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Abstract. Gaussian mixture models are central to classical statistics,
widely used in the information sciences, and have a rich mathematical
structure. We examine their maximum likelihood estimates through the
lens of algebraic statistics. The MLE is not an algebraic function of the
data, so there is no notion of ML degree for these models. The criti-
cal points of the likelihood function are transcendental, and there is no
bound on their number, even for mixtures of two univariate Gaussians.
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1 Introduction

The primary purpose of this paper is to demonstrate the result stated in the title:

Theorem 1. The maximum likelihood estimators of Gaussian mixture mod-
els are transcendental functions. More precisely, there exist rational samples
x1, x2, . . . , xN in Qn whose maximum likelihood parameters for the mixture of
two n-dimensional Gaussians are not algebraic numbers over Q.

The principle of maximum likelihood (ML) is central to statistical inference.
Most implementations of ML estimation employ iterative hill-climbing methods,
such as expectation maximization (EM). These can rarely certify that a globally
optimal solution has been reached. An alternative paradigm, advanced by alge-
braic statistics [8], is to find the ML estimator (MLE) by solving the likelihood
equations. This is only feasible for small models, but it has the benefit of being
exact and certifiable. An important notion in this approach is the ML degree,
which is defined as the algebraic degree of the MLE as a function of the data.
This rests on the premise that the likelihood equations are given by polynomials.

Many models used in practice, such as exponential families for discrete or
Gaussian observations, can be represented by polynomials. Hence, they have an
ML degree that serves as an upper bound for the number of isolated local maxima
of the likelihood function, independently of the sample size and the data. The ML
degree is an intrinsic invariant of a statistical model, with interesting geometric
and topological properties [13]. The notion has proven useful for characterization
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of when MLEs admit a ‘closed form’ [19]. When the ML degree is moderate, these
exact tools are guaranteed to find the optimal solution to the ML problem [5,12].

However, the ML degree of a statistical model is only defined when the MLE is
an algebraic function of the data. Theorem 1 means that there is no ML degree for
Gaussian mixtures. It also highlights a fundamental difference between likelihood
inference and the method of moments [3,10,15]. The latter is a computational
paradigm within algebraic geometry, that is, it is based on solving polynomial
equations. ML estimation being transcendental means that likelihood inference
in Gaussian mixtures is outside the scope of algebraic geometry.

The proof of Theorem 1 will appear in Section 2. In Section 3 we shed further
light on the transcendental nature of Gaussian mixture models. We focus on
mixtures of two univariate Gaussians, the model given in (1) below, and we
present a family of data points on the real line such that the number of critical
points of the corresponding log-likelihood function (2) exceeds any bound.

While the MLE for Gaussian mixtures is transcendental, this does not mean
that exact methods are not available. Quite to the contrary. Work of Yap and his
collaborators in computational geometry [6,7] convincingly demonstrates this.
Using root bounds from transcendental number theory, they provide certified
answers to geometric optimization problems whose solutions are known to be
transcendental. Theorem 1 opens up the possibility of transferring these tech-
niques to statistical inference. In our view, Gaussian mixtures are an excellent
domain of application for certified computation in numerical analytic geometry.

2 Reaching Transcendence

Transcendental number theory [2,11] is a field that furnishes tools for deciding
whether a given real number τ is a root of a nonzero polynomial in Q[t]. If this
holds then τ is algebraic; otherwise τ is transcendental. For instance,

√
2+
√

7 =
4.059964873... is algebraic, and so are the parameter estimates computed by
Pearson in his 1894 study of crab data [15]. By contrast, the famous constants
π = 3.141592653... and e = 2.718281828... are transcendental. Our proof will be
based on the following classical result. A textbook reference is [2, Theorem 1.4]:

Theorem 2 (Lindemann-Weierstrass). If u1, . . . , ur are distinct algebraic
numbers then eu1 , . . . , eur are linearly independent over the algebraic numbers.

For now, consider the case of n = 1, that is, mixtures of two univariate
Gaussians. We allow mixtures with arbitrary means and variances. Our model
then consists of all probability distributions on the real line R with density

fα,µ,σ(x) =
1√
2π
·
[
α

σ1
exp
(
− (x− µ1)2

2σ2
1

)
+

1− α
σ2

exp
(
− (x− µ2)2

2σ2
2

)]
. (1)

It has five unknown parameters, namely, the means µ1, µ2 ∈ R, the standard
deviations σ1, σ2 > 0, and the mixture weight α ∈ [0, 1]. The aim is to estimate
the five model parameters from a collection of data points x1, x2, . . . , xN ∈ R.



The log-likelihood function of the model (1) is

`(α, µ1, µ2, σ1, σ2) =

N∑
i=1

log fα,µ,σ(xi) . (2)

This is a function of the five parameters, while x1, . . . , xN are fixed constants.
The principle of maximum likelihood suggests to find estimates by maximiz-

ing the function ` over the five-dimensional parameter spaceΘ = [0, 1]×R2×R2
>0.

Remark 1. The log-likelihood function ` in (2) is never bounded above. To see
this, we argue as in [4, Section 9.2.1]. Set N = 2, fix arbitrary values α0 ∈ [0, 1],
µ20 ∈ R and σ20 > 0, and match the first mean to the first data point µ1 = x1.
The remaining function of one unknown σ1 equals

`(α0, x1, µ20, σ1, σ20) ≥ log

[
α0

σ1
+

1− α0

σ20
exp
(
− (x1 − µ20)2

2σ2
20

)]
+ const .

The lower bound tends to ∞ as σ1 → 0.

Remark 1 means that there is no global solution to the MLE problem. This
is remedied by restricting to a subset of the parameter space Θ. In practice,
maximum likelihood for Gaussian mixtures means computing local maxima of
the function `. These are found numerically by a hill climbing method, such as
the EM algorithm, with particular choices of starting values. See Section 3. This
method is implemented, for instance, in the R package MCLUST [9]. In order
for Theorem 1 to cover such local maxima, we prove the following statement:

There exist samples x1, . . . , xN ∈ Q such that every non-trivial critical
point (α̂, µ̂1, µ̂2, σ̂1, σ̂2) of the log-likelihood function ` in the domain Θ
has at least one transcendental coordinate.

Here, a critical point is non-trivial if it yields an honest mixture, i.e. a distribu-
tion that is not Gaussian. By the identifiability results of [20], this happens if and
only if the estimate (α̂, µ̂1, µ̂2, σ̂1, σ̂2) satisfies 0 < α̂ < 1 and (µ̂1, σ̂1) 6= (µ̂2, σ̂2).

Remark 2. The log-likelihood function always has some algebraic critical points,
for any x1, . . . , xN ∈ Q. Indeed, if we define the empirical mean and variance as

x̄ =
1

N

N∑
i=1

xi , s2 =
1

N

N∑
i=1

(xi − x̄)2 ,

then any point (α̂, µ̂1, µ̂2, σ̂1, σ̂2) with µ̂1 = µ̂2 = x̄ and σ̂1 = σ̂2 = s is critical.
This gives a Gaussian distribution with mean x̄ and variance s2, so it is trivial.

Proof (of Theorem 1). First, we treat the univariate case. Consider the partial
derivative of (2) with respect to the mixture weight α:

∂`

∂α
=

N∑
i=1

1

fα,µ,σ(xi)
· 1√

2π

[
1

σ1
exp
(
− (xi − µ1)2

2σ2
1

)
− 1

σ2
exp
(
− (xi − µ2)2

2σ2
2

)]
. (3)



Clearing the common denominator

√
2π ·

N∏
i=1

fα,µ,σ(xi) ,

we see that ∂`/∂α = 0 if and only if

N∑
i=1

[
1

σ1
exp
(
− (xi − µ1)2

2σ2
1

)
− 1

σ2
exp
(
− (xi − µ2)2

2σ2
2

)]
×
∏
j 6=i

[
α

σ1
exp
(
− (xj − µ1)2

2σ2
1

)
+

1− α
σ2

exp
(
− (xj − µ2)2

2σ2
2

)]
= 0 . (4)

Letting α1 = α and α2 = 1− α, we may rewrite the left-hand side of (4) as

N∑
i=1

 2∑
ki=1

(−1)ki−1

σki
exp
(
− (xi − µki)

2

2σ2
ki

)∏
j 6=i

 2∑
kj=1

αkj
σkj

exp
(
−

(xj − µkj )2

2σ2
kj

) . (5)

We expand the products, collect terms, and set Ni(k) = |{j : kj = i}|. With
this, the partial derivative ∂`/∂α is zero if and only if the following vanishes:

N∑
i=1

∑
k∈{1,2}N

exp

(
−

N∑
j=1

(xj − µkj )2

2σ2
kj

)
(−1)ki−1α|{j 6=i:kj=1}|(1−α)|{j 6=i:kj=2}|

(
N∏
j=1

1

σkj

)

=
∑

k∈{1,2}N
exp

(
−

N∑
j=1

(xj − µkj )2

2σ2
kj

)(
N∏
j=1

1

σkj

)
N∑
i=1

(−1)ki−1α|{j 6=i:kj=1}|(1− α)|{j 6=i:kj=2}|

=
∑

k∈{1,2}N
exp

(
−

N∑
j=1

(xj − µkj )2

2σ2
kj

)(
N∏
j=1

1

σkj

)
αN1(k)−1(1−α)N2(k)−1

[
N1(k)(1−α)

+N2(k)(−α)

]

=
∑

k∈{1,2}N
exp

(
−

N∑
j=1

(xj − µkj )2

2σ2
kj

)(
N∏
j=1

1

σkj

)
αN1(k)−1(1− α)N−N1(k)−1(N1(k)−Nα) .

Let (α̂, µ̂1, µ̂2, σ̂1, σ̂2) be a non-trivial isolated critical point of the likelihood
function. This means that 0 < α̂ < 1 and (µ̂1, σ̂1) 6= (µ̂2, σ̂2). This point depends
continuously on the choice of the data x1, x2, . . . , xN . By moving the vector with
these coordinates along a general line in RN , the mixture parameter α̂ moves
continuously in the critical equation ∂`/∂α = 0 above. By the Implicit Function
Theorem, it takes on all values in some open interval of R, and we can thus
choose our data points xi general enough so that α̂ is not an integer multiple of
1/N . We can further ensure that the last sum above is a Q(α)-linear combination
of exponentials with nonzero coefficients.

Suppose that (α̂, µ̂1, µ̂2, σ̂1, σ̂2) is algebraic. The Lindemann-Weierstrass The-
orem implies that the arguments of exp are all the same. Then the 2N numbers

N∑
j=1

(xj − µ̂kj )2

2σ̂2
kj

, k ∈ {1, 2}N ,



are all identical. However, for N ≥ 3, and for general choice of data x1, . . . , xN
as above, this can only happen if (µ̂1, σ̂1) = (µ̂2, σ̂2). This contradicts our hy-
pothesis that the critical point is non-trivial. We conclude that all non-trivial
critical points of the log-likelihood function (2) are transcendental.

In the multivariate case, the model parameters comprise the mixture weight
α ∈ [0, 1], mean vectors µ1, µ2 ∈ Rn and positive definite covariance matrices
Σ1, Σ2 ∈ Rn. Arguing as above, if a non-trivial critical (α̂, µ̂1, µ̂2, Σ̂1, Σ̂2) is
algebraic, then the Lindemann-Weierstrass Theorem implies that the numbers

N∑
j=1

(xj − µ̂kj )T Σ̂−1kj (xj − µ̂kj ) , k ∈ {1, 2}N ,

are all identical. For N sufficiently large and a general choice of x1, . . . , xN in Rn,
the 2N numbers are identical only if (µ̂1, Σ̂1) = (µ̂2, Σ̂2). Again, this constitutes
a contradiction to the hypothesis that (α̂, µ̂1, µ̂2, Σ̂1, Σ̂2) is non-trivial. ut

Many variations and specializations of the Gaussian mixture model are used
in applications. In the case n = 1, the variances are sometimes assumed equal,
so σ1 = σ2 for the above two-mixture. This avoids the issue of an unbounded
likelihood function (as long as N ≥ 3). Our proof of Theorem 1 applies to this
setting. In higher dimensions (n ≥ 2), the covariance matrices are sometimes as-
sumed arbitrary and distinct, sometimes arbitrary and equal, but often also have
special structure such as being diagonal. Various default choices are discussed in
the paper [9] that introduces the R package MCLUST. Our results imply that
maximum likelihood estimation is transcendental for all these MCLUST models.

Example 1. We illustrate Theorem 1 for a specialization of (1) obtained by fixing
three parameters: µ2 = 0 and σ1 = σ2 = 1/

√
2. The remaining two free param-

eters are α and µ = µ1. We take only N = 2 data points, namely x1 = 0 and
x2 = x > 0. Omitting an additive constant, our log-likelihood function equals

`(α, µ) = log
(
α · e−µ

2

+ (1− α)
)

+ log
(
α · e−(µ−x)

2

+ (1− α) · e−x
2)

. (6)

For a concrete example take x = 2. The graph of (6) for this choice is shown
in Figure 1. By maximizing `(α, µ) numerically, we find the parameter estimates

α̂ = 0.50173262959803874... and µ̂ = 1.95742494230308167... (7)

Our technique can be applied to prove that α̂ and µ̂ are transcendental over Q.
We illustrate it for µ̂.

For any x ∈ R, the function `(α, µ) is bounded from above and achieves its
maximum on [0, 1]×R. If x > 0 is large, then any global maximum (α̂, µ̂) of ` is
in the interior of [0, 1]×R and satisfies 0 < µ̂ ≤ x. According to a Mathematica

computation, the choice x ≥ 1.56125... suffices for this. Assume that this holds.
Setting the two partial derivatives equal to zero and eliminating the unknown α
in a further Mathematica computation, the critical equation for µ is found to be

(x− µ)eµ
2

− x + µe−µ(2x−µ) = 0 . (8)



Fig. 1. Graph of the log-likelihood function for two data points x1 = 0 and x2 = 2.

Suppose for contradiction that both x and µ̂ are algebraic numbers over Q.
Since 0 < µ̂ ≤ x, we have −µ̂(2x − µ̂) < 0 < µ̂2. Hence u1 = µ̂2, u2 = 0 and
u3 = −µ̂(2x − µ̂) are distinct algebraic numbers. The Lindemann-Weierstrass
Theorem implies that eu1 , eu2 and eu3 are linearly independent over the field of
algebraic numbers. However, from (8) we know that

(x− µ̂) · eu1 − x · eu2 + µ̂ · eu3 = 0 .

This is a contradiction. We conclude that the number µ̂ is transcendental over Q.

3 Many Critical Points

Theorem 1 shows that Gaussian mixtures do not admit an ML degree. This
raises the question of how to find any bound for the number of critical points.

Problem 1. Does there exist a universal bound on the number of non-trivial
critical points for the log-likelihood function of the mixture of two univariate
Gaussians? Or, can we find a sequence of samples on the real line such that the
number of non-trivial critical points increases beyond any bound?

We shall resolve this problem by answering the second question affirmatively.
The idea behind our solution is to choose a sample consisting of many well-
separated clusters of size 2. Then each cluster gives rise to a distinct non-trivial
critical point (α̂, µ̂1, µ̂2, σ̂1, σ̂2) of the log-likelihood function ` from (2). We pro-
pose one particular choice of data, but many others would work too.

Theorem 3. Fix sample size N = 2K for K ≥ 2, and take the ordered sample
(x1, . . . , x2K) = (1, 1.2, 2, 2.2, . . . ,K,K+0.2). Then, for each k ∈ {1, . . . ,K},
the log-likelihood function ` from (2) has a non-trivial critical point with k <
µ̂1 < k + 0.2. Hence, there are at least K non-trivial critical points.



Table 1. Seven critical points of the log-likelihood function in Theorem 3 with K = 7.

k α µ1 µ2 σ1 σ2 log-likelihood

1 0.1311958 1.098998 4.553174 0.09999497 1.746049 -27.2918782147578

2 0.1032031 2.097836 4.330408 0.09997658 1.988948 -28.6397463805501

3 0.07883084 3.097929 4.185754 0.09997856 2.06374 -29.1550277534757

4 0.06897294 4.1 4.1 0.1 2.07517 -29.2858981551065

5 0.07883084 5.102071 4.014246 0.09997856 2.06374 -29.1550277534757

6 0.1032031 6.102164 3.869592 0.09997658 1.988948 -28.6397463805501

7 0.1311958 7.101002 3.646826 0.09999497 1.746049 -27.2918782147578

Before turning to the proof, we offer a numerical illustration.

Example 2. For K = 7, we have N = 14 data points in the interval [1, 7.2].
Running the EM algorithm (as explained in the proof of Theorem 3 below)
yields the non-trivial critical points reported in Table 1. Their µ1 coordinates
are seen to be close to the cluster midpoints k + 0.1 for all k. The observed
symmetry under reversing the order of the rows also holds for all larger K.

Our proof of Theorem 3 will be based on the EM algorithm. We first recall
this algorithm. Let fα,µ,σ be the mixture density from (1), and let

fj(x) =
1√

2π σj
exp
(
− (x− µj)2

2σ2
j

)
, j = 1, 2 ,

be the two Gaussian component densities. Define

γi =
α · f1(xi)

fα,µ,σ(xi)
, (9)

which can be interpreted as the conditional probability that data point xi belongs
to the first mixture component. Further, define N1 =

∑N
i=1 γi and N2 = N −

N1, which are expected cluster sizes. Following [4, Section 9.2.2], the likelihood
equations for our model can be written in the following fixed-point form:

α =
N1

N
, (10)

µ1 =
1

N1

N∑
i=1

γixi , µ2 =
1

N2

N∑
i=1

(1− γi)xi , (11)

σ1 =
1

N1

N∑
i=1

γi(xi − µ1)2 , σ2 =
1

N2

N∑
i=1

(1− γi)(xi − µ2)2 . (12)

In the present context, the EM algorithm amounts to solving these equations
iteratively. More precisely, consider any starting point (α, µ1, µ2, σ1, σ2). Then
the E-step (“expectation”) computes the estimated frequencies γi via (9). In



the subsequent M-step (“maximization”), one obtains a new parameter vector
(α, µ1, µ2, σ1, σ2) by evaluating the right-hand sides of the equations (10)-(12).
The two steps are repeated until a fixed point is reached, up to the desired nu-
merical accuracy. The updates never decrease the log-likelihood. For our problem
it can be shown that the algorithm will converge to a critical point; see e.g. [16].

Proof (of Theorem 3). Fix k ∈ {1, . . . ,K}. We choose starting parameter values
to suggest that the pair (x2k−1, x2k) = (k, k + 0.2) belongs to the first mixture
component, while the rest of the sample belongs to the second. Explicitly, we set

α =
2

N
=

1

K
,

µ1 = k + 0.1 , µ2 =
K2 + 1.2K − 2k − 0.2

2(K − 1)
,

σ1 = 0.1 , σ2 =

√
1
12K

4 − 1
3K

3 + (k − 43
75 )K2 − (k2 − k + 14

75 )K + 0.01

K − 1
.

We shall argue that, when running the EM algorithm, the parameters will always
stay close to these starting values. Specifically, we claim that throughout all EM
iterations, the parameter values satisfy the inequalities

1

4K
≤ α ≤ 1

K
, 0.09 ≤ µ1 − k ≤ 0.11 , 0.099 ≤ σ1 ≤ 0.105 , (13)

K

2
+ 0.1 ≤ µ2 ≤

K

2
+ 1.1 , (14)√

K2

12
− K

6
+ 0.01 ≤ σ2 ≤

√
K2

12
+
K

12
+ 0.01 . (15)

The starting values proposed above obviously satisfy the inequalities in (13), and
it is not difficult to check that (14) and (15) are satisfied as well. To prove the
theorem, it remains to show that (13)-(15) continue to hold after an EM update.

In the remainder, we assume that K > 22. For smaller values of K the claim
of the theorem can be checked by running the EM algorithm. In particular, for
K > 3, the second standard deviation satisfies the simpler bounds

K√
12
−
√

3

5
≤ σ2 ≤

K√
12

+

√
3

12
. (16)

A key property is that the quantity γi, computed in the E-step, is always
very close to zero for i 6= 2k − 1, 2k. To see why, rewrite (9) as

γi =
1

1 + 1−α
α

f2(xi)
f1(xi)

=
1

1 + 1−α
α

σ1

σ2
exp

{
1
2

(
(xi−µ1

σ1
)2 − (xi−µ2

σ2
)2
)} .

Since α ≤ 1/K, we have 1−α
α ≥ K − 1. On the other hand, σ1

σ2
≥ 0.099

K/
√
12+
√
3/12

.

Using that K > 22, their product is thus bounded below by 0.3209. Turning to



the exponential term, the second inequality in (13) implies that |xi−µ1| ≥ 0.89
for i = 2k− 2 or i = 2k+ 1, which index the data points closest to the kth pair.

Using (16), we obtain(
xi − µ1

σ1

)2

−
(
xi − µ2

σ2

)2

≥
(

0.89

0.105

)2

−
(

K/2 + 0.1

K/
√

12−
√

3/5

)2

≥ 67.86 .

From e33.93 > 5.4 · 1014, we deduce that γi < 10−14. The exponential term
becomes only smaller as the considered data point xi move away from the kth
pair. As |i − (2k − 1/2)| increases, γi decreases and can be bounded above by
a geometric progression starting at 10−14 and with ratio 10−54. This makes γi
with i 6= 2k, 2k−1 negligible. Indeed, from the limit of geometric series, we have

s1 =
∑

i 6=2k−1,2k

γi < 10−13 , (17)

and similarly, s2 =
∑
i6=2k−1,2k γi(xi − k) satisfies

|s2| = |γ2k−2(−0.8) + γ2k+1(1) + γ2k−3(−1) + γ2k+2(1.2) + . . .| < 10−13 .
(18)

The two sums s1 and s2 are relevant for the M-step.
The probabilities γ2k−1 and γ2k give the main contribution to the averages

that are evaluated in the M-step. They satisfy 0.2621 ≤ γ2k−1, γ2k ≤ 0.9219.
Moreover, we may show that the values of γ2k−1 and γ2k are similar, namely:

0.8298 ≤ γ2k−1
γ2k

≤ 1.2213 , (19)

which we prove by writing

γ2k−1
γ2k

=
1 + y exp(z/2)

1 + y
,

and using K > 22 to bound

y =
1− α
α

σ1
σ2

exp

{
1

2

((
k − µ1

σ1

)2

−
(
k − µ2

σ2

)2
)}

,

z =
0.4(k − µ1) + 0.04

σ2
1

− 0.4(k − µ2) + 0.04

σ2
2

.

Bringing it all together, we have

µ1 =
1

N1

N∑
i=1

γixi = k +
0.2γ2k + s2

γ2k−1 + γ2k + s1
.

Using γ2k + γ2k−1 > 0.5 and (18), as well as the lower bound in (19), we find

µ1 − k ≤
0.2γ2k

γ2k−1 + γ2k
+

s2
γ2k−1 + γ2k

≤ 0.2γ2k
0.8298γ2k + γ2k

+ 10−12 ≤ 0.11 .



Using the upper bound in (19), we also have 0.09 ≤ µ1 − k. Hence, the second
inequality in (13) holds.

The inequalities for the other parameters are verified similarly. For instance,

1

4K
<

0.2621 + 0.2621

2K
≤ γ2k−1 + γ2k + s1

2K
≤ 0.9219 + 0.9219 + 10−13

2K
<

1

K

holds for α = N1

N . Therefore, the first inequality in (13) continues to be true.
We conclude that running the EM algorithm from the chosen starting values

yields a sequence of parameter vectors that satisfy the inequalities (13)-(16). The
sequence has at least one limit point, which must be a non-trivial critical point of
the log-likelihood function. Therefore, for every k = 1, . . . ,K, the log-likelihood
function has a non-trivial critical point with µ1 ∈ (k, k + 0.2). ut

4 Conclusion

We showed that the maximum likelihood estimator (MLE) in Gaussian mixture
models is not an algebraic function of the data, and that the log-likelihood
function may have arbitrarily many critical points. Hence, in contrast to the
models studied so far in algebraic statistics [5,8,12,19], there is no notion of an
ML degree for Gaussian mixtures. However, certified likelihood inference may
still be possible, via transcendental root separation bounds, as in [6,7].

Remark 3. The Cauchy-location model, treated in [17], is an example where the
ML estimation is algebraic but the ML degree, and also the maximum number
of local maxima, depends on the sample size and increases beyond any bound.

Remark 4. The ML estimation problem admits a population/infinite-sample ver-
sion. Here the maximization of the likelihood function is replaced by minimiza-
tion of the Kullback-Leibler divergence between a given data-generating distribu-
tion and the distributions in the model. The question of whether this population
problem is subject to local but not global maxima was raised in [18]—in the
context of Gaussian mixtures with known and equal variances. It is known that
the Kullback-Leibler divergence for such Gaussian mixtures is not an analytic
function [21, §7.8]. Readers of Japanese should be able to find details in [22].

As previously mentioned, Theorem 1 shows that likelihood inference is in
a fundamental way more complicated than the classical method of moments
[15]. The latter involves only the solution of polynomial equation systems. This
was recognized also in the computer science literature on learning Gaussian
mixtures [3,10,14], where most of the recent progress is based on variants of the
method of moments rather than likelihood inference. We refer to [1] for a study
of the method of moments from an algebraic perspective. Section 3 in that paper
illustrates the behavior of Pearson’s method for the sample used in Theorem 3.
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