76. S. Haddadin, A. Albu-Schäffer, O. Eiberger, G. Hirzinger: New insights concerning intrinsic joint elasticity for safety, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2010) pp. 2181–2187

    Google Scholar 

  77. S. Haddadin, K. Krieger, N. Mansfeld, A. Albu-Schaffer: On impact decoupling properties of elastic robots and time optimal velocity maximization on joint level, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2012) pp. 5089–5096

    Google Scholar 

  78. J.-J. Park, H.-S. Kim, J.-B. Song: Safe robot arm with safe joint mechanism using nonlinear spring system for collision safety, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2009) pp. 3371–3376

    Google Scholar 

  79. N.G. Tsagarakis, S. Morfey, G. Medrano Cerda, L. Zhibin, D.G. Caldwell: Compliant humanoid coman: Optimal joint stiffness tuning for modal frequency control, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2013) pp. 673–678

    Google Scholar 

  80. A. Albu-Schäffer, M. Fischer, G. Schreiber, F. Schoeppe, G. Hirzinger: Soft robotics: What cartesian stiffness can we obtain with passively compliant, uncoupled joints?, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2004) pp. 3295–3301

    Google Scholar 

  81. M. Garabini, A. Passaglia, F. Belo, P. Salaris, A. Bicchi: Optimality principles in variable stiffness control: The VSA hammer, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2011) pp. 3770–3775

    Google Scholar 

  82. D. Braun, M. Howard, S. Vijayakumar: Exploiting variable stiffness in explosive movement tasks, Robotics Sci. Syst. (2011)

    Google Scholar 

  83. U. Mettin, A. Shiriaev: Ball-pitching challenge with an underactuated two-link robot arm, IFAC World Congr. (2011) pp. 1–6

    Google Scholar 

  84. A. Flagg, K. Maclean: Affective touch gesture recognition for a furry zoomorphic machine, Int. Conf. Tangible Embed. Embodied Interact. (2013) pp. 1–4

    Google Scholar 

  85. R.M. Voyles, P.K. Khosla: Tactile gestures for human/robot interaction, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (1995) pp. 7–13

    Google Scholar 

  86. S. Haddadin, M. Suppa, S. Fuchs, T. Bodenmüller, A. Albu-Schäffer, G. Hirzinger: Towards the robotic co-worker, Int. Symp. Robotics Res. Lucerne (2009)

    Google Scholar 

  87. R. Bischoff, J. Kurth, G. Schreiber, R. Koeppe, A. Albu-Schäffer, A. Beyer, O. Eiberger, S. Haddadin, A. Stemmer, G. Grunwald, G. Hirzinger: The KUKA-DLR lightweight robot arm: A new reference platform for robotics research and manufacturing, Int. Symp. Robotics (2010) pp. 1–10

    Google Scholar 

  88. S. Haddadin, A. Albu-Schäffer, A. De Luca, G. Hirzinger: Collision detection & reaction: A contribution to safe physical human-robot interaction, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2008) pp. 3356–3363

    Google Scholar 

  89. L.E. Pfeffer, O. Khatib, J. Hake: Joint torque sensory feedback in the control of a PUMA manipulator, IEEE Trans. Robotics Autom. 5(4), 418–425 (1989)

    Article  Google Scholar 

  90. G. Plank, G. Hirzinger: Controlling a robot's motion speed by a force-torque-sensor for deburring problems, IFAC Inf. Control Probl. Manuf. Technol. (1982) pp. 97–102

    Google Scholar 

  91. G. Hirzinger, U. Brunet: Fast and self-improving compliance using digital force-torque control, 4th Int. Conf. Assembly Autom. (1983) pp. 268–281

    Google Scholar 

  92. V.J. Lumelsky, E. Cheung: Real-time collision avoidance in teleoperated whole-sensitive robot arm manipulators, IEEE Trans.Syst. Man Cybern. 23(1), 194–203 (1993)

    Article  Google Scholar 

  93. G. De Maria, C. Natale, S. Pirozzi: Force/tactile sensor for robotic applications, Sens. Actuators A 175, 60–72 (2012)

    Article  Google Scholar 

  94. R.S. Dahiya, P. Mittendorfer, M. Valle, G. Cheng, V.J. Lumelsky: Directions toward effective utilization of tactile skin: A review, IEEE Sens. J. 13(11), 4121–4138 (2013)

    Article  Google Scholar 

  95. M. Strohmayr: Artificial Skin in Robotics, Ph.D. Thesis (Karlsruhe Institute of Technology, Karlsruhe 2012)

    Google Scholar 

  96. A. Jain, M.D. Killpack, A. Edsinger, C.C. Kemp: Manipulation in clutter with whole-arm tactile sensing, Int. J. Robotics Res. 32(4), 458–482 (2013)

    Article  Google Scholar 

  97. A.J. Schmid, M. Hoffmann, H. Worn: A tactile language for intuitive human-robot communication, IEEE-RAS Int. Conf. Humanoid Robots (2007) pp. 569–576

    Google Scholar 

  98. S. Yohanan, J.P. Hall, K.E. MacLean, E.A. Croft, H.F.M. Van Der Loos, M.A. Baumann, J. Chang, D. Nielsen, S. Zoghbi, G. Jih Shiang Chang: Affect-driven emotional expression with the haptic creature, Proc. User Interface Softw. Technol. (UIST) (2009) p. 2

    Google Scholar 

  99. M. Frigola, A. Casals, J. Amat: Human-robot interaction based on a sensitive bumper skin, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2006) pp. 283–287

    Google Scholar 

  100. T. Mukai, M. Onishi, T. Odashima, S. Hirano: Development of the tactile sensor system of a human-interactive robot, IEEE Trans. Robotics 24(2), 505–512 (2008)

    Article  Google Scholar 

  101. B.D. Argall, A.G. Billard: A survey of tactile human-robot interactions, Robotics Auton. Syst. 58(10), 1159–1176 (2010)

    Article  Google Scholar 

  102. M. Van den Bergh, D. Carton, R. De Nijs, N. Mitsou, C. Landsiedel, K. Kuehnlenz, D. Wollherr, L. Van Gool, M. Buss: Real-time 3D hand gesture interaction with a robot for understanding directions from humans, IEEE Int. Symp. Robot Hum. Interact. Commun. (2011) pp. 357–362

    Google Scholar 

  103. M. Sigalas, M. Pateraki, I. Oikonomidis, P. Trahanias: Robust model-based 3D torso pose estimation in RGB-D sequences, IEEE Int. Conf. Computer Vis. Work. (2013) pp. 315–322

    Google Scholar 

  104. N. Hogan: Impedance Control: An Approach to Manipulation: Part I – Theory, Part II – Implementation, Part III – Applications,J.Dyn. Syst. Meas. Control 107, 1–24 (1985)

    Article  Google Scholar 

  105. J. Craig, M. Raibert: A systematic method for hybrid position/force control of a manipulator, IEEE Computer Softw. Appl. Conf. (1979) pp. 446–451

    Google Scholar 

  106. C. Yang, G. Gowrishankar, S. Haddadin, S. Parusel, A. Albu-Schäffer, E. Burdet: Human like adaptation of force and impedance in stable and unstable interactions, IEEE Trans. Robotics 27(5), 918–930 (2010)

    Article  Google Scholar 

  107. A. Stemmer, A. Albu-Schäffer, G. Hirzinger: An analytical method for the planning of robust assembly tasks of complex shaped planar parts, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2007) pp. 317–323

    Google Scholar 

  108. N. Hogan: On the stability of manipulators performing contact tasks, IEEE Int. Conf. Robotics Autom. 4(6), 677–686 (1988)

    Article  Google Scholar 

  109. C. Ott, R. Mukherjee, Y. Nakamura: Unified impedance and admittance control, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2010) pp. 554–561

    Google Scholar 

  110. T.R. Kurfess: Robotics and Automation Handbook (CRC, Boca Raton 2010)

    Google Scholar 

  111. F. Caccavale, C. Natale, B. Siciliano, L. Villani: Six-DOF impedance control based on angle/axis representations, IEEE Trans.RoboticsAutom. 15(2), 289–300 (1999)

    Google Scholar 

  112. L. Sentis, O. Khatib: Synthesis of whole-body behaviors through hierarchical control of behavioral primitives, Int. J. Humanoid Robotic s, 505–518 (2005)

    Article  Google Scholar 

  113. A. Dietrich, T. Wimböck, A. Albu-Schäffer: Dynamic whole-body mobile manipulation with a torque controlled humanoid robot via impedance control laws, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2011) pp. 3199–3206

    Google Scholar 

  114. A. Albu-Schäffer, C. Ott, U. Frese, G. Hirzinger: Cartesian impedance control of redundant robots: Recent results with the DLR-light-weight-arms, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2003) pp. 3704–3709

    Google Scholar 

  115. A. Albu-Schäffer, C. Ott, G. Hirzinger: A unified passivity-based control framework for position, torque and impedance control of flexible joint robots, Int. J. Robotics Res. 26, 23–39 (2007)

    Article  MATH  Google Scholar 

  116. L. Zollo, B. Siciliano, A. De Luca, E. Guglielmelli, P. Dario: Compliance control for an anthropomorphic robot with elastic joints: Theory and experiments, J. Dyn. Syst. Meas. Control 127(3), 321–328 (2005)

    Article  Google Scholar 

  117. R. Platt Jr., M. Abdallah, C. Wampler: Multiple-priority impedance control, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2011) pp. 6033–6038

    Google Scholar 

  118. S. Stramigioli: Modeling and IPC Control of Interactive Mechanical Systems: A Coordinate-Free Approach (Springer, New York 2001)

    MATH  Google Scholar 

  119. C.-C. Cheah, D. Wang: Learning impedance control for robotic manipulators, IEEE Trans. Robotics Autom. 14(3), 452–465 (1998)

    Article  Google Scholar 

  120. Y. Li, S. Sam Ge, C. Yang: Learning impedance control for physical robot–environment interaction, Int. J. Control 85(2), 182–193 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  121. S. Jung, T.C. Hsia: Neural network impedance force control of robot manipulator, IEEE Trans. Ind. Electron. 45(3), 451–461 (1998)

    Article  Google Scholar 

  122. A.M. Zanchettin, P. Rocco: Path-consistent safety in mixed human-robot collaborative manufacturing environments, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2013) pp. 1131–1136

    Google Scholar 

  123. D.W. Franklin, E. Burdet, K.P. Tee, R. Osu, C.-M. Chew, T.E. Milner, M. Kawato: CNS learns stable, accurate, and efficient movements using a simple algorithm, J. Neurosci. 28(44), 11165–11173 (2008)

    Article  Google Scholar 

  124. J.-J.E. Slotine, W. Li: Applied Nonlinear Control (Prentice Hall, Englewood Cliffs 1991)

    MATH  Google Scholar 

  125. E. Gribovskaya, A. Kheddar, A. Billard: Motion learning and adaptive impedance for robot control during physical interaction with humans, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2011) pp. 4326–4332

    Google Scholar 

  126. K. Kronander, A. Billard: Learning compliant manipulation through kinesthetic and tactile human-robot interaction, IEEE Trans. Haptics 7(3), 367–380 (2014)

    Article  Google Scholar 

  127. A. Ajoudani, N.G. Tsagarakis, A. Bicchi: Tele-impedance: Towards transferring human impedance regulation skills to robots, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2012) pp. 382–388

    Google Scholar 

  128. S. Calinon, P. Evrard, E. Gribovskaya, A. Billard, A. Kheddar: Learning collaborative manipulation tasks by demonstration using a haptic interface, Int. Conf. Adv. Robotics (2009) pp. 1–6

    Google Scholar 

  129. J.R. Medina, M. Lawitzky, A. Mörtl, D. Lee, S. Hirche: An experience-driven robotic assistant acquiring human knowledge to improve haptic cooperation, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2011) pp. 2416–2422

    Google Scholar 

  130. D. Lee, C. Ott, Y. Nakamura: Mimetic communication model with compliant physical contact in human-humanoid interaction, Int. J. Robotics Res. 29(13), 1684–1704 (2010)

    Article  Google Scholar 

  131. A. Jain, B. Wojcik, T. Joachims, A. Saxena: Learning trajectory preferences for manipulators via iterative improvement, Adv. Neural Inf. Process. Syst. (2013) pp. 575–583

    Google Scholar 

  132. K. Suita, Y. Yamada, N. Tsuchida, K. Imai, H. Ikeda, N. Sugimoto: A failure-to-safety kyozon system with simple contact detection and stop capabilities for safe human – Autonomous robot coexistence, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1995) pp. 3089–3096

    Google Scholar 

  133. Y. Yamada, Y. Hirasawa, S. Huang, Y. Umetani, K. Suita: Human-robot contact in the safeguarding space, IEEE/ASME Trans. Mechatron. 2(4), 230–236 (1997)

    Article  Google Scholar 

  134. S. Takakura, T. Murakami, K. Ohnishi: An approach to collision detection and recovery motion in industrial robot, Annual Conf. IEEE Ind. Electron. Soc. (1989) pp. 421–426

    Google Scholar 

  135. S. Morinaga, K. Kosuge: Collision detection system for manipulator based on adaptive impedance control law, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2003) pp. 1080–1085

    Google Scholar 

  136. K. Kosuge, T. Matsumoto, S. Morinaga: Collision detection system for manipulator based on adaptive control scheme, Trans. Soc. Instrum. Control Eng. 39, 552–558 (2003)

    Article  Google Scholar 

  137. A. De Luca, A. Albu-Schäffer, S. Haddadin, G. Hirzinger: Collision detection and safe reaction with the DLR-III lightweight manipulator arm, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2006) pp. 1623–1630

    Google Scholar 

  138. A. De Luca, R. Mattone: Actuator fault detection and isolation using generalized momenta, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2003) pp. 634–639

    Google Scholar 

  139. H.-B. Kuntze, C.W. Frey, K. Giesen, G. Milighetti: Fault tolerant supervisory control of human interactive robots, IFAC Workshop Adv. Control Diagn. (2003) pp. 55–60

    Google Scholar 

  140. S. Parusel, S. Haddadin, A. Albu-Schäffer: Modular state-based behavior control for safe human-robot interaction: A lightweight control architecture for a lightweight robot, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2011) pp. 4298–4305

    Google Scholar 

  141. N. Mansfeld, S. Haddadin: Reaching desired states time-optimally from equilibrium and vice versa for visco-elastic joint robots with limited elastic deflection, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2014) pp. 3904–3911

    Google Scholar 

  142. C.A.C. Parker, E.A. Croft: Design & personalization of a cooperative carrying robot controller, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2012) pp. 3916–3921

    Google Scholar 

  143. N. Hogan, S.P. Buerger: Impedance and interaction control. In: Robotics and Automation Handbook, ed. by T.R. Kurfess (CRC, Boca Raton 2005) pp. 19-1–19-24

    Google Scholar 

  144. R. Ikeura, H. Inooka: Variable impedance control of a robot for cooperation with a human, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1995) pp. 3097–3102

    Google Scholar 

  145. R. Ikeura, T. Moriguchi, K. Mizutani: Optimal Variable Impedance Control for a Robot and Its Application To Lifting an Object with a Human, IEEE Int. Workshop Robot Hum. Interact. Commun. (2002) pp. 500–505

    Google Scholar 

  146. K. Kosuge, N. Kazamura: Mobile robot helper, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2000) pp. 583–588

    Google Scholar 

  147. N. Nejatbakhsh, K. Kosuge: Adaptive guidance for the elderly based on user intent and physical impairment, IEEE Int. Symp. Robot Hum. Interact. Commun. (2006) pp. 510–514

    Google Scholar 

  148. M. Lawitzky, A. Mörtl, S. Hirche: Load sharing in human-robot cooperative manipulation, IEEE Int. Symp. Robot Human Interact. Commun. (2010) pp. 185–191

    Google Scholar 

  149. V. Duchaine, B. Mayer St.-Onge, C. Gosselin: Stable and intuitive control of an intelligent assist device, IEEE Trans. on Haptics 5(2), 148–159 (2012)

    Article  Google Scholar 

  150. A. Mörtl, M. Lawitzky, A. Kucukyilmaz, M. Sezgin, C. Basdogan, S. Hirche: The role of roles: Physical cooperation between humans and robots, Int. J. Robotics Res. 31(13), 1656–1674 (2012)

    Article  Google Scholar 

  151. T. Flash, N. Hogan: The coordination of arm movements: Mathematical model, J. Neurosci. 5(7), 1688–1703 (1985)

    Article  Google Scholar 

  152. Y. Maeda, T. Hara, T. Arai: Human-robot cooperative manipulation with motion estimation, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2001) pp. 2240–2245

    Google Scholar 

  153. S. Miossec, A. Kheddar: Human motion in cooperative tasks: Moving object case study, Robotics Biomim. (2009) pp. 1509–1514

    Google Scholar 

  154. D. Kulić, E. Croft: Pre-collision strategies for human robot interaction, Auton. Robots 22(2), 149–164 (2007)

    Article  Google Scholar 

  155. K. Ikuta, H. Ishii, M. Nokata: Safety evaluation method of design and control for human-care robots, Int. J. Robotics Res. 22(5), 281–298 (2003)

    Article  Google Scholar 

  156. D. Kulić, E.A. Croft: Real-time safety for human-robot interaction, Robotics Auton. Syst. 54(1), 1–12 (2006)

    Article  Google Scholar 

  157. Y. Tamura, T. Fukuzawa, H. Asama: Smooth collision avoidance in human-robot coexisting environment, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2010) pp. 3887–3892

    Google Scholar 

  158. B. Lacevic, P. Rocco, A.M. Zanchettin: Safety assessment and control of robotic manipulators using danger field, IEEE Trans. Robotics 29(5), 1257–1270 (2013)

    Article  Google Scholar 

  159. S. Haddadin, H. Urbanek, S. Parusel, D. Burschka, J. Roßmann, A. Albu-Schäffer, G. Hirzinger: Realtime reactive motion generation based on variable attractor dynamics and shaped velocities, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2010) pp. 3109–3116

    Google Scholar 

  160. F. Flacco, T. Kroger, A. De Luca, O. Khatib: A depth space approach to human-robot collision avoidance, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2012) pp. 338–345

    Google Scholar 

  161. E.A. Sisbot, L.F. Marin-urias, R. Alami, T. Siméon: A human aware mobile robot motion planner, IEEE Trans. Robotics 23(5), 874–883 (2007)

    Article  Google Scholar 

  162. J. Mainprice, E.A. Sisbot, T. Siméon, R. Alami: Planning safe and legible hand-over motions for human-robot interaction, IARP Workshop Tech. Chall. Dependable Robots Hum. Environ. (2010) p. 7

    Google Scholar 

  163. J. Mainprice, E.A. Sisbot, L. Jaillet, J. Cortes, R. Alami, T. Simeon: Planning human-aware motions using a sampling-based costmap planner, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2011) pp. 5012–5017

    Google Scholar 

  164. A. Clodic, H. Cao, S. Alili, V. Montreuil, R. Alami, R. Chatila: SHARY: A supervision system adapted to human-robot interaction, Springer Tracts Adv. Robotics 54, 229–238 (2009)

    Article  Google Scholar 

  165. E. Bicho, W. Erlhagen, L. Louro, E. Costa e Silva: Neuro-cognitive mechanisms of decision making in joint action: A human–robot interaction study, Hum. Mov. Sci. 30(5), 846–868 (2011)

    Article  Google Scholar 

  166. T.S. Dahl, A. Paraschos: A force-distance model of humanoid arm withdrawal reflexes, Lect. Notes Comput. Sci. 7429, 13–24 (2012)

    Article  Google Scholar 

  167. S. Parusel, H. Widmoser, S. Golz, T. Ende, N. Blodow, M. Saveriano, K. Krieger, A. Maldonado, I. Kresse, R. Weitschat, D. Lee, M. Beetz, S. Haddadin: Human-Robot interaction Planning, AAAI Video Competition, http://www.aaaivideos.org/2014/15_hri_planning/ (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sami Haddadin .

Editor information

Editors and Affiliations

Video-References

Video-References

:

Mobile robot helper – Mr. Helper available from http://handbookofrobotics.org/view-chapter/69/videodetails/606

:

Generation of human care behaviors by human-interactive robot RI-MAN available from http://handbookofrobotics.org/view-chapter/69/videodetails/607

:

Injury evaluation of human-robot impacts available from http://handbookofrobotics.org/view-chapter/69/videodetails/608

:

Safe physical human-robot collaboration available from http://handbookofrobotics.org/view-chapter/69/videodetails/609

:

Admittance control of a human centered 3 DOF robotic arm using differential elastic actuators available from http://handbookofrobotics.org/view-chapter/69/videodetails/610

:

A control strategy for human-friendly robots available from http://handbookofrobotics.org/view-chapter/69/videodetails/611

:

Human–robot interactions available from http://handbookofrobotics.org/view-chapter/69/videodetails/613

:

ISAC: A demonstration available from http://handbookofrobotics.org/view-chapter/69/videodetails/614

:

Smart fur available from http://handbookofrobotics.org/view-chapter/69/videodetails/615

:

Human–robot interaction planning available from http://handbookofrobotics.org/view-chapter/69/videodetails/616

:

The power of prediction: Robots that read intentions available from http://handbookofrobotics.org/view-chapter/69/videodetails/617

:

Reach and grasp by people with tetraplegia using a neurally controlled robotic arm available from http://handbookofrobotics.org/view-chapter/69/videodetails/618

:

An assistive decision and control architecture for force-sensitive hand–arm systems driven via human–machine interfaces (MM1) available from http://handbookofrobotics.org/view-chapter/69/videodetails/619

:

An assistive decision and control architecture for force-sensitive hand–arm systems driven via human–machine interfaces (MM2) available from http://handbookofrobotics.org/view-chapter/69/videodetails/620

:

An assistive decision-and-control architecture for force-sensitive hand–arm systems driven by human–machine interfaces (MM3) available from http://handbookofrobotics.org/view-chapter/69/videodetails/621

:

An assistive decision-and-control architecture for force-sensitive hand–arm systems driven by human–machine interfaces (MM4) available from http://handbookofrobotics.org/view-chapter/69/videodetails/622

:

Twendy One demo available from http://handbookofrobotics.org/view-chapter/69/videodetails/623

:

Full body compliant humanoid COMAN available from http://handbookofrobotics.org/view-chapter/69/videodetails/624

:

Physical human–robot interaction in imitation learning available from http://handbookofrobotics.org/view-chapter/69/videodetails/625

:

Justin: A humanoid upper body system for two-handed manipulation experiments available from http://handbookofrobotics.org/view-chapter/69/videodetails/626

:

Torque control for teaching peg in hole via physical human–robot interaction available from http://handbookofrobotics.org/view-chapter/69/videodetails/627

:

Flexible robot gripper for KUKA Light Weight Robot (LWR): Collaboration betweenhuman and robot available from http://handbookofrobotics.org/view-chapter/69/videodetails/632

:

Human–robot handover available from http://handbookofrobotics.org/view-chapter/69/videodetails/716

:

Collaborative human-focused robotics for manufacturing available from http://handbookofrobotics.org/view-chapter/69/videodetails/717

:

Dancing with Juliet available from http://handbookofrobotics.org/view-chapter/69/videodetails/820

:

A cobot in automobile assembly available from http://handbookofrobotics.org/view-chapter/69/videodetails/821

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Haddadin, S., Croft, E. (2016). Physical Human–Robot Interaction. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-32552-1_69

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32552-1_69

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32550-7

  • Online ISBN: 978-3-319-32552-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics