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Abstract. This research introduce our work on developing Krylov sub-
space and AMG solvers on NVIDIA GPUs. As SpMV is a crucial part
for these iterative methods, SpMV algorithms for single GPU and multi-
ple GPUs are implemented. A HEC matrix format and a communication
mechanism are established. And also, a set of specific algorithms for
solving preconditioned systems in parallel environments are designed,
including ILU(k), RAS and parallel triangular solvers. Based on these
work, several Krylov solvers and AMG solvers are developed. According
to numerical experiments, favorable acceleration performance is acquired
from our Krylov solver and AMG solver under various parameter condi-
tions.
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1 Introduction

Iterative algorithms have widely applications in kinds of scientific computing
fields, such as the reservoir simulation [1]. For large-scale sparse linear systems,
Krylov subspace and AMG algorithms are commonly used. Krylov subspace al-
gorithms include the GMRES (Generalized Minimal Residual), CG(Conjugate
Gradient) and BiCGSTAB (Biconjugate Gradient Stabilized), etc. These algo-
rithms are available to general matrices [2,3]. Preconditioners are always em-
ployed to optimize the performance of an iterative algorithm and many efficient
proecondtioners have been developed [4,5,6,20]. We have developed the Krylov
subspace algorithms with ILU preconditioners. Many researchers have devoted
their efforts into designing AMG solvers which is specific for symmetric positive
definite matrices. Ruge and Stüben designed the RS (Ruge-Stüben) coarsening
strategy and developed a classical AMG solver which is the foundation of devel-
oping other AMG solvers [7,8,9,10,11]. The parallel coarsening strategy CLJP
was proposed by Luby, Jones and Plassmann [12,13]. We have also developed
the AMG algorithm with a series of smoothers, coarsening operators and pro-
longation operators.

GPU(Graphics Processing Unit) computing emerges as an acceleration tech-
nique for image displaying. However, it has more and more utility in other sci-
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entific computing disciplines. Zhang et at. completed some professional perfor-
mance analysis about GPUs [14]. A NVIDIA Tesla K40 which has 2880 CUDA
cores and a peak performance of 1.43 TFlops (Base Clocks) in double precision
has greater performance than an Intel Core i7-5960X with 8 cores and 16 threads
which has a typical peak performance of 385 GFlops [15,16]. A NVIDIA Tesla
K40 also has 288 G/sec memory speed which is much faster than the speed 68
GB/s of an Intel Core i7-5960X [15,16]. As GPU has great priority in parallel
computing, we have designed and developed our iterative algorithms on GPUs.

SpMV (sparse matrix-vector multiplication) is a core part for iterative al-
gorithms. For a large and sparse matrix, it is necessary to partition it into sub
matrices for GPU computation. The METIS partition method is adopted in
our algorithms [17]. Because data communication is unavoidable for SpMV im-
plementation on multiple GPUs, we have designed a specific communication
mechanism for partition matrices to share vector data among different GPUs. In
order to make full use of the characteristic of GPU memory access, we adopted a
HEC matrix format which is more friendly to the SpMV algorithm. A NVIDIA
GPU platform provides high parallel capability depending on its hundreds of fine
CUDA cores. An algorithm must be designed as a parallel algorithm to run on
the CUDA cores. RAS (Restricted Additive Schwarz) proposed by Cai et at. is
adopted in our algorithms to improve the parallel structure of a preconditioner
matrix [18]. Because the ILU preconditioners and AMG smoothers all need to
solve triangular systems, we implemented a parallel triangular solver on GPUs
[19]. It is based on the level schedule method [2,21]. In this research, we designed
a set of numerical experiments to test our algorithms from different aspects. The
experiment results and analysis are given in the experiment section.

The layout of this paper is presented as follows: In §2, the matrix format,
SpMV, vector operations, ILU (k), RAS, parallel triangular solver, Krylov sub-
space algorithms and AMG algorithms are introduced. In §3, the numerical ex-
periments are presented and analyzed. In §4, conclusions are given.

2 GPU Computation

2.1 Matrix Format

Several matrix formats are presented in this section. They are ELL, HYB and
HEC. The ELL format is provided in ELLPACK [22]. Figure 1 shows the ELL’s
structure consisting of two parts. We can see the two parts are both regular and
have the same dimensions. Regular storage has a high speed for data access.
However, it is not wise to store a large-scale sparse matrix in such a format
as lots of storage spaces are always wasted. For instance, if there are a large
number of nonzero entries in one row, the other rows must maintain the same
size of entries most of which are zero. In order to make the limited memory space
be used efficiently, N. Bell and M. Garland suggested a hybrid matrix format
named HYB (Hybrid of ELL and COO). An original matrix is split into two
parts. One part is regular and the remain part is irregular. The COO format is
used to store the irregular part. It has three one-dimensional arrays illustrated
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in Figure 2. The HYB format has good average performance. In our research,
we adopt another hybrid format called HEC which saved the irregular part in
a CSR format shown in Figure 3. It also contains three one-dimensional arrays.
Ap is used for storing the start position of each row. Ax and Aj have the same
length and used for storing the entry data and column indices, respectively.

Aj Ax

Fig. 1. ELL matrix format

Aj

Ax

Ai

Fig. 2. COO matrix format

According to the mathematic method of SpMV, it is always calculated based
on the column vectors. This can be explained by equation (1). Thereby, it’s
better for us to store the entries in the computer column by column. The GPU
architecture provides a wrap concept to execute CUDA cores. That means 32
threads are bounded to be executed together. So the stride of the ELL part
should be a multiple of 32 to acquire enhanced parallel performance. In our
algorithms, we set it as 256 or other multiples. Another problem is how to decide
the boundary between the ELL and CSR. We use a recommended value 20 whose
theoretical explanation are introduced in [23].
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Ap

Aj

Ax

Fig. 3. CSR matrix format
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2.2 SpMV Algorithm

Based on the HEC matrix format, the SpMV algorithm is designed as two parts
apparently. As a GPU executes hundreds of CUDA cores simultaneously, a par-
allel algorithm can be implemented with each CUDA core computing a row. The
ELL part has high efficient and is performed firstly. Algorithm 1 gives the SpMV
algorithm. This algorithm runs well on a single GPU. However, it is not suitable
for multiple GPUs. Multiple GPUs bring stronger parallel computing capability
but import extra data communication. We need to partition the original matrix
into partition matrices first.

Algorithm 1 Sparse matrix-vector multiplication

1: for i = 1: n do ⊲ ELL
2: Calculate the i-th row of ELL matrix; ⊲ one CUDA core
3: end for
4:
5: for i = 1: n do ⊲ CSR
6: Calculate the i-th row of CSR matrix; ⊲ one CUDA core
7: end for

If a matrix has a regular structure. For instance, it is derived from the FDM
(Finite Difference Method) or FVM (Finite Volume Method). A sequence par-
tition method can be used. But if it is irregular structure which is often derived
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(1) (2)

Fig. 4. Matrix and vector partition

from the FEM (Finite Element Method) or FVM. A specific partition method
should be used. We select a quasi-optimal partition method METIS to complete
the matrix partition. During the partition process, the rows of the matrix are
switched first and all the nonzero entries are put along the diagonal as close as
possible. Then the pivot blocks have most of the nonzero entries and the com-
munication cost between any two partition matrices is reduced; see Figure 4.

GPU(device) 1 GPU(device) 2

shared cache

CPU(host) 

Fig. 5. Vector communication

The vector is also partitioned into segments. Each pair of a partition matrix
and a segment vector is distributed onto a GPU. Although most of the nonzero
entries are concentrated at the pivot block, there are still some sparse nonzero
entries outside it, for which a segment vector can not provide a corresponding
element to complete multiplication. Thus, the necessary communication is un-
avoidable. We establish a shared cache for communication. The cache is located
on the CPU (host). It receives all the communication data from each GPU (de-
vice) and then sends the data to needed GPU. As we have used partition method
to reduce the communication load, this mechanism is reasonable.

2.3 Vector Operations

Vector operations are necessary for developing iterative algorithms. They can be
categorized into some categories by equation (2) to equation (6). Some of them
are linear combinations of vectors. Some of them are about dot products. As
two vectors are operated by one-to-one correspondence of elements, it is easy
to design parallel algorithms for them. First, vectors are divided into segments.
Then each pair of segments are distributed onto a GPU. All the sub results are
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sent back to CPU after tasks are finished on GPUs. No communication cost is
needed during the vector operations. A schematic is shown by Figure 6.

y = αAx+ βy (2)

y = αx+ βy (3)

z = αx+ βy (4)

a = 〈x,y〉 (5)

r = ‖x‖2 =
√

〈x,x〉 (6)

GPU(device) 1 GPU(device) 2CPU(host) 

Fig. 6. Vector operations

2.4 ILU(k)

A preconditioner system is expressed as equation (7). M is the preconditioner
matrix which is factorized from the original matrix A. The ILU is a commonly
used precondtioner. It means M can be factorized into one lower triangular ma-
trix L and an upper triangular matrix U , as shown by equation (8). The matrix
A and LU are stored in the same memory space in the program implementation.
In other words, L is stored in the low triangular part and U is stored in the upper
triangular part. A level k can be used to control the factorization process. Only
the entry positions meeting the requirement are allowed to have nonzero entries
in the result pattern. The requirement condition is described by equation (9)
and equation (10) [2].

Mx = y (7)

where

– M : the preconditioner matrix
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– x: the unknown vector

– y: the right hand side vector

M = LU (8)

Lij =

{

0, (i, j) ∈ P

∞, (i, j) /∈ P.
(9)

Lij = min{Lij, Lip + Lpj + 1}. (10)

Equation 9 gives an initial level for each entry Aij . P is the nonzero pattern
of A. So if Aij is zero, its level Lij is infinite; otherwise, Lij is zero. Equation (9)
provides an updated algorithm for levels. This update process are executed at
each loop of ILU(k) algorithm and only the satisfactory entry positions have
nonzero values in the final factorization pattern. The Algorithm 2 details a com-
plete ILU(k) procedure.

Algorithm 2 ILU(k) factorization

1: For all nonzero entries in nonzero pattern P , define Lij = 0
2: for i = 2 : n do
3: for p = 1 : i− 1 & Lip ≤ k do
4: Aip = Aip/App

5: for j = p+ 1 : n do
6: Aij = Aij − AipApj

7: Lij = min{Lij , Lip + Lpj + 1}
8: end for
9: end for
10: if Lij > k then
11: Aij = 0
12: end if
13: end for

2.5 Restricted Additive Schwarz

A preconditioner system is always solved at least once in a loop of an iterative
algorithm. Its solution speed has great influence on the entire solution process.
A GPU platform provides hundreds of CUDA cores to complete a parallel task.
If we can improve the parallel structure of a preconditioner matrix, the solution
process can be accelerated. Cai et al. proposed a Restricted Additive Schwarz
method to optimize the parallel structure for a preconditioner, as illustrated by
Figure 7. The original matrix A is partitioned into some sub matrices first. By
the METIS method mentioned above, we got these rectangular matrices whose
pivot blocks are dense and other positions are sparse; see Figure 7-(2). Because
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the ILU factorization only needs an approximate factorization result from A,
we can remove the sparse entries situated outside the pivot blocks. Analyzed
from a graph aspect, the entries in the pivot blocks represent vertices and the
entries outside them represent edges. If we remove the edges from the graph
by RAS process, the communication among GPUs are ruled out. The remained
pivot blocks can be solved in parallel. The improvement of parallel performance
leads to an accuracy decrease as we discard some entries. So more iteration times
are required to reach a convergence. There is an alternative way named overlap
to compensate for the loss of accuracy. As shown by Figure 7-(3), the overlap
technique requires each pivot block to include its some layers of neighbor entries
into the block matrices to be computed. Extra entries improve the calculation
accuracy and reduce the iteration times. But extra entries also have a negative
influence on the parallel performance. Parallelization and convergence like a cake.
We cannot eat it and have it. This characteristic is reflected in the numerical
experiment section. As a multiple-GPU platform has two levels of parallelization,
the situation becomes complex. One level is composed by the GPUs. The other
level is the CUDA cores on each GPU. Both levels need a partition and a overlap.

(1) (2) (3)

Fig. 7. Restricted Additive Schwarz

2.6 Parallel Triangular Solver

In order to solve L and U on GPUs, we design a parallel triangular solver based
on the level schedule method. As an upper triangular system can be easily
changed into a lower one, only the lower triangular system is analyzed. The
algorithm of a parallel triangular solver is divided into two steps. Each unknown
x(i) is assigned a level which is defined by equation (11) in the first step [2].
The second step is the solution process. The triangular problem is solved level
by level. All the unknowns in the same level are solved simultaneously. The first
level is dependence free. So it is solved at the very first. After the unknowns
in the first level is obtained, the second level becomes free and can be solved.
This procedure proceeded until all the levels are computed and all the unknowns
are solved. A complete algorithm of the level schedule method is given by Algo-
rithm 3.
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l(i) = 1 +max
j

l(j) for all j such that Lij 6= 0, i = 1, 2, . . . , n, (11)

where

– Lij : the (i, j)th entry of L

– l(i): initialized by zeroes

– n: the number of rows

Algorithm 3 Level schedule method for a lower triangular system, Lx = b

1: Maximal level is n
2: for k = 1 : n do
3: start = level(k);
4: end = level(k + 1) - 1;
5: for i = start: end do
6: solve the ith row;
7: end for
8: end for

2.7 Krylov Iterative Algorithms

By now, we have explained the SpMV, vector operations, precondtioner sys-
tems and parallel solution process. All these are components of an iterative
algorithm. Krylov subspace algorithms contain a series of iterative Algorithms,
such as CG (Conjugate Gradient), GMRES (Generalized Minimal Residual),
BiCGSTAB (Biconjugate Gradient Stabilized), etc. We have implemented all of
them. For instance, an implementation analysis of the BiCGSTAB is shown in
the Algorithm 4. All the operations on GPUs are commented. Detailed principle
of BiCGSTAB and other Krylov subspace algorithms can be found in [2,3].

2.8 AMG Algorithms

If the coefficient matrix of a system to be solved is symmetric positive definite,
an AMG solver should be a better choice. An AMG algorithm has a L+1 levels
architecture. The grid of the level is finer with a smaller level number. So the
level 0 is the finest level but the level L is the coarsest level. Figure 8 shows
the level structure of an AMG solver. An AMG algorithm can be designed as
V-cycle, W-cycle or F-cycle. Figure 8 is a V-cycle which has the best acceleration
effect on a parallel platform. W-cycle has the worst effect. An AMG process has
two phases. The first one is called a setup phase in which the coarser grids, the
smoothers, the restriction and prolongation operators are all established. The
second one is the solution phase in which the multiple-levels system is solved.
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Algorithm 4 BiCGSTAB algorithm

1: r0 = b−Ax0; x0 is an initial guess vector ⊲ SpMV; Vector update
2: for k = 1, 2, · · · do
3: ρk−1 = (r0, r) ⊲ Dot product
4: if ρk−1 = 0 then
5: Fails
6: end if
7: if k = 1 then
8: p = r

9: else
10: βk−1 = (ρk−1/ρk−2)(αk−1/ωk−1)
11: p = r + βk−1(p− ωk−1v) ⊲ Vector update
12: end if
13: Solve p∗ from Mp∗ = p ⊲ Preconditioner system
14: v = Ap∗ ⊲ SpMV
15: αk = ρk−1/(r0,v) ⊲ Dot product
16: s = r − αkv ⊲ Vector update
17: if ‖s‖2 is satisfied then ⊲ Dot product
18: x = x+ αkp

∗ ⊲ Vector update
19: Stop
20: end if
21: Solve s∗ from Ms∗ = s ⊲ Preconditioner system
22: t = As∗ ⊲ SpMV
23: ωk = (t, s)/‖t‖2 ⊲ Dot product
24: x = x+ αkp

∗ + ωks
∗ ⊲ Vector update

25: r = s− ωkt ⊲ Vector update
26: if ‖r‖2 is satisfied or ωk = 0 then ⊲ Dot product
27: Stop
28: end if
29: end for

As a coarser grid has much smaller dimension size compared to its neighbor finer
grid, a problem on a coarser grid is easier to be solved. A restriction operation is
used for transferring the problem from a finer level to a coarser level. After the
problem on the coarser grid is solved, a prolongation operator is used to transfer
the solution back to a finer grid. On level l, let Al be the system matrix, Rl

be the restriction operator and Pl be the prolongation operator. Sl is the pre-
smoother and Tl is the post-smoother. An example AMG algorithm for V-cycle
can be designed as Algorithm 5.

We have developed the AMG solver with a series of smoothers, coarsening
operators and prolongation operators. The smoothers include damped Jacobi
and weighted Jacobi, etc. The coarsening operator RS and the prolongation
operator RSSTD are proposed by Ruge and Stüben [7,8]. The CLJP coarsening
operator is proposed by Cleary et al. [12,13].
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level 0

level 1

level L

level 0

level 1

Fig. 8. Structure of AMG solver.

Algorithm 5 AMG V-cycle

Require: 0 ≤ l < L

if (l < L) then
xl = Sl(xl, Al, bl) ⊲ Pre-smoothing
r = bl − Alxl

bl+1 = Rlr ⊲ Restriction
amg solve(l + 1) ⊲ Recursion
xl = xl + Plxl+1 ⊲ Prolongation
xl = Tl(xl, Al, bl) ⊲ Post-smoothing

else
xl = A−1

l bl
end if

3 Numerical Experiments

A series of numerical experiments are designed to test our algorithms. We use
the speedup to measure the parallel acceleration on GPUs. It is calculated by
the ratio of the CPU sequential running time to the GPU parallel running time
of the same algorithm. The development environment parameters are listed in
Table 1.

Table 1. Experiment environment parameters

Parameter Value

CPU Intel Xeon X5570

GPU NVIDIA Tesla C2050/C2070

Operating System CentOS X86 64

CUDA Toolkit 5.1

GCC 4.4

CPU codes compilation -O3 option

float point number precision double
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3.1 SpMV

Table 2 gives the properties of matrices used for SpMV test. 3D Poisson is from
a three-dimensional Poisson equation. Its dimension is 150×150×150. The other
matrices are all downloaded from a matrix market provided by the University
of Florida [24].

Table 2. Matrices for SPMV

Matrix # of Rows Nonzeros NNZ/N Mb(CSR)

ESOC 327,062 6,019,939 18 70

af shell8 504,855 9,042,005 18 105

tmt sym 726,713 2,903,837 4 36

ecology2 999,999 2,997,995 3 38

thermal2 1,228,045 4,904,179 4 61

Hook 1498 1,498,023 30,436,237 20 354

G3 circuit 1,585,478 4,623,152 3 59

kkt power 2,063,494 7,209,692 3 90

memchip 2,707,524 13,343,948 5 163

3D Poisson 3,375,000 23,490,000 7 282

Freescale1 3,428,755 17,052,626 5 208

cage15 5,154,859 99,199,551 19 1155

The speedup of SpMV on a single GPU is collected in Table 3. Three matrix
formats are tested for each matrix. We can see that most of the speedup for HEC
format are over 10 and the highest speedup can reach 18. The algorithm on GPUs
has good parallel acceleration performance. Figure 9 makes a comparison of
different matrix formats. The number of nonzero entries per row is written in the
brackets after each matrix name. We can see that the HEC format represented
by the red curve shows better performance than the other two formats. From
the Figure, the matrices with relative larger NNZ/N have a lower speedup.

3.2 BiCGSTAB with ILU(K)

In this experiment, we use the BiCGSTAB algorithm with an ILU(k) precon-
ditioner to test our Krylov algorithms. The testing matrix is from a three-
dimensional Poisson equation whose dimension is 3,375,000 (150 × 150 × 150).
It has 23,490,000 nonzero entries and about 7 nonzero entries per row. Table 4
collects the running results. There are six parameter combinations which are
numbered in the Seq No. column. The Outer RAS and Inner RAS represent
the outer layer partition numbers and inner layer partition numbers based on the
RAS technique. The number of GPUs employed is equal to the Outer RAS. The
outer and inner overlap layers are listed in the Outer overlap and Inner overlap
columns, respectively. These parameters form various parameter combinations.

As all the data sections have a similar data tendency, we take the first data
section as an sample analysis, where the outer RAS, the inner RAS, the ouer
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Table 3. SPMV speedup for different matrix formats

Matrix ELL HYB HEC

ESOC 13.08 13.16 13.16

af shell8 9.05 10.08 11.20

tmt sym 16.23 16.27 16.14

ecology2 18.38 18.24 18.11

thermal2 8.45 8.00 9.25

Hook 1498 5.44 7.35 7.79

G3 circuit 12.84 14.08 11.22

kkt power 2.49 5.71 6.27

memchip 4.39 10.53 11.46

3D Poisson 13.60 13.63 13.63

Freescale1 5.00 9.76 11.25

cage15 6.40 10.00 9.89
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Fig. 9. SpMV speedup curves

overlap and the inner overlap are 1, 8, 0 and 0, respectively. The speedup reaches
8.97 when the k level is set to 0. As k goes up from 0 to 3, the speedup goes down
from 8.97 to 4.75 in a general data tendency. That is because more fill-in entries
are imported by a higher k. These entries contribute to improve the calculation
accuracy. So the iteration is saved and goes down from 45 to 33. However, it
goes back to 42 when k is 2. That might is caused by the matrix pattern which
has also great influence on the performance.

Figure 10 shows a comparison of the combinations. As the outer RAS in-
creases from 1 to 4 and then the inner RAS increases from 8 to 1024, the par-
allel performance is improved gradually and the curves have a growth tendency.
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Table 4. GMRES with ILU(k) for 3D Poisson (RAS)

Seq Outer Inner Outer Inner ILU(k) CPU time GPU time
No. RAS RAS overlap overlap level k (second) (second) Speedup Iteration

1 1 8 0 0 0 16.36 1.82 8.97 45
1 12.25 1.56 7.86 30
2 15.75 3.95 3.99 42
3 16.26 3.42 4.75 33

2 2 8 0 0 0 15.29 1.07 14.30 46
1 14.64 1.18 12.41 36
2 18.55 2.66 6.96 43
3 16.94 2.80 6.05 36

3 3 8 0 0 0 16.57 0.82 20.28 46
1 14.51 1.07 13.59 39
2 18.32 2.53 7.25 44
3 17.85 2.66 6.71 38

4 4 8 0 0 0 17.13 0.62 27.84 44
1 13.92 0.81 17.14 34
2 18.15 2.05 8.87 39
3 17.51 2.47 7.08 38

5 4 128 0 0 0 16.59 0.62 26.96 48
1 16.91 0.66 25.62 40
2 20.53 1.50 13.72 51
3 20.36 1.56 13.02 45

6 4 1024 0 0 0 18.98 0.67 28.33 55
1 19.37 0.72 27.03 47
2 21.77 1.39 15.63 58
3 22.47 1.27 17.74 46

Obviously, a lower k has a better parallel performance. The convergence per-
formance is reflected by the Figure 11. With the sequence number increases,
the parallel performance increases but the convergence performance decreases.
Thereby more iteration times are needed to reach a convergence. We can see
that high iteration times are needed for k = 0 because it has high speedup.

As we mentioned, the overlap technique is used for compensating for the loss
of calculation accuracy. Higher overlaps are supposed to use smaller iteration.
But the speedup is supposed to decrease as more entries are introduced by
the overlap. The results of different overlapping configurations are collected in
Table 5.

The combination one has the highest speedup 27.82 and iteration 44. Its
acceleration performance is the best but convergence performance is the worst.
The combination four has an opposite effect with both the outer overlap and
inner overlap set to 1. Its speedup is 23.95 and iteration is 38. If only the outer
overlap or the inner overlap is set to 1, the results have an intermediate effect.
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Fig. 11. Iteration for 3D Poisson

Table 5. GMRES with ILU(k) for 3D Poisson (overlap)

Seq Outer Inner Outer Inner ILU(k) CPU time GPU time
No. RAS RAS overlap overlap level k (second) (second) Speedup Iteration

1 4 8 0 0 0 17.07 0.61 27.82 44

2 4 8 1 0 0 15.91 0.70 22.70 43

3 4 8 0 1 0 15.43 0.60 25.78 41

4 4 8 1 1 0 15.04 0.63 23.95 38
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3.3 AMG

Two matrices, ecology2 and 3D Poisson, are employed in the AMG algorithm
testing. The ecology2 is a positive definite matrix derived from a circuit theory
applied to animal/gene flow. It has 999,999 rows and 2,997,995 nonzero entries.
The NNZ/N is 3. The 3D Poisson has an dimension of 125,000 (50 × 50 ×
50)) and 860,000 nonzero entries. Its NNZ/N is about 7. We set the maximal
level to 8 and the pre-smoothing and post-smoothing both to 3. The V-cycle is
employed. Table 6 and 7 collect the running results for ecology2 and 3D Poisson,
respectively. Two type of coarsening strategies Ruge- Stüben (RS) and CLJP
are used. Two types of interpolations, the standard RS (RSSTD) and direct
(RSD), are used. Four types of smoothers are tested. They are the damped
Jacobi (dJacobi), weighted Jacobi (wJacobi), Chebyshev polynomial smoothers
(Chev) and Gauss-Seidel (GS).

Table 6. AMG for ecology2

Seq Coarsening CPU time GPU time
No. strategy Interpolation Smoother (second) (second) Speedup Iteration

1 CLJP RSD dJacobi 1.30 0.17 7.57 3

2 CLJP RSD Chev 4.92 0.50 9.78 11

3 RS RSD dJacobi 0.82 0.11 7.71 3

4 RS RSSTD wJacobi 0.86 0.12 7.07 3

5 RS RSSTD GS 0.46 0.99 0.46 1

The dJacobi, wJacobi and Chev are all developed based on the SpMV and
vector operations. As we have completed the favorable parallel realization of
them, these smoothers have good speedup for ecology2 , which are over 7. When
the CLJP and RSD are used, the speedup reaches to the maximal value 9.78. If
we select the GS smoother, the speedup is 0.46 which is very low. That means
the running time on a GPU is even longer than that on a CPU. The purpose
of acceleration on a GPU fails. Although the GS has the worst parallel per-
formance, it has the best convergence performance and only once iteration is
needed. So it is better to develop an AMG algorithm with the GS on a CPU.
This also shows there is a contradictory effect between acceleration and conver-
gence performance. Our experiment results show that the dJacobi, wJacobi and
Chev are suitable for GPU computation while the GS is suitable for CPU.

The 3D Poisson has worse acceleration results than the ecology2 has; shown
by Table 7. Different matrices has different nonzero patterns which have great
influence on the computing performance. The algorithm on GPU has an accel-
eration effect for the smoothers of dJacobi, wJacobi and Chev. The combination
three with the RS, RSD, dJacobi has the highest speedup 4.71. However, a very
poor speedup 0.06 is obtained for the smoother GS. This result is similar to that
of the matrix ecology2. The GS is not suitable for GPU computing is proved
again.
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Table 7. AMG for 3D Poisson

Seq Coarsening CPU time GPU time
No. strategy Interpolation Smoother (second) (second) Speedup Iteration

1 CLJP RSD dJacobi 1.64 0.65 2.54 8

2 CLJP RSD Chev 1.86 1.13 1.64 8

3 RS RSD dJacobi 0.25 0.05 4.71 7

4 RS RSSTD wJacobi 0.46 0.13 3.61 9

5 RS RSSTD GS 0.28 4.53 0.06 4

4 Conclusion

We have developed the Krylov and AMG linear solvers on GPUs. The SpMV
algorithm can be accelerated over 10 times faster on a single GPU against a
CPU for most large-scale sparse matrices. Our preconditioned Krylov subspace
algorithms have favorable speedups on GPUs. When four GPUs are employed
and the inner RAS is set to 1024, the BiCGSTAB with ILU(0) can be sped up to
28 times faster. Our AMG solver shows good parallel performance for dJacobi,
wJacobi and Chev smoothers. The numerical experiments verify that a contra-
dictory effect exists between the performance of convergence and acceleration in
many cases.
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