Skip to main content

Human–Robot Augmentation

  • Chapter
  • First Online:
Springer Handbook of Robotics

Part of the book series: Springer Handbooks ((SHB))

Abstract

The development of robotic systems capable of sharing with humans the load of heavy tasks has been one of the primary objectives in robotics research. At present, in order to fulfil such an objective, a strong interest in the robotics community is collected by the so-called wearable robots, a class of robotics systems that are worn and directly controlled by the human operator. Wearable robots, together with powered orthoses that exploit robotic components and control strategies, can represent an immediate resource also for allowing humans to restore manipulation and/or walking functionalities.

The present chapter deals with wearable robotics systems capable of providing different levels of functional and/or operational augmentation to the human beings for specific functions or tasks. Prostheses, powered orthoses, and exoskeletons are described for upper limb, lower limb, and whole body structures. State-of-the-art devices together with their functionalities and main components are presented for each class of wearable system. Critical design issues and open research aspects are reported.

figure a

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADL:

activities for daily living

ARX:

auto regressive estimator

BE:

body extender

BLEEX:

Berkely exoskeleton

COT:

cost of transport

DARPA:

Defense Advanced Research Projects Agency

D:

distal

DOF:

degree of freedom

EHPA:

exoskeleton for human performance augmentation

EMG:

electromyography

EVA:

extravehicular activity

FB-EHPA:

full-body EHPA

HAL:

hybrid assistive limb

HE:

hand exoskeleton

IAD:

intelligent assisting device

IAS:

intelligent autonomous system

IP:

interphalangeal

JPL:

Jet Propulsion Laboratory

MCP:

metacarpophalangeal

MIT:

Massachusetts Institute of Technology

MPHE:

multiphalanx hand exoskeleton

SEA:

series elastic actuator

SPHE:

single-phalanx hand exoskeleton

TBG:

time-base generator

ULE:

upper limb exoskeleton

VE:

virtual environment

ZMP:

zero moment point

References

  1. M. McCullough: Abstracting Craft: The Practiced Digital Hand (MIT, Cambridge 1998)

    Google Scholar 

  2. H. Kazerooni: Human-robot interaction via the transfer of power and information signals, IEEE Trans. Syst. Man Cybern. 20(2), 450–463 (1990)

    Article  Google Scholar 

  3. A. Frisoli, F. Salsedo, M. Bergamasco, B. Rossi, M.C. Carboncini: A force-feedback exoskeleton for upper-limb rehabilitation in virtual reality, Appl. Bionics Biomech. 6(2), 115–126 (2009)

    Article  Google Scholar 

  4. J.E. Colgate, J. Edward, M.A. Peshkin, W. Wannasuphoprasit: Cobots: Robots for collaboration with human operators, ASME Int. Cong. Mech. Eng. (1996) pp. 433–440

    Google Scholar 

  5. H. Kazerooni: Exoskeletons for human performance augmentation. In: Handbook of Robotics, ed. by B. Siciliano, O. Khatib (New York, Springer 2008) pp. 773–793

    Chapter  Google Scholar 

  6. A.M. Dollar, H. Herr: Lower extremity exoskeletons and active orthoses: Challenges and state-of-the-art, IEEE Trans. Robotics 24(1), 144–158 (2008)

    Article  Google Scholar 

  7. R. Kobetic, C.S. To, J.R. Schnellenberger, M.L. Audu, T.C. Bulea, R. Gaudio, G. Pinault, S. Tashman, R.J. Triolo: Development of hybrid orthosis for standing, walking, stair climbing after spinal cord injury, J. Rehabil. Res. Dev. 46(3), 447–462 (2009)

    Article  Google Scholar 

  8. H. Herr: Exoskeletons and orthoses: Classification, design challenges and future directions, J. NeuroEng. Rehabil. 6, 21 (2009)

    Article  Google Scholar 

  9. A. Frisoli, F. Rocchi, S. Marcheschi, A. Dettori, F. Salsedo, M. Bergamasco: A new force-feedback arm exoskeleton for haptic interaction in virtual environments, Proc. 1st IEEE Jt. Eurohaptics Conf./Symp. Haptic Interfaces Virt. Environ. Teleoperator Syst. (2005) pp. 195–201

    Google Scholar 

  10. S.C. Jacobsen, F.M. Smith, E.K. Iversen, D.K. Backman: High performance, high dexterity, force reflective teleoperator, Proc. 38th Conf. Remote Syst. Technol., Washington (1990) pp. 180–185

    Google Scholar 

  11. Y. Ren, H.S. Park, L.Q. Zhang: Developing a whole-arm exoskeleton robot with hand opening and closing mechanism for upper limb stroke rehabilitation, IEEE Int. Conf. Rehabil. Robotics (ICORR) (2009) pp. 761–765

    Google Scholar 

  12. N.G. Tsagarakis, D.G. Caldwell: Development and control of a soft-actuated exoskeleton for use in physiotherapy and training, Auton. Robots 15(1), 21–33 (2003)

    Article  Google Scholar 

  13. J.C. Perry, J. Rosen, S. Burns: Upper-limb powered exoskeleton design, IEEE/ASME Trans. Mechatron. 12(4), 408–417 (2007)

    Article  Google Scholar 

  14. T.G. Sugar, J. He, E.J. Koeneman, J.B. Koeneman, R. Herman, H. Huang, R.S. Schultz, D.E. Herring, J. Wanberg, S. Balasubramanian, P. Swenson, J.A. Ward: Design and control of rupert: A device for robotic upper extremity repetitive therapy, IEEE Trans. Neural Syst. Rehabil. Eng. 15(3), 336–346 (2007)

    Article  Google Scholar 

  15. T. Nef, M. Mihelj, G. Kiefer, C. Perndl, R. Muller, R. Riener: Armin-exoskeleton for arm therapy in stroke patients, IEEE 10th Int. Conf. Rehabil. Robotics (ICORR) (2007) pp. 68–74

    Google Scholar 

  16. R. Gopura, D.S.V. Bandara, K. Kiguchi, G.K.I. Mann: Developments in hardware systems of active upper-limb exoskeleton robots: A review, J. Appl. Physiol. B 75, 203–220 (2016)

    Google Scholar 

  17. G.M. Prisco, C.A. Avizzano, M. Calcara, S. Ciancio, S. Pinna, M. Bergamasco: A virtual environment with haptic feedback for the treatment of motor dexterity disabilities, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 4 (1998) pp. 3721–3726

    Google Scholar 

  18. L.I. Lugo-Villeda, A. Frisoli, O. Sandoval-Gonzalez, M.A. Padilla, V. Parra-Vega, C.A. Avizzano, E. Ruffaldi, M. Bergamasco: Haptic guidance of light-exoskeleton for arm-rehabilitation tasks, 18th IEEE Int. Symp. Robot Human Interact. Commun. (RO-MAN) (2009) pp. 903–908

    Google Scholar 

  19. C. Carignan, J. Tang, S. Roderick: Development of an exoskeleton haptic interface for virtual task training, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2009) pp. 3697–3702

    Google Scholar 

  20. R. Vertechy, A. Frisoli, A. Dettori, M. Solazzi, M. Bergamasco: Development of a new exoskeleton for upper limb rehabilitation, IEEE Int. Conf. Rehabil. Robotics (ICORR) (2009) pp. 188–193

    Google Scholar 

  21. K. Kiguchi, T. Tanaka, K. Watanabe, T. Fukuda: Exoskeleton for human upper-limb motion support, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 2 (2003) pp. 2206–2211

    Google Scholar 

  22. T. Rahman, W. Sample, S. Jayakumar, M.M. King, J.Y. Wee, R. Seliktar, M. Alexander, M. Scavina, A. Clark: Passive exoskeletons for assisting limb movement, J. Rehabil. Res. Dev. 43(5), 583 (2006)

    Article  Google Scholar 

  23. S.J. Ball, I.E. Brown, S.H. Scott: MEDARM: A rehabilitation robot with 5DOF at the shoulder complex, IEEE/ASME Int. Conf. Adv. Intell. Mechatron. (2007) pp. 1–6

    Google Scholar 

  24. J. Klein, S.J. Spencer, J. Allington, K. Minakata, E.T. Wolbrecht, R. Smith, J.E. Bobrow, D.J. Reinkensmeyer: Biomimetic orthosis for the neurorehabilitation of the elbow and shoulder (bones), 2nd IEEE/RAS/EMBS Int. Conf. Biomed. Robotics Biomechatron. (BioRob) (2008) pp. 535–541

    Google Scholar 

  25. P. Garrec, J.P. Friconneau, Y. Measson, Y. Perrot: ABLE, an innovative transparent exoskeleton for the upper-limb, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2008) pp. 1483–1488

    Google Scholar 

  26. A.M.M. Aalsma, F.C.T. van der Helm, H. van der Kooij: Dampace: Design of an exoskeleton for force-coordination training in upper-extremity rehabilitation, J. Med. Dev. 3, 031003–31001 (2009)

    Article  Google Scholar 

  27. M.H. Rahman, T.K. Ouimet, M. Saad, J.P. Kenne, P.S. Archambault: Development and control of a wearable robot for rehabilitation of elbow and shoulder joint movements, 36th Annu. Conf. IEEE Ind. Electron. Soc. (IECON) (2010) pp. 1506–1511

    Google Scholar 

  28. M.H. Rahman, M. Saad, J.P. Kenne, P.S. Archambault: Exoskeleton robot for rehabilitation of elbow and forearm movements, 18th Mediterr. Conf. Cont. Autom. (MED) (2010) pp. 1567–1572

    Google Scholar 

  29. A. Gupta, M.K. O'Malley: Design of a haptic arm exoskeleton for training and rehabilitation, IEEE/ASME Trans. Mechatron. 11(3), 280–289 (2006)

    Article  Google Scholar 

  30. H. Kawasaki, S. Ito, Y. Ishigure, Y. Nishimoto, T. Aoki, T. Mouri, H. Sakaeda, M. Abe: Development of a hand motion assist robot for rehabilitation therapy by patient self-motion control, IEEE 10th Int. Conf. Rehabil. Robotics (ICORR) (2007) pp. 234–240

    Google Scholar 

  31. P. Heo, G.M. Gu, S. Lee, K. Rhee, J. Kim: Current hand exoskeleton technologies for rehabilitation and assistive engineering, Int. J. Precis. Eng. Manuf. 13(5), 807–824 (2012)

    Article  Google Scholar 

  32. M. Fontana, S. Fabio, S. Marcheschi, M. Bergamasco: Haptic hand exoskeleton for precision grasp simulation, ASME J. Mech. Robotics 5(4), 041014 (2013)

    Article  Google Scholar 

  33. C.A. Avizzano, F. Bargagli, A. Frisoli, M. Bergamasco: The hand force feedback: analysis and control of a haptic device for the human-hand, IEEE Inter. Conf. Syst. Man Cybern., Vol. 2 (2000) pp. 989–994

    Google Scholar 

  34. M. Bergamasco, B. Allotta, L. Bosio, L. Ferretti, G. Parrini, G.M. Prisco, F. Salsedo, G. Sartini: An arm exoskeleton system for teleoperation and virtual environments applications, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1994) pp. 1449–1454

    Google Scholar 

  35. T. Nef, R. Riener: Shoulder actuation mechanisms for arm rehabilitation exoskeletons, 2nd IEEE/RAS/EMBS Int. Conf. Biomed. Robotics Biomechatron. (BioRob) (2008) pp. 862–868

    Google Scholar 

  36. P. DeVita, J. Helseth, T. Hortobagyi: Muscles do more positive than negative work in human locomotion, J. Exp. Biol. 210(19), 3361–3373 (2007)

    Article  Google Scholar 

  37. M. Bergamasco: Design of hand force feedback systems for glove-like advanced interfaces, Proc. IEEE Int. Work. Robot Human Commun. (1992) pp. 286–293

    Google Scholar 

  38. A. De Luca: Feedforward/feedback laws for the control of flexible robots, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 1 (2000) pp. 233–240

    Google Scholar 

  39. D.C. Clark, N.J. Deleys, C.W. Matheis: Exploratory Investigation of the Man Amplifier Concept, Tech. Documentary Rep. AMRL-TDR-62-89 (Cornell Aeronautical Laboratory, Buffalo 1962)

    Google Scholar 

  40. A. Zarudiansky: Remote handling devices, US Patent 4302138 A (1981)

    Google Scholar 

  41. B.M. Jau: Anthropomorhic exoskeleton dual arm/hand telerobot controller, IEEE Int. Workshop Intell. Robots (1988) pp. 715–718

    Chapter  Google Scholar 

  42. G. Burdea, J. Zhuang, E. Roskos, D. Silver, N. Langrana: A portable dextrous master with force feedback, Presence Teleoperators Virt. Environ. 1(1), 18–28 (1992)

    Article  Google Scholar 

  43. T. Koyama, I. Yamano, K. Takemura, T. Maeno: Multi-fingered exoskeleton haptic device using passive force feedback for dexterous teleoperation, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Vol. 3 (2002) pp. 2905–2910

    Google Scholar 

  44. S. Nakagawara, H. Kajimoto, N. Kawakami, S. Tachi, I. Kawabuchi: An encounter-type multi-fingered master hand using circuitous joints, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2005) pp. 2667–2672

    Google Scholar 

  45. D. Gomez, G. Burdea, N. Langrana: Integration of the Rutgers Master II in a virtual reality simulation, Virt. Real. Annu. Int. Symp. (1995) pp. 198–202

    Google Scholar 

  46. A. Wege, K. Kondak, G. Hommel: Mechanical design and motion control of a hand exoskeleton for rehabilitation, IEEE Int. Conf. Mechatron. Autom., Vol. 1 (2005) pp. 155–159

    Google Scholar 

  47. M. Mulas, M. Folgheraiter, G. Gini: An emg-controlled exoskeleton for hand rehabilitation, IEEE 9th Int. Conf. Rehabil. Robotics (ICORR) (2005) pp. 371–374

    Google Scholar 

  48. S. Ito, H. Kawasaki, Y. Ishigure, M. Natsume, T. Mouri, Y. Nishimoto: A design of fine motion assist equipment for disabled hand in robotic rehabilitation system, J. Frankl. Inst. 348(1), 79–89 (2011)

    Article  MATH  Google Scholar 

  49. P. Brown, D. Jones, S.K. Singh, J.M. Rosen: The exoskeleton glove for control of paralyzed hands, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1993) pp. 642–647

    Google Scholar 

  50. B.L. Shields, J.A. Main, S.W. Peterson, A.M. Strauss: An anthropomorphic hand exoskeleton to prevent astronaut hand fatigue during extravehicular activities, IEEE Trans. Syst. Man Cybern. A 27(5), 668–673 (1997)

    Article  Google Scholar 

  51. Y. Yamada, T. Morizono, S. Sato, T. Shimohira, Y. Umetani, T. Yoshida, S. Aoki: Proposal of a Skilmate finger for EVA gloves, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 2 (2001) pp. 1406–1412

    Google Scholar 

  52. J.Y. Wang, Z.W. Xie, J.D. Zhao, H.G. Fang, M.H. Jin, H. Liu: An exoskeleton system for measuring mechanical characteristics of extravehicular activity glove joint, IEEE Int. Conf. Robotics Biomim. (ROBIO) (2006) pp. 1260–1265

    Google Scholar 

  53. H. Herr, G.P. Whiteley, D. Childress: Cyborg technology – Biomimetic orthotic and prosthetic technology. In: Biologically Inspired Intelligent Robots, ed. by Y. Bar-Cohen, C. Breazeal (SPIE, Bellingham 2003)

    Google Scholar 

  54. K. Endo, H. Herr: A model of muscle-tendon function in human walking at self-selected speed, IEEE Trans. Neural Syst. Rehabil. Eng. 22(2), 352–362 (2014)

    Article  Google Scholar 

  55. H.M. Herr, A.M. Grabowski: Bionic ankle–foot prosthesis normalizes walking gait for persons with leg amputation, Proc. R. Soc. B 279(1728), 457–464 (2012)

    Google Scholar 

  56. J.M. Donelan, R. Kram, A.D. Kuo: Mechanical work for step-to-step transitions is a major determinant of the metabolic cost of human walking, J. Exp. Biol. 205(23), 3717–3727 (2002)

    Article  Google Scholar 

  57. A. Grabowski, C.T. Farley, R. Kram: Independent metabolic costs of supporting body weight and accelerating body mass during walking, J. Appl. Physiol. 98(2), 579–583 (2005)

    Article  Google Scholar 

  58. A.D. Kuo, J.M. Donelan, A. Ruina: Energetic consequences of walking like an inverted pendulum: Step-to-step transitions, Exerc. Sport Sci. Rev. 33(2), 88–97 (2005)

    Article  Google Scholar 

  59. R. Margaria: Positive and negative work performances and their efficiencies in human locomotion, Eur. J. Appl. Physiol. Occupat. Physiol. 25(4), 339–351 (1968)

    Article  Google Scholar 

  60. D.A. Winter: Energy generation and absorption at the ankle and knee during fast, natural, and slow cadences, Clin. Orthop. Rel. Res. 175(175), 147 (1983)

    Google Scholar 

  61. A.H. Hansen, D.S. Childress, S.C. Miff, S.A. Gard, K.P. Mesplay: The human ankle during walking: implications for design of biomimetic ankle prostheses, J. Biomech. 37(10), 1467–1474 (2004)

    Article  Google Scholar 

  62. S. Au, H. Herr: Powered ankle-foot prosthesis, IEEE Robotics Autom. Mag. 15(3), 52–59 (2008)

    Article  Google Scholar 

  63. D. Paluska, H. Herr: The effect of series elasticity on actuator power and work output: Implications for robotic and prosthetic joint design, Robotics Auton. Syst. 54(8), 667–673 (2006)

    Article  Google Scholar 

  64. G. Pratt, M. Williamson, P. Dillworth, J. Pratt, A. Wright: Stiffness isn't everything, Lect. Notes Control Inf. Sci. 223, 253–262 (1997)

    Google Scholar 

  65. J. Markowitz, P. Krishnaswamy, M.F. Eilenberg, K. Endo, C. Barnhart, H. Herr: Speed adaptation in a powered transtibial prosthesis controlled with a neuromuscular model, Philos. Trans. R. Soc. B Biol. Sci. 366(1570), 1621–1631 (2011)

    Article  Google Scholar 

  66. K. Endo, E. Swart, H. Herr: An artificial gastrocnemius for a transtibial prosthesis, Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC) (2009) pp. 5034–5037

    Google Scholar 

  67. H. Geyer, H. Herr: A muscle-reflex model that encodes principles of legged mechanics produces human walking dynamics and muscle activities, IEEE Trans. Neural Syst. Rehabil. Eng. 18(3), 263–273 (2010)

    Article  Google Scholar 

  68. J. Wang: EMG Control of Prosthetic Ankle Plantar Flexion, Ph.D. Thesis (MIT, Cambridge 2011)

    Google Scholar 

  69. R.A. Heinlein: Starship Troopers (Ace Books, New York 1987)

    Google Scholar 

  70. N. Yagn: Apparatus for facilitating walking, US Patent 420179 A (1890)

    Google Scholar 

  71. S.J. Zaroodny: Bumpusher-A Powered Aid to Locomotion, Tech. Note (Ballistic Research Laboratory, Aberdeen 1963)

    Google Scholar 

  72. R.S. Mosher: Handyman to Hardiman, Tech. Rep. (Society of Automotive Engineers, Warrendale 1967)

    Google Scholar 

  73. M.E. Rosheim: Man-amplifying exoskeleton, SPIE Proc. Mob. Robots IV 1195, 402–411 (1989)

    Google Scholar 

  74. E. Garcia, J.M. Sater, J. Main: Exoskeletons for human performance augmentation (EHPA): A program summary, J. Robotics Soc. Jpn. 20(8), 44–48 (2002)

    Article  Google Scholar 

  75. H. Kazerooni: The berkeley lower extremity exoskeleton, Springer Tracts. Adv. Robotics 25, 9–15 (2006)

    Article  Google Scholar 

  76. A.B. Zoss, H. Kazerooni, A. Chu: Biomechanical design of the berkeley lower extremity exoskeleton (BLEEX), IEEE/ASME Trans. Mechatron. 11(2), 128–138 (2006)

    Article  Google Scholar 

  77. K. Amundson, J. Raade, N. Harding, H. Kazerooni: Hybrid hydraulic-electric power unit for field and service robots, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2005) pp. 3453–3458

    Google Scholar 

  78. C.J. Walsh, K. Pasch, H. Herr: An autonomous, underactuated exoskeleton for load-carrying augmentation, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2006) pp. 1410–1415

    Google Scholar 

  79. C.J. Walsh: Biomimetic Design of an Under-Actuated Leg Exoskeleton for Load-Carrying Augmentation, M.A. Thesis (MIT, Cambridge 2006)

    Google Scholar 

  80. C.J. Walsh, K. Endo, H. Herr: A quasi-passive leg exoskeleton for load-carrying augmentation, Int. J. Hum. Robotics 4(03), 487–506 (2007)

    Article  Google Scholar 

  81. N. Costa, D.G. Caldwell: Control of a biomimetic soft-actuated 10DoF lower body exoskeleton, 1st IEEE/RAS-EMBS Int. Conf. Biomed. Robotics Biomechatron. (BioRob) (2006) pp. 495–501

    Google Scholar 

  82. H. Kawamoto, S. Lee, S. Kanbe, Y. Sankai: Power assist method for HAL-3 using EMG-based feedback controller, IEEE Int. Conf. Syst. Man Cybern., Vol. 2 (2003) pp. 1648–1653

    Google Scholar 

  83. K. Yamamoto, K. Hyodo, M. Ishii, T. Matsuo: Development of power assisting suit for assisting nurse labor, JSME Int. J. Ser. C 45(3), 703–711 (2002)

    Article  Google Scholar 

  84. J.E. Pratt, B.T. Krupp, C.J. Morse, S.H. Collins: The roboknee: An exoskeleton for enhancing strength and endurance during walking, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 3 (2004) pp. 2430–2435

    Google Scholar 

  85. Y. Sankai: Hal: Hybrid assistive limb based on cybernics. In: Robotics Research, ed. by M. Kaneko, Y. Nakamura (Springer, Berlin, Heidelberg 2011) pp. 25–34

    Google Scholar 

  86. US Army Research Laboratory, US Army Research Office: ARO in Review (USRL/USRO, Adelphi 2006)

    Google Scholar 

  87. J.E. Pratt, B.T. Krupp, C.J. Morse, S.H. Collins: The RoboKnee: An exoskeleton for enhancing strength and endurance during walking, Proc. ICRA IEEE Int. Conf. Robotics Autom., Vol. 3 (2001) pp. 2430–2435

    Google Scholar 

  88. C.J. Walsh, D. Paluska, K. Pasch, W. Grand, A. Valiente, H. Herr: Development of a lightweight, underactuated exoskeleton for load-carrying augmentation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2006) pp. 3485–3491

    Google Scholar 

  89. A. Goffer: Gait-locomotor apparatus, US Patent 7 153 242 (2006)

    Google Scholar 

  90. R. Little, R.A. Irving: Self contained powered exoskeleton walker for a disabled user, US Patent 20110066088 A1 (2011)

    Google Scholar 

  91. R. Bogue: Exoskeletons and robotic prosthetics: A review of recent developments, Ind. Robot Int. J. 36(5), 421–427 (2009)

    Article  Google Scholar 

  92. C.P. Lent: Mobile space suit, US Patent 3034131 A (1962)

    Google Scholar 

  93. N.J. Mizen: Powered exoskeletal apparatus for amplifying human strength in response to normal body movements, US Patent 3449769 A (1969)

    Google Scholar 

  94. B.R. Fick, J.B. Makinson: Hardiman I Prototype for Machine Augmentation of Human Strength and Endurance: Final Report, Tech. Rep. S-71-1056 (General Electric Comp., Schenectady 1971)

    Google Scholar 

  95. T.J. Snyder, H. Kazerooni: A novel material handling system, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 2 (1996) pp. 1147–1152

    Chapter  Google Scholar 

  96. B.R. Fick: Cutaneous stimuli sensor and transmission network, US Patent 3535711 (1970)

    Google Scholar 

  97. S.R. Taal, Y. Sankai: Exoskeletal spine and shoulders for full body exoskeletons in health care, Adv. Appl. Sci. Res. 2(6), 270–286 (2011)

    Google Scholar 

  98. T. Ishida, T. Kiyama, K. Osuka, G. Shirogauchi, R. Oya, H. Fujimoto: Movement analysis of power-assistive machinery with high strength-amplification, Proc. SICE Annu. Conf. (2010) pp. 2022–2025

    Google Scholar 

  99. S. Jacobsen, M. Olivier: Contact displacement actuator system, Patent WO 2008094191 A3 (2008)

    Google Scholar 

  100. S. Toyama, G. Yamamoto: Development of wearable-agri-robot  mechanism for agricultural work, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2009) pp. 5801–5806

    Google Scholar 

  101. S. Jacobsen, M. Olivier, B. Maclean: Method of sizing actuators for a biomimetic mechanical joint, Patent WO 2010025419 A3 (2010)

    Google Scholar 

  102. S. Marcheschi, F. Salsedo, M. Fontana, M. Bergamasco: Body extender: whole body exoskeleton for human power augmentation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2011) pp. 611–616

    Google Scholar 

  103. M. Fontana, R. Vertechy, S. Marcheschi, F. Salsedo, M. Bergamasco: The body extender: A full-body exoskeleton for the transport and handling of heavy loads, IEEE Robotics Autom. Mag. 21(4), 34–44 (2014)

    Article  Google Scholar 

  104. G.P. Rosati Papini, C.A. Avizzano: Transparent force control for body extender, IEEE Int. Symp. Robot Human Interact. Commun. (RO-MAN) (2012) pp. 138–143

    Google Scholar 

  105. G. Mone: Building the real iron man, Pop. Sci. 4, 1–6 (2008)

    Google Scholar 

  106. D. Bertrand: Lexosquelette hercule, le futur à nos portes, http://www.defense.gouv.fr/actualites/economie-et-technologie/l-exosquelette-hercule-le-futur-a-nos-portes (2011)

  107. P. Filippi: Device for the automatic control of the articulation of the knee, US Patent 2305291 (1937)

    Google Scholar 

  108. M. Vukobratovic, D. Hristic, Z. Stojiljkovic: Development of active anthropomorphic exoskeletons, Med. Biol. Eng. Comput. 12(1), 66–80 (1974)

    Article  Google Scholar 

  109. K. Kazerooni: On the robot compliant motion control, J. Dyn. Syst. Meas. Control. 111(3), 416–425 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  110. Y. Uchimura, H. Kazerooni: A μ-synthesis based control for compliant manoeuvres, IEEE Int. Conf. Syst. Man Cybern., Vol. 4 (1999) pp. 1014–1019

    Google Scholar 

  111. H. Kazerooni: The human power amplifier technology at the University of California, Robotics Auton. Syst. 19(2), 179–187 (1996)

    Article  Google Scholar 

  112. H. Kazerooni: Human power amplifier for lifting load including apparatus for preventing slack in lifting cable, US Patent 6386513 A (2002)

    Google Scholar 

  113. J.E. Colgate, M. Peshkin, S.H. Klostermeyer: Intelligent assist devices in industrial applications: A review, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Vol. 3 (2003) pp. 2516–2521

    Google Scholar 

  114. D. McGee, P. Swanson: Method of controlling an intelligent assist device, US Patent 6204620 A (2001)

    Google Scholar 

  115. H. Kazerooni: Exoskeletons for human power augmentation, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2005) pp. 3459–3464

    Google Scholar 

  116. J. Rosen, M. Brand, M.B. Fuchs, M. Arcan: A myosignal-based powered exoskeleton system, IEEE Trans. Syst. Man Cybern. A 31(3), 210–222 (2001)

    Article  Google Scholar 

  117. A.V. Hill: The heat of shortening and the dynamic constants of muscle, Proc. R. Soc. B 126(843), 136–195 (1938)

    Google Scholar 

  118. S. Kawai, K. Naruse, H. Yokoi, Y. Kakazu: An analysis of human motion for control of a wearable power assist system, J. Robotics Mechatron. 16(3), 237–244 (2004)

    Article  Google Scholar 

  119. S. Lee, Y. Sankai: Power assist control for walking aid with HAL-3 based on emg and impedance adjustment around knee joint, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Vol. 2 (2002) pp. 1499–1504

    Google Scholar 

  120. E. Guizzo, H. Goldstein: The rise of the body bots [robotic exoskeletons], IEEE Spectrum 42(10), 50–56 (2005)

    Article  Google Scholar 

  121. K. Suzuki, G. Mito, H. Kawamoto, Y. Hasegawa, Y. Sankai: Intention-based walking support for paraplegia patients with robot suit HAL, Adv. Robotics 21(12), 1441–1469 (2007)

    Article  Google Scholar 

  122. K. Kiguchi, T. Tanaka, T. Fukuda: Neuro-fuzzy control of a robotic exoskeleton with EMG signals, IEEE Trans. Fuzzy Syst. 12(4), 481–490 (2004)

    Article  Google Scholar 

  123. K. Kiguchi, M.H. Rahman, M. Sasaki: Neuro-fuzzy based motion control of a robotic exoskeleton: considering end-effector force vectors, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2006) pp. 3146–3151

    Google Scholar 

  124. M. Bergamasco, A. Frisoli, C. Avizzano: Exoskeletons as man-machine interface systems for teleoperation and interaction in virtual environments, Adv. Telerobotics 31, 61–76 (2007)

    Article  Google Scholar 

  125. K. Zhou, J.C. Doyle, K. Glover (Eds.): Robust and Optimal Control (Prentice Hall, Upper Saddle River 1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Bergamasco .

Editor information

Editors and Affiliations

Video-References

Video-References

:

Arm light exoskeleton (ALEx) available from http://handbookofrobotics.org/view-chapter/70/videodetails/146

:

Arm-Exos available from http://handbookofrobotics.org/view-chapter/70/videodetails/148

:

Body extender transversal joint available from http://handbookofrobotics.org/view-chapter/70/videodetails/149

:

Hand-exoskeletons available from http://handbookofrobotics.org/view-chapter/70/videodetails/150

:

Collaborative control of the Body Extender available from http://handbookofrobotics.org/view-chapter/70/videodetails/151

:

Body Extender – A fully powered whole-body exoskeleton available from http://handbookofrobotics.org/view-chapter/70/videodetails/152

:

L-Exos for upper-limb motor rehabilitation available from http://handbookofrobotics.org/view-chapter/70/videodetails/180

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bergamasco, M., Herr, H. (2016). Human–Robot Augmentation. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-32552-1_70

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32552-1_70

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32550-7

  • Online ISBN: 978-3-319-32552-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics