Skip to main content

A Dispersion-Relation-Preserving Upwind Combined Compact Scheme for Convection-diffusion Equations with Variable Coefficients

  • Conference paper
  • First Online:
High Performance Computing and Applications (HPCA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9576))

  • 790 Accesses

Abstract

In the paper a new dispersion-relation-preserving upwind combined compact difference scheme (DRP-UCCD) to solve a time-dependent convection diffusion equations with variable coefficients is proposed. The developed scheme is constructed by making use of the high-order upwind combined compact difference operators, which can preserve the dispersion relation and enhance the convective stability. The scheme is proved to have the unconditional stability and the error accuracy is six order on space and two order on time. Numerical experiments confirm its high efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abalakin, I.A., Alexandrov, A.V., bOBkov, V.G., Kozubskaya, T.K.: HIgh accuarcy methods and software development in computational aeroacoustics. J. Comput. Mth. Sci. Eng. 2(3), 1–14 (2003)

    Google Scholar 

  2. Aziz, K., Settari, A.: Petrolem Reservoir Simulation. Applied Science Publisher Ltd, London (1979)

    Google Scholar 

  3. Adam, Y.: A Hermitian Finite-Difference method for the solution of parabolic equations. Comput. Math. Appl. 1, 393–406 (1975)

    Article  MATH  Google Scholar 

  4. Adam, Y.: Highly accurate compact implicit methods and boundary conditions. J. Comput. Phys. 24, 10–22 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chiu, P.H., Sheu, T.W.H.: On the development of a dispersion-relation-preserving dual-compact upwind scheme for convection-diffusion equation. J. Comp. Phys. 118, 3640–3655 (2009)

    Article  MATH  Google Scholar 

  6. Chorin, A.J., Marsdon, J.E.: A Mathematical Introduction to Fluid Mechanics, 2nd edn. Springer-Verlag, Heidelberg (1990)

    Book  Google Scholar 

  7. Chu, P.C., Fan, C.E.: A three-point combined compact difference scheme. J. Comput. Phys. 140, 370–399 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. de Felice, G., Denaro, F.M., Meola, C.: Multidimensional single-step vector upwind schemes for highly convective transport problems. Numer. Heat Transf. B 23(4), 425–460 (1993)

    Article  Google Scholar 

  9. Fromm, J.E.: Practical investigation of convective difference approximations of reduced dispersion. Phys. Fluids Suppl. 12, 2–3 (1969)

    MATH  Google Scholar 

  10. Goedheer, W.J., Potters, J.H.M.: A compact finite difference scheme on a non-equidistant mesh. J. Comput. Phys. 61, 269–279 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hirsh, R.S.: Higher order accurate difference solutions of fluid mechanics problems by a compact differencing technique. J. Comput. Phys. 19, 90–109 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hu, F.Q., Hussaini, M.Y., Anthey, J.L.: Low-dissipation and low-dispersion Runge-Kutta schemes for computational acoustics. J. Comput. Phys. 124, 177–191 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lele, S.K.: Compact finite-difference schemes with spectral-like resolution. J. Comput. Phys. 103, 16–42 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Leonard, B.P.: Astable and accurate convective modelling procedure based on quadratic upstream interpolation. Comp. Meth. Appl. Mech. Eng. 19, 59–98 (1979)

    Article  MATH  Google Scholar 

  15. Li, Y., Rudman, M.: Assessment of higher-order upwind schemes incorporating FCT for convection-dominated problems. Numer. Heat Transf. B 27(1), 1–21 (1995)

    Article  Google Scholar 

  16. Orszag, S.A.: Numerical simulation of incompressible flows within simple boundaries: accuracy. J. Fluid Mech. 49, 75–112 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sheu, T.W.H., Tsai, S.F., Wang, M.M.T.: Monotome multidimensional upwind finite element method fot advection-diffusion problems. Numer. Heat Transf. B 29(3), 325–334 (1996)

    Article  Google Scholar 

  18. Sheu, T.W.H., Tsai, S.F., Wang, S.K.: Monotonic multidimensional flux discretization scheme for all Peclet numbers. Numer. Heat Transf. B 31(4), 441–457 (1997)

    Article  Google Scholar 

  19. Spalding, D.B.: A novel finite difference formulation for differential expressions involving both first and second derivatives. Int. J. Nm. Meth. Eng. 4, 551–559 (1972)

    Article  Google Scholar 

  20. Swartz, B., Wendroff, B.: The relative efficiency of finite difference and finite element methods. I. Hyperbolic problems and splines. SIAM J. Numer. Anal. 11, 979–993 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tam, C.K.W., Webb, J.C.: Dispersion-realtion-preserving finite difference schemes for computational acoustics. J. Comput. Phys. 107, 262–281 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tolstykh, A.I.: On a class of noncentered compact difference schemes of fifth-order based on Pade approximants. Sov. Math. Dokl. 44, 69 (1992)

    MATH  Google Scholar 

  23. Vichnevetsky, R., Bowles, J.B.: Fourier Analysis of Numerical Approximations of Hyperbolic Equations (SIAM Philadelphia 1982)

    Google Scholar 

Download references

Acknowledgements

S.H. Zhang was supported by Promotive Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province (BS2013NJ016) and the Project-sponsored by SRF for ROCS, SEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouhui Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhang, S., Wang, X., Zhao, W. (2016). A Dispersion-Relation-Preserving Upwind Combined Compact Scheme for Convection-diffusion Equations with Variable Coefficients. In: Xie, J., Chen, Z., Douglas, C., Zhang, W., Chen, Y. (eds) High Performance Computing and Applications. HPCA 2015. Lecture Notes in Computer Science(), vol 9576. Springer, Cham. https://doi.org/10.1007/978-3-319-32557-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32557-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32556-9

  • Online ISBN: 978-3-319-32557-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics