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Abstract. Given a bipartite graph G = (AU B, E) with strict preference lists and e* € E, we ask if there exists a
popular matching in G that contains the edge e*. We call this the popular edge problem. A matching M is popular if
there is no matching M’ such that the vertices that prefer M’ to M outnumber those that prefer M to M’. It is known
that every stable matching is popular; however G may have no stable matching with the edge ¢* in it. In this paper
we identify another natural subclass of popular matchings called “dominant matchings” and show that if there is
a popular matching that contains the edge ¢, then there is either a stable matching that contains ¢* or a dominant
matching that contains ¢*. This allows us to design a linear time algorithm for the popular edge problem. We also
use dominant matchings to efficiently test if every popular matching in G is stable or not.

1 Introduction

We are given a bipartite graph G = (A UB,E) where each vertex has a strict preference list ranking its
neighbors and we are also given ¢* € E. Our goal is to compute a matching that contains the edge e*, in
other words, e¢* is an essential edge to be included in our matching — however, our matching also has to be
globally acceptable, in other words, M has to popular (defined below).

We say a vertex u € AU B prefers matching M to matching M’ if either u is matched in M and unmatched
in M’ or u is matched in both and in u’s preference list, M(u), i.e., u’s partner in M, is ranked better than
M'(u), i.e., u’s partner in M’. For matchings M and M’ in G, let (M, M’) be the number of vertices that
prefer M to M'. If ¢(M', M) > &(M,M’) then we say M’ is more popular than M.

Definition 1. A matching M is popular if there is no matching that is more popular than M; in other words,
O(M,M") > ¢(M',M) for all matchings M" in G.

Thus in an election between any pair of matchings, where each vertex casts a vote for the matching that
it prefers, a popular matching never loses. Popular matchings always exist in G since every stable matching
is popular [4]. Recall that a matching M is stable if it has no blocking pair, i.e., no pair (a,b) such that both
a and b prefer each other to their respective assignments in M. It is known that every stable matching is a
minimum size popular matching [6]], thus the notion of popularity is a relaxation of stability.

Our problem is to determine if there exists a popular matching in G that contains the essential edge e*.
We call this the popular edge problem. It is easy to check if there exists a stable matching that contains e*.
However as stability is stricter than popularity, it may be the case that there is no stable matching that
contains e¢* while there is a popular matching that contains ¢*. Fig.[l|has such an example.
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Fig. 1. The top-choice of both a; and of a, is b;; the second choice of a; is by. The preference lists of the b;’s are symmetric.
There is no edge between ay and b;. The matching S = {(a;,b;)} is the only stable matching here, while there is another popular
matching M = {(ay,b;), (az,b1)}. Thus every edge is a popular edge here while there is only one stable edge (ay,b;).

It is a theoretically interesting problem to identify those edges that can occur in a popular matching and
those that cannot. This solution is also applicable in a setting where A is a set of applicants and B is a set



of posts, each applicant seeks to be matched to an adjacent post and vice versa; also vertices have strict
preferences over their neighbors. The central authority desires to pair applicant a and post b to each other.
However if the resulting matching M should lose an election where vertices cast votes, then M is unpopular
and not globally stable; the central authority wants to avoid such a situation. Thus what is sought here is a
matching that satisfies both these conditions: (1) (a,b) € M and (2) M is popular.

A first attempt to solve this problem may be to ask for a stable matching S in the subgraph obtained
by deleting the endpoints of ¢* from G and add e* to S. However SU {e*} need not be popular. Fig.
has a simple example where e¢* = (a2,b;) and the subgraph induced by a;,b;,as, b3 has a unique stable
matching {(a;,b1)}. However {(a1,b1), (a2,b2)} is not popular in G as {(ai,b3),(az,b1)} is more popular.
Note that there is a popular matching M* = {(a1,b3), (a2,b2), (a3,b1)} that contains e*.
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Fig. 2. Here we have e* = (a3, b;). The top choice for a; and a; is by while b, is their second choice; b;’s top choice is a3, second
choice is ay, and third choice is a3. The vertices by, b3, and a3 have ap,a, and b; as their only neighbors.

It would indeed be surprising if it was the rule that for every edge e*, there is always a popular matching
which can be decomposed as {e¢* } U a stable matching on E \ {¢* }, as popularity is a far more flexible notion
than stability; for instance, the set of vertices matched in every stable matching in G is the same [3] while
there can be a large variation (up to a factor of 2) in the sizes of popular matchings in G. We need a larger
palette than the set of stable matchings to solve the popular edge problem. We now identify another natural
subclass of popular matchings called dominant popular matchings or dominant matchings, in short. In order
to define dominant matchings, we use the relation “defeats”, defined as follows.

Definition 2. Matching M defeats matching M’ if either of these two conditions holds:

(i) M is more popular than M, i.e., (M, M") > 6(M',M);
(ii) O(M,M') = o(M', M) and |M| > |M'|.

When M and M’ gather the same number of votes in the election between M and M’, instead of declaring
these matchings as incomparable (as done under the “more popular than” relation), it seems natural to regard
the larger of M, M’ as the winner of the election. Condition (ii) of the defeats relation exactly captures this.
We define dominant matchings to be those popular matchings that are never defeated (as per Definition [2)).

Definition 3. Matching M is dominant if there is no matching that defeats it; in other words, M is popular
and for any matching M, if |M'| > |M|, then M is more popular than M’

Note that a dominant matching has to be a maximum size popular matching since smaller-sized popular
matchings get defeated by a popular matching of maximum size. However not every maximum size popular
matching is a dominant matching, as the example (from [6]) in Fig. [3]demonstrates.

Analogous to Definition [3] we can define the following subclass of popular matchings: those popular
matchings M such that for any matching M', if |M'| < |M| then M is more popular than M'. 1t is easy to show
that this class of matchings is exactly the set of stable matchings. That is, we can show that any popular
matching M that is more popular than every smaller-sized matching is a stable matching and conversely,
every stable matching is more popular than any smaller-sized matching. Thus dominant matchings are to the
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Fig. 3. The vertex b is the top choice for all g;’s and b, is the second choice for a; and a; while b3 is the third choice for a;.
The preference lists of the b;’s are symmetric. There are 2 maximum size popular matchings here: M} = {(ay,by),(az,b2)} and
M, ={(ay,b2),(az,b1)}. The matching M; is not dominant since the larger matching M3 = {(ay,b3),(a2,b2), (a3,b1)} defeats it.
The matching M, is dominant since M, is more popular than M3.

class of maximum size popular matchings what stable matchings are to the class of minimum size popular
matchings: these are popular matchings that carry the proof of their maximality (similarly, minimality) by
being more popular than every matching of larger (resp., smaller) size.

Our contribution. Theorem[I]is our main result here. This enables us to solve the popular edge problem in
linear time.

Theorem 1. If there exists a popular matching in G = (AUB, E) that contains the edge e*, then there exists
either a stable matching in G that contains e* or a dominant matching in G that contains e*.

(1) To show Theorem (I} we show that any popular matching M can be partitioned as My J M7, where My
is dominant in the subgraph induced by the vertices matched in M and in the subgraph induced by the
remaining vertices, M| is stable. If M contains e*, then e* is either in My or in M;. In the former case,
we show a dominant matching in G that contains e* and in the latter case, we show a stable matching
in G that contains e*.

(i) We also show that every dominant matching in G can be realized as an image (under a simple and
natural mapping) of a stable matching in a new graph G’. This allows us to determine in linear time if
there is a dominant matching in G that contains the edge ¢*. This mapping between stable matchings in
G’ and dominant matchings in G can also be used to find a min-cost dominant matching in G efficiently,
where we assume there is a rational cost function on E.

(iii)) When all popular matchings in G have the same size, it could be the case that every popular matching
in G is also stable. That is, in G we have {popular matchings} = {stable matchings}. We use dominant
matchings to efficiently check if this is the case or not. We show that if there exists an unstable popular
matching in G, then there has to exist an unstable dominant matching in G. This allows us to design an
O(m?) algorithm (where |E| = m) to check if every popular matching in G is also stable.

Related Results. Stable matchings were defined by Gale and Shapley in their landmark paper [2]. The
attention of the community was drawn very early to the characterization of stable edges: edges and sets of
edges that can appear in a stable matching. In the seminal book of Knuth [10], stable edges first appeared
under the term “arranged marriages”. Knuth presented an algorithm to find a stable matching with a given
stable set of edges or report that none exists. This method is a modified version of the Gale-Shapley algorithm
and runs in O(m) time. Gusfield and Irving [5]] provided a similar, simple method for the stable edge problem
with the same running time.

The stable edge problem is a highly restricted case of the min-cost stable matching problem, where a
stable matching that has the minimum edge cost among all stable matchings is sought. With the help of edge
costs, various stable matching problems can be modeled, such as stable matchings with restricted edges [l1]]
or egalitarian stable matchings [8]]. A simple and elegant formulation of the stable matching polytope of



G = (AUB,E) is known [11] and using this, a min-cost stable matching can be computed in polynomial
time via linear programming.

The size of a stable matching in G can be as small as [Mpax | /2, where M,y is a maximum size matching
in G. Relaxing stability to popularity yields larger matchings and it is easy to show that a largest popular
matching has size at least 2|Myax| /3. Efficient algorithms for computing a popular matching of maximum
size were shown in [6/9]. The algorithm in [6] time runs in O(mnyg) time, where no = min(|A|, |B|) and
the algorithm in [9]] runs in linear time. In fact, both these algorithms compute dominant matchings — thus
dominant matchings always exist in a stable marriage instance with strict preference lists. Interestingly, all
the polynomial time algorithms currently known for computing any popular matching in G = (AUB, E)
compute either a stable matching or a dominant matching in G.

Organization of the paper. A characterization of dominant matchings is given in Section [2| In Section
we show a surjective mapping between stable matchings in a larger graph G’ and dominant matchings in G.
Section 4 has our algorithm for the popular edge problem and Section [5| has our algorithm to test if every
popular matching in G is also stable. The Appendix has a brief overview of the maximum size popular
matching algorithms in [6/9].

2 A characterization of dominant matchings

Let M be any matching in G = (AUB, E) and let M (u) denote u’s partner in M, where u € AU B. Label each
edge e = (a,b) in E'\ M by the pair (., B.), where a, = vote,(b,M(a)) and B, = vote,(a,M (b)), i.e., O is
a’s vote for b vs. M(a) and B, is b’s vote for a vs. M(b). The function vote(-,-) is defined below.

Definition 4. For any u € AUB and neighbors x and y of u, define u’s vote between x and y as:

+ ifuprefersxtoy
vote,(x,y) =< — ifu prefersyto x
0 otherwise (i.e., x =y).

If a vertex u is unmatched, then M (u) is undefined and we define vote, (v, M(u)) to be + for all neighbors of
u since every vertex prefers to be matched than be unmatched. Note that if an edge (a,b) is labeled (+,+),
then (a,b) blocks M in the stable matching sense. If an edge (a, b) is labeled (—, —), then both a and b prefer
their respective partners in M to each other. Let Gj; be the subgraph of G obtained by deleting edges that
are labeled (—, —). The following theorem characterizes popular matchings.

Theorem 2 (from [6]). A matching M is popular if and only if the following three conditions are satisfied
in the subgraph Gy;:

(i) There is no alternating cycle with respect to M that contains a (+,+) edge.
(ii) There is no alternating path starting from an unmatched vertex wrt M that contains a (+,+) edge.
(iii) There is no alternating path with respect to M that contains two or more (+,+) edges.

Lemma|I|characterizes those popular matchings that are dominant. The “if” side of Lemmal[I|was shown
in [9]: it was shown that if there is no augmenting path with respect to a popular matching M in Gy, then M
is more popular than all larger matchings, thus M is a maximum size popular matching.

Here we show that the converse holds as well, i.e., if M is a popular matching such that M is more
popular than all larger matchings, in other words, if M is a dominant matching, then there is no augmenting
path with respect to M in Gy,.



Lemma 1. A popular matching M is dominant if and only if there is no augmenting path wrt M in Gyy.

Proof. Let M be a popular matching in G. Suppose there is an augmenting path p with respect to M in Gy,.
Let us use M ~ M’ to denote both matchings getting the same number of votes in an election between them,
ie., O(M,M') = o(M',M). We will now show that M & p ~ M. Since M & p is a larger matching than M, if
M @ p = M, then it means that M @ p defeats M, thus M is not dominant.

Consider M @ p versus M: every vertex that does not belong to the path p gets the same partner in
both these matchings. Hence vertices outside p are indifferent between these two matchings. Consider the
vertices on p. In the first place, there is no edge in p \ M that is labeled (+,+), otherwise that would
contradict condition (ii) of Theorem [2| Since the path p belongs to Gy, no edge is labeled (—, —) either.
Hence every edge in p \ M is labeled either (4, —) or (—,+). Note that the + signs count the number of
votes for M @ p while the — signs count the number of votes for M. Thus the number of votes for M & p
equals the number of votes for M on vertices of p, and thus in the entire graph G. Hence M & p ~ M.

Now we show the other direction: if there is no augmenting path with respect to a popular matching
M in Gy then M is dominant. Let M’ be a larger matching. Consider M & M’ in G: this is a collection of
alternating paths and alternating cycles and since |M’| > |M|, there is at least one augmenting path with
respect to M here. Call this path p, running from vertex u to vertex v. Let us count the number of votes for
M versus M’ among the vertices of p.

Fig. 4. The u-v augmenting path p in G where the bold edges are in M; at least one edge here (say, (x,y)) is labeled (—,—).

No edge in p is labeled (+,+) as that would contradict condition (ii) of Theorem [2} thus all the edges
of M' in p are labeled (—,+), (4, —), or (—,—). Since p does not exist in Gy, there is at least one edge that
is labeled (—, —) here (see Fig. : thus among the vertices of p, M gets more votes than M’ (recall that +’s
are votes for M’ and —’s are votes for M). Thus M is more popular than M’ among the vertices of p.

By the popularity of M, we know that M gets at least as many votes as M’ over all other paths and cycles
in M @& M’; this is because if p is an alternating path/cycle in M & M’ such that the number of vertices on
p that prefer M’ to M is more than the number that prefer M to M’, then M & p is more popular than M, a
contradiction to the popularity of M. Thus adding up over all the vertices in G, it follows that ¢(M,M’) >
¢&(M',M). Hence M is more popular than any larger matching and so M is a dominant matching. O

Corollary |1|is a characterization of dominant matchings. This follows immediately from Lemma 1| and
Theorem

Corollary 1. Matching M is a dominant matching if and only if M satisfies conditions (i)-(iii) of Theorem
and condition (iv): there is no augmenting path wrt M in Gy.

3 The set of dominant matchings

In this section we show a surjective mapping from the set of stable matchings in a new instance G’ =
(A"UB',E") to the set of dominant matchings in G = (AUB, E). It will be convenient to refer to vertices in
A and A" as men and vertices in B and B’ as women. The construction of G’ = (A’UB',E") is as follows.



Corresponding to every man a € A, there will be two men ag and a; in A’ and one woman d(a) in B'. The
vertex d(a) will be referred to as the dummy woman corresponding to a. Corresponding to every woman
b € B, there will be exactly one woman in B’ — for the sake of simplicity, we will use b to refer to this woman
as well. Thus B = BUd(A), where d(A) = {d(a) : a € A} is the set of dummy women.

Regarding the other side of the graph, A’ = AgUA |, where A; = {a; : a € A} for i = 0, 1, and vertices in
A are called level O vertices, while vertices in A; are called level 1 vertices.

We now describe the edge set E’ of G'. For each a € A, the vertex d(a) has exactly two neighbors:
these are ag and a; and d(a)’s preference order is ag followed by a;. The dummy woman d(a) is a;’s most
preferred neighbor and ay’s least preferred neighbor.

— The preference list of g is all the neighbors of a (in a’s preference order) followed by d(a).
— The preference list of a; is d(a) followed by the neighbors of a (in a’s preference order) in G.

For any b € B, its preference list in G’ is level 1 neighbors in the same order of preference as in G
followed by level O neighbors in the same order of preference as in G. For instance, if b’s preference list in
G is a followed by @', then b’s preference list in G is top-choice ay, then a’l, and then ag, and the last-choice
is af,. We show an example in Fig.

=

b
] — 1
1 R
|
—2—1 \/2/

a b

2

- —e

~e d(d)

Fig. 5. The graph G’ on the right corresponding to G on the left. We used blue to color edges in (A} x B) U (Ao x d(a)) and orange
to color edges in (A9 X B)U (A} x d(a)).

We now define the mapping 7T : {stable matchings in G’} — {dominant matchings in G}. Let M’ be any
stable matching in G.

— T(M') is the set of edges obtained by deleting all edges involving vertices in d(A) (i.e., dummy women)
from M’ and replacing every edge (a;,b) € M', where b € B and i € {0, 1}, by the edge (a,b).

It is easy to see that 7(M’) is a valid matching in G. This is because M’ has to match d(a), for every
a € A, since d(a) is the top-choice for a;. Thus for each a € A, one of ag,a; has to be matched to d(a).
Hence at most one of ag,a; is matched to a non-dummy woman b and thus M = T'(M’) is a matching in G.

The proof that M is a dominant matching in G. This proof is similar to the proof of correctness of the
maximum size popular matching algorithm in [9]]. As described in Section[2] in the graph G, label each edge
e = (a,b) in E \ M by the pair (o, B,), where o, € {+,—} is a’s vote for b vs. M(a) and B, € {+,—} is b’s
vote for a vs. M(b).



— It will be useful to assign a value in {0, 1} to eacha € A. If M'(a;) = d(a), then f(a) =0else f(a) = 1.
So if a € A is unmatched in M then (ag,d(a)) € M’ and so f(a) = 1.

— We will now define f-values for vertices in B as well. If M’ (b) € A; then f(b) = 1, else f(b) = 0. So if
b € B is unmatched in M’ (and thus in M) then f(b) = 0.

Claim 1 The following statements hold on the edge labels:

(1) If the edge (a,b) is labeled (+,+), then f(a) =0 and f(b) = 1.
(2) If (y,2) is an edge such that f(y) =1 and f(z) = 0, then (y,z) has to be labeled (—,—).

Proof. We show part (1) first. The edge (a,b) is labeled (+,+). Let M(a) =z and M(b) = y. Thus in a’s
preference list, b ranks better than z and similarly, in b’s preference list, a ranks better than y. We know from
the definition of our function T that M’(z) € {ao,a;:} and M'(b) € {yo,y1}. So there are 4 possibilities: M’
contains (1) (ao,z) and (yo,b), (2) (a1,z) and (yo,b), (3) (ai,z) and (y1,b), (4) (ao,z) and (y1,b).

We know that M’ has no blocking pairs in G’ since it is a stable matching. In (1), the pair (ag,b) blocks
M’, and in (2) and (3), the pair (a;,b) blocks M’. Thus the only possibility is (4). That is, M’ (b) € A; and
M'(a)) = d(a). In other words, f(a) =0 and f(b) = 1.

We now show part (2) of Claim [1} We are given that f(y) = 1, so M'(yo) = d(y). We know that d(y) is
yo’s last choice and yy is adjacent to z, thus yyp must have been rejected by z. Since we are given that f(z) =0,
i.e., M'(z) € Ay, it follows that M’(z) = uo, where u ranks better than y in z’s preference list in G.

In the graph G’, the vertex z prefers y; to ug since it prefers any level 1 neighbor to a level 0 neighbor.
Thus y; is matched to a neighbor that is ranked better than z in y’s preference list, i.e., M'(y;) = v, where y
prefers v to z. We have the edges (y,v) and (u,z) in M, thus both y and z prefer their respective partners in
M to each other. Hence the edge (y,z) has to be labeled (—, —). O

Lemmas [2] and [3] shown below, along with Lemma[I] imply that M is a dominant matching in G.
Lemma 2. There is no augmenting path with respect to M in Gy;.

Proof. Let a € A and b € B be unmatched in M. Then f(a) = 1 and f(b) = 0. If there is an augmenting
path p = (a,---,b) with respect to M in Gy, then in p we move from a man whose f-value is 1 to a woman
whose f-value is 0. Thus there have to be two consecutive vertices y € A and z € B on p such that f(y) =1
and f(z) = 0. However part (2) of Claim[I]tells us that such an edge (y,z) has to be labeled (—,—). In other
words, Gy does not contain the edge (y,z) or equivalently, there is no augmenting path p in Gy,. O

Lemma 3. M is a popular matching in G.

Proof. We will show that M satisfies conditions (i)-(iii) of Theorem [2}

Condition (i). Consider any alternating cycle C with respect to M in Gy and let a be any vertex in C: if
f(a) = 0 then its partner b = M(a) also satisfies f(b) = 0 and part (2) of Claim [I|tells us that there is no
edge in Gy between b and any o’ such that f(a’) = 1. Similarly, if f(a) = 1 then its partner b = M(a) also
satisfies f(b) = 1 and though there can be an edge (y,b) labeled (+,+) incident on b, part (1) of Claim 1]
tells us that f(y) = 0 and thus there is no way the cycle C can return to a, whose f-value is 1. Hence if Gy
contains an alternating cycle C with respect to M, then all vertices in C have the same f-value. Since there
can be no edge labeled (+,+) between 2 vertices whose f-value is the same (by part (1) of Claim , it
follows that C has no edge labeled (+,+).

Condition (ii). Consider any alternating path p with respect to M in Gy, and let the starting vertex in p
be a € A. Since a is unmatched in M, we have f(a) = 1 and we know from part (2) of Claim[I]that there is



no edge in Gy between such a man and a woman whose f-value is 0. Thus a’s neighbor is p is a woman b’
such that f (') = 1. Since f(b') = 1, its partner a’ = M(b') also satisfies f(a’) = 1 and part (2) of Claim|l]
tells us that there is no edge in Gy between @’ and any b” such that f(b") = 0, thus all vertices of p have
f-value 1 and thus there is no edge labeled (+,+) in p.

Suppose the starting vertex in p is b € B. Since b is unmatched in M, we have f(b) = 0 and we again
know from part (2) of Claim I]that there is no edge in Gj; between such a woman and a man whose f-value
is 1. Thus b’s neighbor in p is a woman a’ such that f(a’) = 0. Since f(a’) = 0, its partner b’ = M(d') also
satisfies f(b') = 0 and part (2) of Claim |1|tells us that there is no edge in Gy, between b’ and any a” such
that f(a”) = 1, thus all vertices of p have f-value 0 and thus there is no edge labeled (+,+) in p.

Condition (iii). Consider any alternating path p with respect to M in Gy;. We can assume that the starting
vertex in p is matched in M (as condition (ii) has dealt with the case when this vertex is unmatched).
Suppose the starting vertex is a € A. If f(a) = 0 then its partner b = M(a) also satisfies f(b) = 0 and part (2)
of Claimtells us that there is no edge in Gy between b and any &’ such that f(a") = 1, thus all vertices of p
have f-value 0 and thus there is no edge labeled (+,+) in p. If f(a) = 1 then after traversing some vertices
whose f-value is 1, we can encounter an edge (y,z) that is labeled (+,+) where f(z) =1 and f(y) = 0.
However once we reach y, we get stuck in vertices whose f-value is 0 and thus we can see no more edges
labeled (+,+).

Suppose the starting vertex in p is b € B. If f(b) = 1 then its partner a = M(b) also satisfies f(a) = 1
and part (2) of Claim [1| tells us that there is no edge in Gy, between a and any &' such that f(b') = 0,
thus all vertices of p have f-value 1 and thus there is no edge labeled (+,+) in p. If f(b) = O then after
traversing some vertices whose f-value is 0, we can encounter an edge (y,z) labeled (+,+) where f(y) =0
and f(z) = 1. However once we reach z, we get stuck in vertices whose f-value is 1 and thus we can see no
more edges labeled (+,+). Thus in all cases there is at most one edge labeled (+,+) in p. O

3.1 T issurjective

We now show that corresponding to any dominant matching M in G, there is a stable matching M’ in G’
such that T(M') = M. Given a dominant matching M in G, we first label each edge ¢ = (a,b) in E'\ M by
the pair (o, B.) where o, is a’s vote for b vs. M(a) and B, is b’s vote for a vs. M(b). We will work in
G, the subgraph of G obtained by deleting all edges labeled (—, —). We now construct sets Ag,A; C A and
By, B1 C B as described in the algorithm below. These sets will be useful in constructing the matching M.

0. Initialize Ay = B; =0, A; = {unmatched men in M}, and By = {unmatched women in M}.
1. For every edge (y,z) € M that is labeled (+,+) do:
- letAg=AgU{y}, Bo=BoU{M(y)}, By =B1U{z}, and A} = A U{M(z)}.
2. While there exists a matched man a ¢ A that is adjacent in Gy, to a woman in By do:
- Ag=ApU {a} and By = By U {M(a)}
3. While there exists a matched woman b ¢ B; that is adjacent in Gy, to a man in A; do:
- Bi=B1U {b} andA; =AU {M(b)}

All unmatched men are in A; and all unmatched women are in By. For every edge (y,z) that is labeled
(4+,4), we add y and its partner to Ay and By, respectively while z and its partner are added to By and A1,
respectively. For any man q, if a is adjacent to a vertex in By and a is not in A, then a and its partner get
added to Ag and By, respectively. Similarly, for any woman b, if b is adjacent to a vertex in A} and b is not
in By, then b and its partner get added to By and Ay, respectively.

The following observations are easy to see (refer to Fig.[6). Every a € A; has an even length alternating
path in Gy, to either



(1) a man unmatched in M (by Step 0 and Step 3) or
(2) aman M(z) where z has an edge labeled (+,+) incident on it (by Step 1 and Step 3).

Similarly, every a € Ag has an odd length alternating path in Gy, to either

(3) a woman unmatched in M (by Step 0 and Step 2) or
(4) a woman M (y) where y has an edge labeled (+,+) incident on it (by Step 1 and Step 2).

A B,
- - _ _ A B,
~~‘~-_ [ ] ——=0
e— "= _--"
.—\\;‘. .——”— —/Z
.~——.
_____ [ yé—_,o
[ E— Y -
A ~~-“. Ao o= —.B()
By

Fig. 6. Vertices get added to A; and Ag by alternating paths in Gy from either unmatched vertices or endpoints of edges la-
beled (+,+). The bold black edges are in M and the red edge (y,z) is labeled (4, +) with respect to M.

We show the following lemma here and its proof is based on the characterization of dominant matchings
in terms of conditions (i)-(iv) as given by Corollary |1} We will also use (1)-(4) observed above in our proof.

Lemmad4. AgNnA; =0.

Proof. Case 1. Suppose a satisfies reasons (1) and (3) for its inclusion in A; and in Ay, respectively. So a is
in A] because it is reachable via an even alternating path in Gy, from an unmatched man u; also a is in Ag
because it is reachable via an odd length alternating path in G, from an unmatched woman v. Then there is
an augmenting path (u,...,v) wrt M in Gy, — a contradiction to the fact that M is dominant (by Lemmal|l]).

Case 2. Suppose a satisfies reasons (1) and (4) for its inclusion in A; and in Ay, respectively. So a is in A
because it is reachable via an even alternating path wrt M in Gy, from an unmatched man u; also a is in Ag
because it is reachable via an odd length alternating path in Gy from z, where edge (y,z) is labeled (+,+).
Then there is an alternating path wrt M in Gy from an unmatched man u to the edge (y,z) labeled (+,+)
and this is a contradiction to condition (ii) of popularity.

Case 3. Suppose a satisfies reasons (2) and (3) for its inclusion in A; and in Ay, respectively. This case is
absolutely similar to Case 2. This will cause an alternating path wrt M in Gy from an unmatched woman to
an edge labeled (+,+), a contradiction again to condition (ii) of popularity.

Case 4. Suppose a satisfies reasons (2) and (4) for its inclusion in A and in Ag, respectively. So a is reachable
via an even length alternating path in Gy, from an edge labeled (+,+) and M(a) is also reachable via an even
length alternating path in Gy, from an edge labeled (+,+). If it is the same edge labeled (+,+) that both a
and M (a) are reachable from, then there is an alternating cycle in Gy with a (+,+) edge — a contradiction
to condition (i) of popularity. If these are 2 different edges labeled (+,+), then we have an alternating path
in Gy with two edges labeled (+,+) — a contradiction to condition (iii) of popularity.

These four cases finish the proof that AgNA; = 0. O

We now describe the construction of the matching M’. Initially M’ = 0.



— For each a € Ap: add the edges (ag,M(a)) and (a;,d(a)) to M’.

— For each a € A;: add the edge (ap,d(a)) to M and if a is matched in M then add (a;,M(a)) to M'.

- Fora ¢ (AgUA,): add the edges (ap,M(a)) and (a;,d(a)) to M'.
(Note that the men outside Ao UA | are not reachable from either unmatched vertices or edges labeled
(4, +) via alternating paths in Gy.)

Lemma 5. M’ is a stable matching in G'.

Proof. Suppose M’ is not stable in G’. Then there are edges (u;,v) and (a;,b) in M’ where i, j € {0,1},
such that in the graph G', the vertices v and a; prefer each other to u; and b, respectively. There cannot be a
blocking pair involving a dummy woman, thus the edges (u,v) and (a,b) are in M.

If i = j, then the pair (a,v) blocks M in G. However, from the construction of the sets Ag,A1, By, B1, we
know that all the blocking pairs with respect to M are in Ag X B;. Thus there is no blocking pair in Ag X By
or in A; x By with respect to M and so i # j. Since v prefers a; to u; in G', the only possibility is i = 0
and j = 1. It has to be the case that a prefers v to b, so there is an edge labeled (+,—) between a € A| and
v € By (see Fig.[]).

/7
/7
- ®

Fig. 7. If the vertex a| prefers v to b in G', then a prefers v to b in G; thus the edge (a,v) has to be present in Gy.

So once v got added to By, since a is adjacent in Gy, to a vertex in By, vertex a satisfied Step 2 of our
algorithm to construct the sets Ag,A1,Bp, and B;. So a would have got added to Ag as well, i.e.,a € AgNAj,
a contradiction to Lemma Thus there is no blocking pair with respect to M’ in G'. O

For each a € A, note that exactly one of (ag,d(a)), (aj,d(a)) is in M’. In order to form the set T(M’),
the edges of M’ with women in d(A) are pruned and each edge (a;,b) € M’, where b € Band i € {0,1}, is
replaced by (a,b). It is easy to see that T(M’) = M.

This concludes the proof that every dominant matching in G can be realized as an image under T of
some stable matching in G’. Thus T is surjective.

Our mapping T can also be used to solve the min-cost dominant matching problem in polynomial time.
Here we are given a cost function ¢ : E — Q and the problem is to find a dominant matching in G whose
sum of edge costs is the least. We will use the mapping T established from {stable matchings in G’} to
{dominant matchings in G} to solve the min-cost dominant matching problem in G. It is easy to extend ¢
to the edge set of G'. For each edge (a,b) in G, we will assign c(ag,b) = c(ay,b) = c(a,b) and we will set
c(ag,d(a)) = c(ay,d(a)) = 0. Thus the cost of any stable matching M’ in G’ is the same is the cost of the
dominant matching 7'(M') in G.

Since every dominant matching M in G equals 7' (M") for some stable matching M’ in G/, it follows that
the min-cost dominant matching problem in G is the same as the min-cost stable matching problem in G'.
Since a min-cost stable matching in G’ can be computed in polynomial time, we can conclude Theorem
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Theorem 3. Given a graph G = (AU B, E) with strict preference lists and a cost function ¢ : E — Q, the
problem of computing a min-cost dominant matching can be solved in polynomial time.

4 The popular edge problem

In this section we show a decomposition for any popular matching in terms of a stable matching and a
dominant matching. We use this result to design a linear time algorithm for the popular edge problem. Here
we are given an edge ¢* = (u,v) in G = (AUB,E) and we would like to know if there exists a popular
matching in G that contains e*. We claim the following algorithm solves the above problem.

1. Check if there is a stable matching M,- in G that contains edge e*. If so, then return M,-.
2. Check if there is a dominant matching M. in G that contains edge e*. If so, then return M.
3. Return “there is no popular matching that contains edge ¢* in G”.

Running time of the above algorithm. In step 1 of our algorithm, we have to determine if there exists a stable
matching M, in G that contains e* = (u,v). We modify the Gale-Shapley algorithm so that the woman v
rejects all proposals from anyone worse than u. If the modified Gale-Shapley algorithm produces a matching
M containing e*, then it will be the most men-optimal stable matching containing ¢* in G. Else there is no
stable matching in G that contains ¢*. We refer the reader to [5, Section 2.2.2] for the correctness of the
modified Gale-Shapley algorithm; it is based on the following fact:

— If G admits a stable matching that contains e* = (u,v), then exactly one of (1), (2), (3) occurs in any
stable matching M of G: (1) e* € M, (2) v is matched to a neighbor better than u, (3) u is matched to a
neighbor better than v.

In step 2 of our algorithm for the popular edge problem, we have to determine if there exists a dominant
matching in G that contains e* = (u,v). This is equivalent to checking if there exists a stable matching in G’
that contains either the edge (uo,v) or the edge (u;,v). This can be determined by using the same modified
Gale-Shapley algorithm as given in the previous paragraph. Thus both steps 1 and 2 of our algorithm can be
implemented in O(m) time.

Correctness of the algorithm. Let M be a popular matching in G that contains edge ¢*. We will use M to
show that there is either a stable matching or a dominant matching that contains e*. As before, label each
edge e = (a,b) outside M by the pair of votes (¢, 3.), where @, is a’s vote for b vs. M(a) and B, is b’s vote
for a vs. M(b).

We run the following algorithm now — this is similar to the algorithm in Section [3.1]to build the subsets
Ap,A1 of A and By, B of B, except that all the sets Ag,A1, By, B are initialized to empty sets here.

0. Initialize Ao = A =Bg=B; =0.
1. For every edge (a,b) € M that is labeled (+,+):
— letAg :A()U{a}, By =B, U{b}, A=A U{M(b)}, and By :BQU{M(LZ)}.
2. While there exists a man @’ ¢ Ay that is adjacent in Gy to a woman in By do:
- Ay=ApU{d'} and By = ByU{M(d')}.
3. While there exists a woman b’ ¢ B that is adjacent in Gy, to a man in A; do:
- Bi=B1U {b/} and A; =AU {M(b)}

11



All vertices added to the sets Ag and B are matched in M — otherwise there would be an alternating path
from an unmatched vertex to an edge labeled (+,+) and this contradicts condition (ii) of popularity of M
(see Theorem [2)). Note that every vertex in A; is reachable via an even length alternating path wrt M in Gy
from some man M (b) whose partner b has an edge labeled (+,+) incident on it. Similarly, every vertex in
Ao is reachable via an odd length alternating path wrt M in Gy, from some woman M (a) whose partner a
has an edge labeled (+,+) incident on it. The proof of Case 4 of Lemma shows that AgNA; = 0.

We have B; = M(A;) and By = M(A) (see Fig. [B). All edges labeled (+,+) are in Ag X B (from
our algorithm) and all edges in A} x By have to be labeled (—,—) (otherwise we would contradict either
condition (i) or (iii) of popularity of M).

Let A’ =AygUA; and B = By UB;. Let M be the matching M restricted to A’ U B’. The matching M is
popular on A’ UB'. Suppose not and there is a matching Ny on A’ UB’ that is more popular. Then the matching
NoU (M \ My) is more popular than M, a contradiction to the popularity of M. Since M, matches all vertices
in A’ UB', it follows that M is dominant on A’ UB’.

|
! 1
! }
I ) |
! I
A ! B |
! L J :
! I
L }
! 1
! ( ) I
! |
|
{ Ao } | By !
! I
I J \
! 1
1 .

Fig. 8. My is the matching M restricted to A’ UB’. All unmatched vertices are in (A\A")U (B\ B').

Let My =M\ My and let Y = A\ A’ and Z = B\ B". The matching M, is stable on Y UZ as there is no
edge labeled (+,+) in Y x Z (all such edges are in Ay x B} by Step 1 of our algorithm above).

The subgraph G, contains no edge in A| x Z — otherwise such a woman z € Z should have been in B
(by Step 3 of the algorithm above) and similarly, Gy, contains no edge in Y x By — otherwise such a man
y € Y should have been in Ag (by Step 2 of this algorithm). We will now show Lemmas [6] and [7] These
lemmas prove the correctness of our algorithm.

Lemma 6. If the edge ¢* € My then there exists a dominant matching in G that contains e*.

Proof. Let H be the induced subgraph of G on Y UZ. We will transform the stable matching M; in H to a
dominant matching M7 in H. We do this by computing a stable matching in the graph H' = (Y'UZ' E’) — the
definition of H’ (with respect to H) is analogous to the definition of G’ (with respect to G) in Section 3l So
for each man y € Y, we have two men yg and y; in Y’ and one dummy woman d(y) in Z’; the set Z’ = ZUd(Y)
and the preference lists of the vertices in Y’ UZ’ are exactly as given in Section [2| for the vertices in G'.

We wish to compute a dominant matching in H, equivalently, a stable matching in H'. However we
will not compute a stable matching in H' from scratch since we want to obtain a dominant matching in H
using M. So we compute a stable matching in H' by starting with the following matching in H’ (this is
essentially the same as M1):

— for each edge (y,z) in M, include the edges (yo,z) and (y;,d(y)) in this initial matching and for each
unmatched man y in M}, include the edge (yo,d(y)) in this matching. This is a feasible starting matching
as there is no blocking pair with respect to this matching.
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Now run the Gale-Shapley algorithm in A’ with unmatched men proposing and women disposing. Note
that the starting set of unmatched men is the set of all men y; where y is unmatched in M;. However as
the algorithm progresses, other men could also get unmatched and propose. Let M} be the resulting stable
matching in H'. Let M7 be the dominant matching in H corresponding to the stable matching M| in H'.

Observe that My is untouched by the transformation M| ~» My. Let M* = My UMj. Since e* € M), the
matching M* contains e*.

Claim 2 M* is a dominant matching in G.

The proof of Claim [2]involves some case analysis and is given at the end of this section. Thus there is a
dominant matching M* in G that contains e* and this finishes the proof of Lemma [6] O

Lemma 7. Ifthe edge ¢* € M| then there exists a stable matching in G that contains e*.

Proof. Here will leave M; untouched and transform the dominant matching M, on A’ U B’ to a stable match-
ing M{, on A’ UB’. We do this by demoting all men in A;. That is, we run the stable matching algorithm on
A’ UB' with preference lists as in the original graph G, i.e., men in A; are not promoted over the ones in Ay.
Our starting matching is My restricted to edges in A; X Bj. Since there is no blocking pair with respect to
My in A| X By, this is a feasible starting matching.

Now unmatched men (all those in Ag) propose in decreasing order of preference to the women in B’ and
when a woman receives a better proposal than what she currently has, she discards her current partner and
accepts the new proposal. This may make men in A; single and so they too propose. This is Gale-Shapley
algorithm with the only difference being in our starting matching not being empty but My restricted to the
edges of A; x By. Let M|, be the resulting matching on A’UB'. Let M’ = M{;UM,. This is a matching that
contains the edge ¢* since e¢* € M.

Claim 3 M’ is a stable matching in G.

The proof of Claim |3 again involves some case analysis and is given at the end of this section. Thus
there is a stable matching M’ in G that contains the edge ¢* and this finishes the proof of Lemma O

We have thus shown the correctness of our algorithm. We can now conclude the following theorem.

Theorem 4. Given a stable marriage instance G = (AUB, E) with strict preference lists and an edge ¢* € E,
we can determine in linear time if there exists a popular matching in G that contains e*.

Proof of Claim 2l We need to show that M* = My UM is a dominant matching, where M7 is the dominant
matching in H corresponding to the stable matching M| in H'.
Let ¥; be the set of men y € Y such that (y;,d(y)) € M} and let ¥} be the set of men y € ¥ such that
(vo,d(y)) € M. Let Z; be the set of those women in Z that are matched in M| to men in ¥} and let Zy = Z\ Z;.
The following properties will be useful to us:

(i) If y € Y}, then M7 (y) ranks at least as good as M (y) in y’s preference list. This is because y € ¥; and
note that Y7 is a promoted set when compared to Yy. Thus y; gets at least as good a partner in M7 as in
the men-optimal stable matching in H, which is at least as good as M/ (y), as M is a stable matching
in H.

(ii) If z € Zy, then M (z) ranks at least as good as M, (z) in z’s preference list. This is because in the com-
putation of the stable matching M/, if the vertex z rejects M;(z), then it was upon receiving a better
proposal from a neighbor in ¥, (since z € Zy). Thus z’s final partner in M}, and hence in M}, ranks at
least as good as M| (z) in her preference list.
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Label each edge e = (a,b) in E'\ M* by the pair of votes (o, B.), where 0., is a’s vote for b vs. M*(a)
and B, is b’s vote for a vs. M*(b). We will first show the following claim here.

Claim. Every edge in (A UY;) x (BoUZp) is labeled (—, —) with respect to M*.

We already know that every edge in A; X By is labeled (—, —) with respect to M, and as shown in part (1) of
Claim it is easy to see that every edge in Y} X Z is labeled (—, —) with respect to M. We will now show
that all edges in (¥} x By) U (A} X Zy) are labeled (—, —) with respect to M.

— Consider any edge (y,b) € Y; x By. We know that (y,b) was labeled (—, —) with respect to M. We have
M*(b) = My(b) = M(b). Thus b prefers M*(b) to y. The man y preferred M(y) to b and since y € Y, we
know from (i) above that y ranks Mj (y) at least as good as M; (y) = M(y). Thus the edge (y,b) is labeled
(—,—) with respect to M* as well.

— Consider any edge in (a,z) € A} X Zy. We know that (a,z) was labeled (—,—) with respect to M. We
have M*(a) = My(a) = M(a). Thus a prefers M*(a) to z. The woman z preferred M, (z) to a and we
know from (ii) above that z ranks M7 (z) at least as good as M| (z). Thus the edge (a,z) is labeled (—,—)
with respect to M* as well.

Thus we have shown that every edge in (A} UY;) x (BpUZp) is labeled (—,—). We will now show the
following claim.

Claim. Any edge labeled (+,+) with respect to M* has to be in (A9 UYy) x (B; UZ;).

: BOUZO

Fig. 9. All edges in (A] UY;) x (BoUZp) are labeled (—, —) wrt M* and all edges labeled (+,+) wrt M* are in (AgUYy) x (B1 UZy).

Note that we already know that no edge in A; x B; is labeled (+,+) wrt My and no edge in ¥; X Z; is
labeled (+,+) wrt M}, for i = 0,1. We will now show that no edge in UL_,(A; x Z;) U (¥; x B;) is labeled
(+,+) (see Fig.[9).

(1) Consider any edge in (a,z) € A} x Z;. We know that (a,z) was labeled (—,—) wrt M. Since M*(a) =
My(a) = M(a), the first coordinate in this edge label wrt M* is still —. Thus this edge is not labeled
(+,4) wrt M*.

(2) Consider any edge in (y,b) € Y| X By: there was no edge labeled (+,+) wrt M in Y X Bj.

— Suppose (y,b) was labeled (—,—) or (+,—) wrt M. Since M*(b) = My(b) = M(b), the second coor-
dinate in this edge label with respect to M* is still —. Thus this edge is not labeled (+,+) wrt M*.

— Suppose (y,b) was labeled (—,+) wrt M. Since y € Y}, we know from (i) above that y ranks M (y) at
least as good as M (y). Hence the first coordinate in this edge label wrt M* is still —. Thus this edge is
not labeled (+,4-) wrt M*.
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(3) Consider any edge (y,b) € Yy x Bo: we know that (y,b) was labeled (—,—) wrt M. Since M*(b) =
My(b) = M (D), the second coordinate in this edge label wrt M* is still —. Thus this edge is not labeled
(+,+) wrt M*.

(4) Consider any edge in (a,z) € Ag X Zy: there was no edge labeled (+,+) wrt M in Ag x Z.

— Suppose (a,z) was labeled (—,—) or (—,+) wrt M. Since M*(a) = My(a) = M(a), the first coordinate
in this edge label wrt M* is still —. Thus this edge is not labeled (4, +) wrt M*.

— Suppose (a,z) was labeled (4, —) wrt M. Since z € Zj, we know from (ii) above that z ranks M;(z) at
least as good as M (z). Hence the second coordinate in this edge label wrt M* is still —. Thus this edge
is not labeled (+,+) wrt M*.

Thus any edge labeled (+,+) has to be in (A9 UYp) x (B;UZ;). This fact along with the earlier claim
that all edges in (A; UY;) x (ByUZy) are labeled (—, —), immediately implies that Claim[I|holds here, where
we assign f-values to all vertices in AU B as follows: if a € A; UY) then f(a) = 1 else f(a) = 0; similarly,
if b€ BiUZ, then f(b) =1 else f(b) =0.

Thus if the edge (a,b) is labeled (+,+), then f(a) =0 and f(b) = 1, and if (y,z) is an edge such that
f(y) =1and f(z) =0, then (y,z) has to be labeled (—,—). Lemmas [2| and |3| with M* replacing M follow
now (since all they need is Claim[I)). We can conclude that M* is dominant in G. Thus there is a dominant
matching in G that contains e*. O

Proof of Claim |3 We will now show that M’ = M{; UM, is a stable matching. We already know that there
is no edge labeled (+,+) in A’ x B’ with respect to M, and there is no edge labeled (+,+) in ¥ x Z with
respect to M. Now we need to show that there is no edge labeled (+,+) eitherin A’ x Zorin ¥ x B'.

Label each edge ¢ = (a,b) in E \ M’ by the pair of votes (., .), where o is a’s vote for b vs. M'(a)
and B, is b’s vote for a vs. M'(b). We will first show that there is no edge labeled (+,+) in A’ X Z, i.e., in
(AgUA;) x Z.

(1) Consider any (a,z) € A x Z: this edge was labeled (—,—) wrt M. Since M'(z) = M,(z) = M(z), the
second coordinate of the label of this edge wrt M’ is —. Thus this edge cannot be labeled (+,+) wrt M'.
(2) Consider any (a,z) € Ag x Z: there was no edge labeled (+,+) wrt M in A’ X Z.
— Suppose (a,z) was labeled (+,—) or (—,—) wrt M. Since M'(z) = M,(z) = M(z), the second coordi-
nate of the label of this edge wrt M’ is —.
— Suppose (a,z) was labeled (—,+). Since a € A, his neighbor M{(a) is ranked at least as good as
My (a) in his preference list. This is because women in By are unmatched in our starting matching and
no woman b € By prefers any neighbor in A; to My(b) (all edges in A} X By are labeled (—, —) wrt My).
Thus in our algorithm that computes M), a will get accepted either by Mo (a) or a better neighbor. Hence
the first coordinate of this edge label wrt M is still —.

We will now show that there is no edge labeled (+,+) with respectto M’ inY x B',i.e.,in Y x (BoUBy).

(3) Consider any (y,b) € Y x By: the edge (y,b) was labeled (—,—) wrt M. Since M'(y) = M,(y) = M(y),
the first coordinate of the label of this edge wrt M’ is —. Thus this edge cannot be labeled (+,+) wrt M’
(4) Consider any (y,b) € Y x Bj: there was no edge labeled (+,+) wrt M in Y x B’
— Suppose (y,b) was labeled (—,+) or (—,—) wrt M. Since M'(y) = M;(y) = M(y), the first coordinate
of the label of this edge wrt M’ is —.
— Suppose (y,b) was labeled (+,—). Since b € By, her neighbor M(,(b) is ranked at least as good as
My (D) in her preference list. This is because our starting matching matched b to My(b) and b would
reject Mo(b) only upon receiving a better proposal. Thus the second coordinate of the label of this edge
with respect to M’ is —.
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This completes the proof that there is no edge labeled (+,+) with respect to M’ in G. In other words,
M’ is a stable matching in G. 0

5 Finding an unstable popular matching

We are given G = (AUB, E) with strict preference lists and we would like to know if every popular matching
in G is also stable. In order to answer this question, we could compute a dominant matching D and a stable
matching S in G. If |[D| > |S|, then it is obviously the case that not every popular matching in G is stable.
However it could be the case that D is stable (and so |D| = |S]).

We now show an efficient algorithm to check if {popular matchings} = {stable matchings} or not in G.
Note that in the latter case, we have {stable matchings} C {popular matchings} in G.

Let G admit an unstable popular matching M. We know that M can be partitioned into My W M1, as
described in Section@ Here M) is a dominant matching on A’UB’ and M| is stable on Y UZ, where Y = A\ A’
and Z = B\ B’ (refer to Fig.[8). Since M is unstable, there is an edge (a,b) that blocks M. Since there is
no blocking pair involving on any vertex in ¥ UZ, it has to be the case that a € A" and b € B’ (in particular,
a€Apand b € By).

Run the transformation M; ~» M7} performed in the proof of Lemma @ Claim [2] tells us that M* =
My UM; is a dominant matching. The edge (a, b) is a blocking pair to M* since M*(a) = My (a) and M*(b) =
My(b), so a and b prefer each other to their respective partners in M*. Thus M* is an unstable dominant
matching and Lemma [§] follows.

Lemma 8. If G admits an unstable popular matching then G admits an unstable dominant matching.

Hence in order to answer the question of whether every popular matching in G is stable or not, we need to
decide if there exists a dominant matching M in G with a blocking pair. We will use the mapping 7 : {stable
matchings in G’} — {dominant matchings in G} defined in Section 3| here. Our task is to determine if there
exists a stable matching in G’ that includes a pair of edges (ag,v) and (u;,b) such that a and b prefer each
other to v and u, respectively, in G. It is easy to decide in O(m?) time whether such a stable matching exists
ornotin G'.

— For every pair of edges ¢; = (a,v) and e, = (u,b) in G such that a and b prefer each other to v and
u, respectively: determine if there is a stable matching in G’ that contains the pair of edges (ao,v)
and (u1,b).

An algorithm to construct a stable matching that contains a pair of edges (if such a matching exists) is
similar to the algorithm described earlier to construct a stable matching that contains a single edge e. In the
graph G’, we modify Gale-Shapley algorithm so that b rejects proposals from all neighbors ranked worse
than u; and v rejects all proposals from neighbors ranked worse than ay.

If the resulting algorithm returns a stable matching that contains the edges (ao,v) and (u;,b), then we
have the desired matching; else G’ has no stable matching that contains this particular pair of edges. In order
to determine if there exists an unstable dominant matching, we may need to go through all pairs of edges
(e1,e2) € E X E. Since we can determine in linear time if there exists a stable matching in G’ with any
particular pair of edges, the entire running time of this algorithm is O(m?), where m = |E|.

A faster algorithm. Tt is easy to improve the running time to O(m?). For each edge (a,b) € E we check for
the following:
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(*) a stable matching in G’ such that (1) ag is matched to a neighbor that is ranked worse than b, and (2) b
is matched to a neighbor u#; where u is ranked worse than a in b’s list.

We modify the Gale-Shapley algorithm in G’ so that (1) b rejects all offers from level 0 neighbors, i.e.,
b accepts proposals only from level 1 neighbors, and (2) every neighbor of ag that is ranked better than b
rejects proposals from ay.

Suppose (*) holds. Then this modified Gale-Shapley algorithm returns among all such stable matchings,
the most men-optimal and women-pessimal one [3]. Thus among all stable matchings that match ap to a
neighbor ranked worse than b and the woman b to a level 1 neighbor, the matching returned by the above
algorithm matches b to its least preferred neighbor and ag to its most preferred neighbor.

Hence if the modified Gale-Shapley algorithm returns a matching that is (i) unstable or (ii) matches ag
to d(ap) or (iii) matches b to a neighbor better than a;, then there is no dominant matching M in G such that
the pair (a,b) blocks M. Else we have the desired stable matching in G, call this matching M’.

The matching T'(M’) will be a dominant matching in G where the pair (a,b) blocks T (M"). Since we
may need to go through all edges in E and the time taken for any edge (a,b) is O(m), the entire running
time of this algorithm is O(m?). We have thus shown the following theorem.

Theorem 5. Given G = (AUB,E) where every vertex has a strict ranking over its neighbors, we can decide
in O(m?) time whether every popular matching in G is stable or not; if not, we can return an unstable
popular matching.

Conclusions and Open problems. We considered the popular edge problem in a stable marriage instance
G = (AUB,E) with strict preference lists and showed a linear time algorithm for this problem. A natural
extension is that we are given k edges ey, ..., ek, for k > 2, and we would like to know if there exists a popular
matching that contains all these k edges. Another open problem is to efficiently find among all popular
matchings that contain a particular edge e¢*, one of largest size. There are no polynomial time algorithms
currently known to construct a popular matching in G that is neither stable nor dominant.

The first polynomial time algorithm for the stable matching problem in general graphs (not necessarily
bipartite) was given by Irving [[7]. On the other hand, the complexity of the popular matching problem in
general graphs is open. Is there a polynomial time algorithm for the dominant matching problem in G?

Acknowledgment. Thanks to Chien-Chung Huang for useful discussions which led to the definition of dom-
inant matchings.
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Appendix: An overview of the maximum size popular matching algorithms in [6/9]. Theorem [2](from
[6]) stated in Section 2] showed conditions (i)-(iii) as necessary and sufficient conditions for a matching to
be popular in G = (AUB, E). It was also observed in [6] that condition (iv): there is no augmenting path
with respect to M in Gy was a sufficient condition for a popular matching to be a maximum size popular
matching.

The goal was to construct a matching M that satisfied conditions (i)-(iv). The algorithm in [6] computed
appropriate subsets L and R of AU B and showed that running Gale-Shapley algorithm with vertices of L
proposing and vertices of R disposing resulted in a matching that obeyed conditions (i)-(iv). Constructing
these sets L and R took O(ny) iterations, where nyp = min(|A|,|B|); each iteration involved two invocations
of the Gale-Shapley algorithm. Thus the running time of this algorithm was O(mny).

A simpler and more efficient algorithm for constructing a matching that satisfied conditions (i)-(iv) was
given in [9]]. This algorithm worked with a graph G = (AU B, E) which is quite similar to the graph G’ used
in Section [3| except that there were no dummy women in G. The set A had two copies ag and a; of each
a € A and at most one of ag,a; was active at any point in time. Every b € B preferred subscript 1 neighbors
to subscript 0 neighbors (within subscript i neighbors, it was b’s original order of preference).

The algorithm here was ‘“active men propose and women dispose”. To begin with, only the men in
{ap : a € A} were active but when a man ag got rejected by all his neighbors, he became inactive and his
counterpart a; became active. It was shown that the matching returned satisfied conditions (i)-(iv). This was
a linear time algorithm for computing a maximum size popular matching in G = (AUB, E).
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