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Abstract

For the one dimensional infinite group relaxation, we construct a sequence of extreme
valid functions that are piecewise linear and such that for every natural number k ≥ 2,
there is a function in the sequence with k slopes. This settles an open question in this
area regarding a universal bound on the number of slopes for extreme functions. The
function which is the pointwise limit of this sequence is an extreme valid function that is
continuous and has an infinite number of slopes. This provides a new and more refined
counterexample to an old conjecture of Gomory and Johnson stating that all extreme
functions are piecewise linear. These constructions are extended to obtain functions for
the higher dimensional group problems via the sequential-merge operation of Dey and
Richard.

1 Introduction

Let b ∈ Rn \ Zn. The infinite group relaxation Ib is the set of functions y : Rn → Z+ having
finite support (that is, {r ∈ Rn : y(r) > 0} is a finite set) satisfying

∑

r∈Rn

ry(r) ∈ b+ Zn. (1.1)

A function π : Rn → R+ is valid for Ib if

∑

r∈Rn

π(r)y(r) ≥ 1, for every y ∈ Rb(R
n,Zn). (1.2)

The set Ib has been referred to by multiple names in the literature, see, e.g., [4].
Valid functions for the infinite group relaxation were first introduced by Gomory and

Johnson [11, 12] as means to obtain cutting planes for mixed-integer programs. This idea
has recently culminated in the study of cut-generating functions which has become one of the
central aspects of modern cutting plane theory. The surveys of Basu, Hildebrand, Köppe [4, 5]
and Basu, Conforti, Di Summa [2] provide a comprehensive introduction to the subject and
survey the recent advances.
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The most well known valid function is the Gomory mixed-integer (GMI) function, which
is a valid function for n = 1. The GMI is defined as follows:

φ(x) =















1
b
x, 0 ≤ x < b
1

1−b −
(

1
1−b

)

x, b ≤ x < 1

φ(x− j), x ∈ [j, j + 1), j ∈ Z \ {0} .

(1.3)

A valid function π is minimal if π = π′ for every valid function π′ such that π′ ≤ π. The
motivation for this definition is the following. Given valid functions π and π′, we say that π′

dominates π if for every function y : Rn → Z+ with finite support satisfying the inequality
∑

r∈Rn π(r)y(r) < 1, the function y also satisfies the inequality
∑

r∈Rn π′(r)y(r) < 1. Observe
that if π′ dominates π, then π is redundant for describing Ib. Furthermore, if π′ ≤ π, then π′

dominates π. Thus, if a valid function is not minimal, then it is redundant for describing Ib.
A function θ : Rn → R is subadditive if θ(x) + θ(y) ≥ θ(x+ y) for all x, y ∈ Rn. θ satisfies

the symmetry condition if θ(x) + θ(b − x) = 1 for all x ∈ Rn. Finally, θ is periodic modulo
Zn if θ(x) = θ(x+ z) for all x ∈ Rn and z ∈ Zn.

Theorem 1.1 (Gomory and Johnson [11]). A function π : Rn → R+ is a minimal valid
function for Ib if and only if π(z) = 0 for all z ∈ Zn, π is subadditive, and π satisfies the
symmetry condition. (These conditions imply that π is periodic modulo Zn and π(b) = 1.)

It is easy to check that the Gomory mixed-integer function defined above is subadditive
and satisfies the symmetry condition. Therefore, by the above theorem, it is a minimal
function.

Minimal functions are the ones that are not dominated by any other function. However
a minimal function may be implied by the convex combinations of other valid functions.
Gomory and Johnson define a valid function π to be extreme if π = π1 = π2 for every pair
of valid functions π1, π2 such that π = π1+π2

2 . If π is a valid function which is extreme,
then π is easily seen to be minimal. Therefore extremality is a stronger requirement. An
even more stringent definition is that of a facet. For any valid function π, define P (π) :=
{y ∈ Rb(R

n,Zn) :
∑

r∈Rn π(r)y(r) = 1}. A valid function π is a facet if P (π) ⊆ P (π′)
implies π = π′ for all valid functions π′. It can be verified that every facet is extreme [6,
Lemma 1.3]. It was recently shown that continuous piecewise linear extreme functions are
also facets; however, there exist discontinuous piecewise linear extreme functions which are
not facets [18].

We will need a formal notion of piecewise linear functions which we introduce now. A
regular polyhedral complex in Rn is a collection of polyhedra Pj , j ∈ J such that three
conditions are satisfied: 1) Rn =

⋃

j∈J Pj , 2) for any i, j ∈ J , Pi ∩ Pj is a common face of Pi
and Pj and also belongs to the collection, and 3) any bounded subset of Rn intersects only
finitely many polyhedra from the collection. We say a function θ : Rn → R is piecewise linear
if there is a regular polyhedral complex in Rn such that θ is affine linear over the interior
of each polyhedron in the complex. Note this definition allows for discontinuous piecewise
linear functions. For a natural number k, we say that a piecewise linear function has k slopes
if it has k distinct values for the gradient, where it exists.
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Theorem 1.2 (Gomory and Johnson [11]). Let π : R → R+ be a minimal valid function
which is continuous, piecewise linear and has only 2 slopes. Then π is a facet (and therefore
extreme).

In particular, the above theorem implies that the Gomory mixed-integer function is a facet.

For the one-dimensional problem, i.e., n = 1, extreme valid functions or facets that are
piecewise linear and have few slopes received the largest number of hits in the shooting
experiments [14] and seem to be the most useful in practice. Indeed Gomory and Johnson
[13] conjectured that every valid function that is extreme is piecewise linear. This has been
disproved by Basu et al. [1].

Minimal valid functions with 3 slopes are not always extreme. However, Gomory and
Johnson constructed an extreme function that is piecewise linear with 3 slopes. It appears to
be hard to construct extreme functions that are piecewise linear with many slopes. Indeed,
until 2013, all known families of piecewise linear extreme functions had at most 4 slopes.
This had led Dey and Richard to pose the question of constructing extreme functions with
more than 4 slopes at a 2010 Aussois meeting [8]. In 2013, Hildebrand, in an unpublished
result, constructed an extreme function that is piecewise linear with 5 slopes and very recently
Köppe and Zhou [17] constructed an extreme function that is piecewise linear with 28 slopes.
These functions were found through a clever computer search.

Köppe and Zhou [17] expressed the belief that there exist extreme functions that are
piecewise linear and have an arbitrary number of slopes (this is also stated as Open Question
2.15 in the survey by Basu, Hildebrand and Köppe [4].) We prove this. More precisely, we
show the following:

Theorem 1.3. Let b ∈ R \ Z. For k ≥ 2, there exists a facet (and therefore an extreme valid
function) for Ib that is piecewise linear with k slopes.

The proof of Theorem 1.3 provided here is constructive. We define a sequence of functions
{πk}

∞
k=2, where π2 is the Gomory mixed-integer function, and π3 is an instantiation of a

construction of extreme functions that are piecewise linear and have 3 slopes provided by
Gomory and Johnson [13]. We first prove some properties about each function πk in Section
2. In Section 3 we use these properties to show that these functions are subadditive and
satisfy the symmetry condition. Therefore each function πk is a minimal valid function, as it
satisfies the conditions of Theorem 1.1. Section 4 is devoted to the proof that each function
πk is a facet.

Our next result states that the function which is the pointwise limit of this sequence is an
extreme function that is continuous and has an infinite number of slopes. The proof appears
in Section 5.

Theorem 1.4. Let b ∈ R \ Z. There exists a continuous function π∞ that is a facet (and
therefore extreme) for Ib with an infinite number of slopes (i.e., values for the derivative of
π∞).

This also provides a different family of counterexamples to the Gomory-Johnson con-
jecture that all extreme functions are piecewise linear. In contrast, the previous family of
counterexamples from [1] all have 2 slopes.
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Note that in Theorems 1.3 and 1.4, we may assume b ∈ (0, 1) since extreme functions are
periodic with respect to Z. We give constructions to establish Theorems 1.3 and 1.4 with b
in the interval (0, 12 ]. One may obtain extreme functions for values of b ∈ [12 , 1) by reflecting
the constructions about 0. This is an example of an automorphism introduced by Gomory
and later used by Johnson (Theorem 8.2 in [16], see also Theorem A.1 in the Appendix).

We end the paper by using the sequential-merge operation invented by Dey and Richard [9]
to construct facets for the n-dimensional infinite group relaxation (for any n ≥ 1) with an
arbitrary number of slopes. The idea is to use the sequential-merge operation iteratively on
the facets constructed for Theorem 1.3 and the GMI function from (1.3). See Theorem 6.1
for a detailed statement.

2 A Construction of k-Slope Functions πk

Let b ∈ (0, 12 ]. Let π2 be the Gomory mixed-integer function defined by (1.3).
In constructing πk for k ≥ 3, we use the following intervals:

Ik1 := [0, b(18 )
k−2], Ik2 := [b(18 )

k−2, 2b(18 )
k−2],

Ik3 := [2b(18 )
k−2, b− 2b(18 )

k−2], Ik4 := [b− 2b(18 )
k−2, b− b(18 )

k−2],

Ik5 := [b− b(18)
k−2, b], Ik6 := [b, 1).

Given πk−1, where k − 1 ≥ 2, define πk to be

πk(x) =



























































(

2k−2−b
b−b2

)

x, x ∈ Ik1
42−k

1−b −
(

1
1−b

)

x, x ∈ Ik2
1−42−k

1−b −
(

1
1−b

)

x, x ∈ Ik4
1−2k−2

1−b +
(

2k−2−b
b−b2

)

x, x ∈ Ik5

πk−1(x), x ∈ Ik3 ∪ Ik6

πk(x− j), x ∈ [j, j + 1), j ∈ Z \ {0} .

Proposition 2.1. Let k ≥ 2. Then πk is well-defined, continuous, nonnegative, and πk(x) =
0 if and only if x ∈ Z.

The proof of Proposition 2.1 is in the Appendix.
Figure 1 shows πk for various values of k when b = 1

2 . The plots were generated using the
help of a software package created by Hong, Köppe, and Zhou [15].

Observe that πk is built recursively with the Gomory mixed-integer function as the base
case. Intuitively, πk is created by adding to πk−1 a perturbation on a small interval to the
right of 0 and applying a symmetric perturbation on an interval to the left of b; the interval
[b, 1) is kept intact. These small perturbations allow πk to maintain much of the structure of
πk−1, but the number of distinct slopes is increased by one. We collect some useful properties
of πk in Propositions 2.2 and 2.3.
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Figure 1: Plots of πk for k ∈ {1, 2, 3} and b = 1
2 .
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Proposition 2.2. Let k ≥ 3. Then

(i) Ik1 ∪ Ik2 ( Ik−1
1 and Ik4 ∪ Ik5 ( Ik−1

5 .

(ii) If x ∈ Ik3∪I
k
6 , then πk(x) = πk−1(x). If x ∈ Ik1 ∪I

k
2 , then πk(x) ≥ πk−1(x). If x ∈ Ik4∪I

k
5 ,

then πk(x) ≤ πk−1(x).

(iii) For any x ∈ (0, 1) \ {b}, there exists some natural number Nx such that x ∈ INx

3 ∪ INx

6

and πk(x) = πNx(x) whenever k ≥ Nx.

Proof.

(i) Observe that

b

(

1

8

)k−3

= 8b

(

1

8

)k−2

> 2b

(

1

8

)k−2

.

By the definitions of Ik1 , I
k
2 and Ik−1

1 , it follows that Ik1 ∪I
k
2 ( Ik−1

1 . A similar argument
shows that Ik4 ∪ Ik5 ( Ik−1

5 .

(ii) Let x ∈ [0, 1). If x ∈ Ik3 ∪ Ik6 , then πk(x) = πk−1(x) by definition. If x ∈ Ik1 , then from
(i) it follows that x ∈ Ik−1

1 . Note that

(

2k−2 − b

b− b2

)

x ≥

(

2k−3 − b

b− b2

)

x ,

and so πk(x) ≥ πk−1(x). If x ∈ Ik2 , then again from (i), x ∈ Ik−1
1 and it follows that

42−k

1−b −
(

1
1−b

)

x =
(

1
1−b

)

(

42−k − x
)

≥
(

1
1−b

)(

42−k − 2b
(

1
8

)k−2
)

since x ∈ Ik2

=
(

1
b−b2

)(

2k−3
(

2b
(

1
8

)k−2
)

− b
(

2b
(

1
8

)k−2
))

≥
(

2k−3−b
b−b2

)

x since x ∈ Ik2 .

Hence πk(x) ≥ πk−1(x) on I
k
1 ∪ Ik2 . A similar argument shows that πk(x) ≤ πk−1(x) on

Ik4 ∪ Ik5 .

(iii) Notice that Ik3 ⊆ Ik+1
3 for every natural number k, and as k → ∞, Ik3 converges to (0, b).

Thus, there exists some natural number Nx such that x ∈ Ik3 ∪ Ik6 for every natural
number k ≥ Nx. By the definition of πk, if k ≥ Nx, then πk(x) = πNx(x).

Proposition 2.3. For each integer k ≥ 2, the function πk is piecewise linear and has k
slopes taking values − 1

1−b and {2i−2−b
b−b2

}ki=2. Moreover, if k ≥ 3, then πk has the k − 2 slopes

{2i−2−b
b−b2

}k−1
i=2 on Ik3 and the slope − 1

1−b on Ik6 .
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Proof. We proceed by induction. For π2 and π3, the result is readily verified by the definitions.
So, assume that for k − 1 ≥ 3, πk−1 is piecewise linear with k − 1 slopes and has the k − 3

slopes {2i−2−b
b−b2

}k−2
i=2 on Ik−1

3 and the slope − 1
1−b on Ik−1

6 .
Consider πk. The fact that πk is piecewise linear follows from the definition of πk, and

the induction hypothesis that πk−1 is piecewise linear.
It is left to consider the slope values of πk. By Proposition 2.2 (ii), πk = πk−1 everywhere

except Ik1 ∪ Ik2 and Ik4 ∪ I
k
5 , on which πk takes on slope values 2k−2−b

b−b2
and − 1

1−b by definition.

Since Ik1 ∪ Ik2 ( Ik−1
1 and Ik4 ∪ Ik5 ( Ik−1

5 by Proposition 2.2 (i), it follows from the induction

hypothesis that πk also has slopes taking values {2i−2−b
b−b2

}k−1
i=2 . Thus, πk takes on slopes values

{2i−2−b
b−b2

}ki=2 and − 1
1−b .

Finally, by definition, πk = πk−1 on Ik3 ∪ Ik6 . Moreover, since πk has slope values

{2i−2−b
b−b2

}ki=2, and πk−1 has slope values {2i−2−b
b−b2

}k−1
i=2 , the only new slope in πk is 2k−2−b

b−b2
,

which only appears on Ik1 ∪ I
k
5 . Thus, πk has the k−2 slopes {2i−2−b

b−b2
}k−1
i=2 on Ik3 and the slope

− 1
1−b on Ik6 .

3 Proof of Minimality of πk

In the proof of Theorem 1.3, we will show that πk is a facet using the so-called Facet Theorem
– see Theorem 4.2 in Section 4. Applying the Facet Theorem to πk requires that πk be a
minimal valid function for Ib, which we verify in this section. Since by definition πk is
nonnegative, πk(0) = 0, and πk is periodic, by Theorem 1.1, it is sufficient to show that (a)
πk(x) = πk(b− x) for all x ∈ [0, 1), i.e. that πk satisfies the symmetry condition, and (b) πk
is subadditive. We show (a) and (b) in Propositions 3.1 and 3.2, respectively.

Proposition 3.1. πk satisfies the symmetry condition for all k ≥ 2.

Proof. We proceed by induction on k. The Gomory mixed-integer function is known to be
minimal, and hence π2 is symmetric. Assume πk−1 satisfies the symmetry condition for
k − 1 ≥ 2 and consider x ∈ [0, 1). Observe that x ∈ Ik1 if and only if b− x ∈ Ik5 . Therefore if
x ∈ Ik1 , then

πk(x) + πk(b− x) =

(

2k−2 − b

b− b2

)

x+
1− 2k−2

1− b
+

(

2k−2 − b

b− b2

)

(b− x) = 1 .

A similar argument can be used to show that πk satisfies the symmetry condition on the
intervals Ik2 and Ik4 . If x 6∈ Ik1 ∪ Ik2 ∪ Ik4 ∪ Ik5 , then b− x 6∈ Ik1 ∪ Ik2 ∪ Ik4 ∪ Ik5 , and so symmetry
holds by induction.

Proposition 3.2. πk is subadditive for all k ≥ 2.

Proof. We proceed by induction on k. Note that π2 is subadditive, so assume πk−1 is subad-
ditive for k − 1 ≥ 2. By periodicity of πk, it suffices to check πk(x) + πk(y) ≥ πk(x + y) for
all x, y ∈ [0, 1) and x ≤ y.

Claim. If y ∈ Ik6 = [b, 1), then πk(x+ y) ≤ πk(x) + πk(y).

7



Proof of Claim. Since πk is piecewise linear and continuous by Propositions 2.1 and 2.3, we
may integrate it over any bounded domain. A direct calculation shows

πk(x+ y) = πk(x+ (y − 1)) by periodicity of πk

= πk(x) +
∫ x−(1−y)
x

π′k(t)dt

= πk(x) +
∫ x

x−(1−y)−π
′
k(t)dt

≤ πk(x) +
∫ 1
y
−π′k(t)dt

= πk(x)− πk(1) + πk(y)
= πk(x) + πk(y) since πk(1) = 0.

The inequality follows from Proposition 2.3, as the minimum value of the slope for πk is −
1

1−b
and this is the slope over the interval [b, 1] ⊇ [y, 1]. This concludes the proof of the claim. ⋄

By the above claim, it suffices to consider the case y < b. Since b ≤ 1
2 , this implies that

x ≤ y ≤ x+ y < 1.

Case 1: x+y ∈ Ik1 ∪I
k
2 . Note that the derivative π

′
k is nonincreasing on I

k
1 ∪I

k
2 \{b(

1
8 )
k−2}.

Thus,

πk(x+ y) = πk(x) +

∫ x+y

x

π′k(t)dt ≤ πk(x) +

∫ y

0
π′k(t)dt = πk(x) + πk(y).

Case 2: x+ y ∈ Ik3 . Since x, y ∈ Ik1 ∪ Ik2 ∪ Ik3 we have that

πk(x) + πk(y) ≥ πk−1(x) + πk−1(y) ≥ πk−1(x+ y) = πk(x+ y) ,

where the first inequality comes from Proposition 2.2 (ii), the second inequality comes from
the induction hypothesis, and the final inequality comes again from Proposition 2.2 (ii).

Case 3: x + y ∈ Ik4 ∪ Ik5 . If y ∈ Ik1 ∪ Ik2 ∪ Ik3 , then using the induction hypothesis and
Proposition 2.2 (ii), it follows that

πk(x) + πk(y) ≥ πk−1(x) + πk−1(y) ≥ πk−1(x+ y) ≥ πk(x+ y).

If y ∈ Ik4∪I
k
5 , then x ∈ [0, b−y] and b−y ∈ Ik1∪I

k
2 . Hence, x ∈ Ik1∪I

k
2 . Also, b−(x+y) ∈ Ik1∪I

k
2

since x+ y ∈ Ik4 ∪ Ik5 . Thus, we can apply Case 1 to the values x and b − (x+ y) to obtain
πk(b− y) ≤ πk(b− (x+ y)) + πk(x). Using this, we see that

πk(x+ y) = 1− πk(b− (x+ y)) by the symmetry property
≤ 1− πk(b− y) + πk(x)
= πk(y) + πk(x) by the symmetry property.

Case 4: x + y ∈ Ik6 . πk has a slope of − 1
1−b on the interval [b, x + y]. Moreover, by

Proposition 2.3, this is the minimum slope that πk admits. Therefore,

8



πk(x+ y) = πk(b) +
∫ x+y
b

π′k(t)dt
≤ 1 +

∫ y

b−x
π′k(t)dt

= 1 + (πk(y)− πk(b− x))
= πk(x) + πk(y) ,

where the last equality follows by the symmetry of πk.

4 πk is a facet

By Proposition 2.3, in order to prove Theorem 1.3 it suffices to show the following result.

Proposition 4.1. πk is a facet for each k ≥ 2.

We dedicate the remainder of the section to proving Proposition 4.1. To this end, given
a function θ : Rn → R, define

E(θ) = {(x, y) ∈ Rn × Rn : θ(x) + θ(y) = θ(x+ y)} . (4.1)

Our proof of Proposition 4.1 is based on the Facet Theorem, which gives a sufficient condition
for a function to be a facet [6, 11], and the Interval Lemma, which first appeared in [13], and
was subsequently elaborated upon in [10, 9, 7, 3]; see also the survey [4, 5].

Theorem 4.2 (Facet Theorem). Let π : Rn → R+ be a minimal valid function for Ib for some
b ∈ Rn \ Zn. Suppose that for every minimal function θ : Rn → R+ satisfying E(π) ⊆ E(θ),
it follows that θ = π. Then π is a facet.

Lemma 4.3 (Interval Lemma). Let U, V be nondegenerate closed intervals in R. If θ : R → R

is bounded over U and V , and U × V ⊆ E(θ), then θ is affine over U, V and U + V with the
same slope.

We will often use the above lemma when θ is a minimal valid function. In this case θ is
bounded, as 0 ≤ θ ≤ 1. We also say a function θ : R → R is locally bounded if it is bounded
on every compact interval.

Proposition 4.4. Let θ : R → R+ be such that θ(0) = 0 and θ(x+ z) = θ(x) + θ(z) for all
x ∈ R and z ∈ Z. Then θ is periodic, i.e., θ(x+ z) = θ(x) for all x ∈ R and z ∈ Z.

Proof. It suffices to show that θ(z) = 0 for all z ∈ Z. This is true since 0 = θ(0) = θ(−z)+θ(z)
for all z ∈ Z and θ is nonnegative.

In the following Propositions 4.5, 4.6, 4.7, 4.8, we develop some tools towards proving
facetness.

Proposition 4.5. Let k ≥ 3 and let π be a minimal valid function such that π = πk on
Ik6 . Then for all locally bounded functions θ : R → R+ such that E(π) ⊆ E(θ) satisfying
θ(0) = 0, θ(b) = 1, we must have θ = π = πk on Ik6 ∪ {1}.

9



Proof. Note that Ik6 ∪ {1} ≡ [1+b2 , 1] + [1+b2 , 1] (modulo 1). Since π is minimal, Theorem 1.1
implies π is periodic. Since E(π) ⊆ E(θ), Proposition 4.4 shows that θ is periodic. In
particular, θ(1) = 0 = π(1) and θ(b) = 1 = π(b). Hence π = θ on the endpoints of Ik6 ∪ {1}.
Moreover, x, y ∈ [1+b2 , 1] implies that

π(x) + π(y) =
(

1
1−b −

(

1
1−b

)

x
)

+
(

1
1−b −

(

1
1−b

)

y
)

since π = πk on Ik6

= 1
1−b −

(

1
1−b

)

(x+ y − 1)

= π(x+ y − 1)
= π(x+ y) by periodicity.

Hence [1+b2 , 1]× [1+b2 , 1] ⊆ E(π) ⊆ E(θ). Lemma 4.3 then implies that θ is affine over Ik6 ∪{1}.
Since π is also affine over Ik6 ∪ {1} and π = θ on the endpoints of Ik6 ∪ {1}, we must have
π = θ on Ik6 ∪ {1}.

Proposition 4.6. Let k ≥ 3 and let π be a minimal valid function such that π = πk on I33 .
Then for all locally bounded functions θ : R → R+ such that E(π) ⊆ E(θ) satisfying θ( b2) =

1
2 ,

we must have θ = π = πk on I33 .

Proof. Let U =
[

b
4 ,

3b
8

]

⊆ I33 and note that U + U =
[

b
2 ,

3b
4

]

⊆ I33 . For x, y ∈ U , since π = πk
on I33 we see that

π(x) + π(y) =
1

b
x+

1

b
y =

1

b
(x+ y) = π(x+ y).

Hence U × U ⊆ E(π) ⊆ E(θ). Using Lemma 4.3, θ is affine over [ b2 ,
3b
4 ]. By assumption,

θ( b2) = π( b2 ) = 1
2 . Using this and ( b4 ,

b
4) ∈ E(π) ⊆ E(θ), it follows that θ( b4) = π( b4 ) = 1

4 .
Since π satisfies the symmetry condition and E(π) ⊆ E(θ), θ also satisfies the symmetry
condition. This implies θ(3b4 ) = π(3b4 ) =

3
4 . Therefore, by the affine structure of θ and π over

[ b2 ,
3b
4 ], it follows that θ = π on [ b2 ,

3b
4 ]. The symmetric property of θ and π then yields θ = π

on [ b4 ,
b
2 ] and thus on I33 .

Proposition 4.7. Let k ≥ 3 and j ∈ {3, . . . , k}. Let π be a minimal valid function such
that π = πk on Ij2 ∪ Ij4 ∪ Ij6 . Then for all locally bounded functions θ : R → R+ such that

E(π) ⊆ E(θ) and θ = π on Ij3 ∪ I
j
6 ∪ {1}, we must have θ = π = πk on Ij2 ∪ I

j
4 .

Proof. Let U =
[

3
2b
(

1
8

)j−2
, 2b
(

1
8

)j−2
]

⊆ Ij2 and V =
[

1− 1
2b
(

1
8

)j−2
, 1
]

⊆ Ij6 ∪ {1}. Observe

that U + V ≡ Ij2 (modulo 1). Moreover, x ∈ U and y ∈ V implies

π(x) + π(y) =
(

42−j

1−b −
(

1
1−b

)

x
)

+
(

1
1−b −

(

1
1−b

)

y
)

since π = πk on Ij2 ∪ I
j
6

= 42−j

1−b −
(

1
1−b

)

(x+ y − 1)

= π(x+ y − 1) = π(x+ y) by periodicity.

Thus, U × V ⊆ E(π) ⊆ E(θ), and by Lemma 4.3, π and θ are affine over Ij2 with the same

slope as their corresponding slopes over V . Since θ = π = πk over Ij6 and V ⊆ Ij6 ∪ {1}, all

three functions have the same slope over Ij2 . Since θ = π on Ij3 by assumption, it must be

that θ
(

2b
(

1
8

)j−2
)

= π
(

2b
(

1
8

)j−2
)

. Therefore, θ = π on Ij2 . Since π satisfies the symmetry

10



condition and E(π) ⊆ E(θ), θ also satisfies the symmetry condition. Using symmetry, we see
that θ = π over Ij4 .

Proposition 4.8. Let k ≥ 4 and let j ∈ {3, . . . , k − 1}. Let π be a minimal valid function
such that π = πk on Ij1 \ int(I

j+1
1 ∪Ij+1

2 ) and Ij5 \ int(I
j+1
4 ∪Ij+1

5 ). Then for all locally bounded

functions θ : R → R+ such that E(π) ⊆ E(θ) and θ = π on Ij2 ∪ I
j
3 ∪ Ij4 ∪ I

j
6 , we must have

θ = π = πk on Ij1 \ int(I
j+1
1 ∪ Ij+1

2 ) and Ij5 \ int(I
j+1
4 ∪ Ij+1

5 ).

Proof. By minimality, we have that π(0) = πk(0) = 0. Since E(π) ⊆ E(θ), we have that
π(0) + π(0) = π(0) implies θ(0) + θ(0) = θ(0). This shows that θ(0) = 0 = π(0) = πk(0).

Now consider I∗ := Ij1 \ (int(I
j+1
1 ∪ Ij+1

2 ) ∪ {0}) =
[

2b
(

1
8

)j−1
, b
(

1
8

)j−2
]

. Let

U =

[

2b

(

1

8

)j−1

, 4b

(

1

8

)j−1
]

⊆ I∗.

Note that

U + U =

[

4b

(

1

8

)j−1

, b

(

1

8

)j−2
]

⊆ I∗

and U ∪ (U + U) = I∗. A direct calculation shows that I∗ ⊆ Im3 for all m ≥ j + 1. Thus, by

the definition of πk, it follows that πk(x) = πj(x) = (2
j−2−b
b−b2

)x for all x ∈ I∗. Using this and
the fact that π = πk over I∗, we see that

π(x) + π(y) = πk(x) + πk(x) =

(

2j−2 − b

b− b2

)

x+

(

2j−2 − b

b− b2

)

y

=

(

2j−2 − b

b− b2

)

(x+ y) = πk(x+ y) = π(x+ y)

for x, y ∈ U , and so U × U ⊆ E(π) ⊆ E(θ). By Lemma 4.3, θ is affine over U + U and U
with the same slope, and thus affine over I∗. Similarly, π is affine over I∗.

Since θ = π on Ij2 , we have θ
(

b
(

1
8

)j−2
)

= π
(

b
(

1
8

)j−2
)

. Also, since 2b
(

1
8

)j−1
, 4b
(

1
8

)j−1
∈

U and U × U ⊆ E(π) ⊆ E(θ), we see that

4θ

(

2b

(

1

8

)j−1
)

= 2θ

(

2b

(

1

8

)j−1

+ 2b

(

1

8

)j−1
)

= 2θ

(

4b

(

1

8

)j−1
)

= θ

(

4b

(

1

8

)j−1

+ 4b

(

1

8

)j−1
)

= θ

(

b

(

1

8

)j−2
)

= π

(

b

(

1

8

)j−2
)

since θ = π on Ij2

= 4π

(

2b

(

1

8

)j−1
)

.
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Thus, θ
(

2b
(

1
8

)j−1
)

= π
(

2b
(

1
8

)j−1
)

, and so θ = π on the endpoints of I∗. Since both

functions are affine on I∗, it follows that θ = π on I∗. Since π satisfies the symmetry
condition and E(π) ⊆ E(θ), θ also satisfies the symmetry condition. Symmetry of θ and π
yields that θ = π over Ij5 \ int(I

j+1
4 ∪ Ij+1

5 ).

Lemma 4.9. Let k ≥ 3 and j ∈ {3, . . . , k}. Let π be a minimal valid function such that
π = πk on Ij3 ∪ I

j
6. Then for all locally bounded functions θ : R → R+ such that E(π) ⊆ E(θ)

satisfying θ(0) = 0, θ(b) = 1, we must have θ = π = πk on Ij3 ∪ I
j
6 .

Proof. By Proposition 4.5, we obtain θ = π on Ik6 = Ij6 = I36 . We prove θ = π on Ij3 by
induction on j. For j = 3, the result follows from Proposition 4.6 (observe that E(π) ⊆ E(θ)
implies that θ is symmetric and therefore θ( b2) =

1
2). We assume the result holds for some j

such that 3 ≤ j ≤ k−1 and show that it holds for j+1. Observe that this assumption implies
that k ≥ 4. Note that Ij+1

3 ∪{0, b} = (Ij1 \int(I
j+1
1 ∪Ij+1

2 ))∪Ij2∪I
j
3∪I

j
4∪(I

j
5 \int(I

j+1
4 ∪Ij+1

5 )).

By the induction hypothesis, θ = π on Ij3 . Since π(0) = π(1) = 0, it follows that π(0) =
π(1) = π(0) + π(1). Thus, since E(π) ⊆ E(θ), we have 0 = θ(0) = θ(0) + θ(1) = θ(1).
By Proposition 4.7, θ = π on Ij2 ∪ Ij4 . Using this, Proposition 4.8 implies that θ = π on

(Ij1 \ int(I
j+1
1 ∪ Ij+1

2 )) ∪ (Ij5 \ int(I
j+1
4 ∪ Ij+1

5 )).

of Proposition 4.1. If k = 2, then the fact that πk is a facet follows by Theorem 1.2. Consider
the setting k ≥ 3.

Let θ : R → R+ be a minimal valid function for Ib such that E(πk) ⊆ E(θ). Since θ
is minimal, a consequence of Theorem 1.1 is that θ is locally bounded. Using π = πk in
Lemma 4.9, it follows that θ = πk on Ik3 ∪ I

k
6 . From Proposition 4.7 and again setting π = πk,

we obtain that θ = πk on Ik2 ∪ Ik4 . It is left to show that θ = πk on Ik1 and Ik5 .

Let U =
[

0, b2
(

1
8

)k−2
]

and observe that U + U =
[

0, b
(

1
8

)k−2
]

= Ik1 . It follows from

the definition of πk that πk(x) + πk(y) = πk(x + y) for all x, y, x + y ∈ Ik1 , so U × U ⊆
E(πk) ⊆ E(θ). Since θ and πk are minimal, θ(0) = πk(0) = 0. Also, since θ = πk on Ik2 ,

θ
(

b
(

1
8

)k−2
)

= πk

(

b
(

1
8

)k−2
)

. Thus θ = πk on the endpoints of Ik1 . Moreover, Lemma 4.3

implies that θ is affine over Ik1 . Since πk is also affine over Ik1 and θ = πk at the endpoints,
we have θ = πk on Ik1 . The fact that θ = πk on Ik5 follows by symmetry. Therefore, θ = πk
everywhere. By Theorem 4.2, πk is a facet.

of Theorem 1.3. By Proposition 2.3, the function πk is piecewise linear and has k slopes.
Every valid function that is a facet is also extreme. By Proposition 4.1, πk is a facet (and
therefore extreme). Thus, πk proves the result.

5 Proof of Theorem 1.4

of Theorem 1.4. For x ∈ [0, 1) \ {0, b}, let Nx be the natural number guaranteed by Propo-
sition 2.2 (iii), that is x ∈ INx

3 ∪ INx

6 and πk(x) = πNx(x) whenever k ≥ Nx. Define the
function π∞(x) : R → [0, 1] by
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π∞(x) =























0, x = 0

1, x = b

πNx(x), x ∈ [0, 1) \ {0, b}

π∞(x− j), x ∈ [j, j + 1), j ∈ Z \ {0} .

We claim that the sequence {πi}
∞
i=2 converges uniformly to π∞. To this end, let ε > 0.

Choose a large enough N ∈ N such that 24−3N (2N−4b)
1−b < ε. Let x ∈ R and k ≥ N . We

consider cases on x.
Case 1: Assume x ∈ Ik1 ∪ Ik2 . By Proposition 2.2 (i), Im1 ∪ Im2 ⊇ Im+1

1 ∪ Im+1
2 for all

m ∈ N. For m ≥ k, the maximum value of πm on Im1 ∪ Im2 is 24−3m(2m−4b)
1−b ≤ 24−3k(2k−4b)

1−b ≤
24−3N (2N−4b)

1−b . It follows that 0 ≤ π∞(x) ≤ 24−3N (2N−4b)
1−b < ε. Similarly, 0 ≤ πk(x) ≤ ε. Thus,

|πk(x)− π∞(x)| < ε.
Case 2: Assume x ∈ Ik4 ∪ I

k
5 . Then |π∞(x)− πk(x)| < ε follows by the symmetry of each

function in the sequence {πi}
∞
i=2 along with Case 1.

Case 3: Assume x ∈ Ik3 ∪ Ik6 . Note that Ik3 ∪ Ik6 ⊆ Im3 ∪ Im6 for every m ∈ N such that
m ≥ k. Therefore, by definition of each πm for m ≥ k, we see that πm(x) = πk(x) for all
m ≥ k. Hence π∞(x) = πk(x).

Case 4: Assume x ∈ {0, b}. Then π∞(x) = πk(x) follows directly by definition of π∞(0)
and π∞(b).

Case 5: Assume that x ∈ [j, j + 1) for j ∈ Z \ {0}. Then using the periodicity of each
function in {πi}

∞
i=2 and noting Nx = Nx−j, we obtain |π∞(x)−πk(x)| = |π∞(x− j)−πk(x−

j)| < ε by using Cases 1-4.
Since each πk is minimal, by a standard limit argument, π∞ is minimal (Proposition 4 in

[10], Proposition 6.1 in [5]). Also, since π∞ is the uniform limit of continuous functions, it
too is continuous.

We next show that π∞ is a facet. Let θ be any minimal function such that E(π∞) ⊆ E(θ).
If x = 0 or x = b, then π∞(x) = θ(x) by the minimality of π∞ and θ. So assume that
x 6∈ {0, b}. Recall that x ∈ INx

3 ∪ INx

6 . Observe that π∞ = πNx on INx

3 ∪ INx

6 . Hence, by
applying Lemma 4.9 with k = j = Nx and π = π∞, we obtain that θ(x) = π∞(x). Therefore,
θ = π∞ everywhere. By Theorem 4.2, π∞ is a facet.

We finally verify that π∞ has infinitely many slopes. Note that for any k ≥ 3, π∞ = πk
on Ik3 ∪ Ik6 and, by Proposition 2.3, πk has k − 1 different slopes on Ik3 ∪ Ik6 .

6 Facets for higher dimensional group relaxations

One can ask if it is possible to find extreme functions with arbitrary number of slopes for
the higher-dimensional infinite group relaxation. For b ∈ R \ Z, a trivial way to generalize
to higher dimensions is to simply define πnk : Rn → R+ as πnk (x1, x2, . . . , xn) = πk(x1) and
πn∞ : Rn → R+ as πn∞(x1, x2, . . . , xn) = π∞(x1). By Theorem 19.35 in [19], the functions
πnk and πn∞ are extreme for Ib̃ for b̃ ∈ {b} × {0}n−1. However, one can ask whether there
are more “non-trivial” examples. In particular, one can ask whether there exist genuinely
n-dimensional extreme functions with arbitrary number of slopes for all n ≥ 1. A function
θ : Rn → R is genuinely n-dimensional if there does not exist a linear map T : Rn → Rn−1
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and a function θ′ : Rn−1 → R such that θ = θ′ ◦ T . The construction of such a “non-trivial”
facet is the main result in this section. We use the notation 1m to denote the vector of all
ones in Rm and b1m to denote the vector in Rm such that every component is equal to b.

Theorem 6.1. Let n, k ∈ N. For any b ∈ R \ Z, there exists a function Πnk : Rn → R+ such
that Πnk has at least k slopes, is genuinely n dimensional, and is a facet (and thus extreme)
for the n-dimensional infinite group relaxation Ib1n

.

We provide a constructive argument for the proof of Theorem 6.1 using the sequential-
merge operation developed by Dey and Richard [9]. In particular, we employ Theorem 5 in [9],
the assumptions of which will be proved throughout this section. The proof of Theorem 6.1
is the collection of these results and is presented at the end of the section. We begin with
some definitions relating to sequential-merge.

Notation: Let m ∈ N and x, y ∈ Rm. For i ∈ {1, . . . ,m}, we use the notation xi to
denote the i-th component of x. We define the vectors ⌊x⌋ := (⌊x1⌋, ⌊x2⌋, ..., ⌊xn⌋) ∈ Rm and
x−1 := (x2, . . . , xm) ∈ Rm−1. We use the notation x ≤ y to indicate that xi ≤ yi for each
i ∈ {1, . . . ,m}. ⋄

Let b ∈ [0, 1)n \ {0}. The lifting-space representation of any function θ : Rn → R is
[θ]b : R

n → R defined by

[θ]b(x) :=
n
∑

i=1

xi −
n
∑

i=1

biθ (x− ⌊x⌋) .

Remark 6.2. The definition for lifting-space representation in [9] is given only for valid
functions which in that context are periodic modulo Zn. Note that if θ is periodic, then
[θ]b(x) =

∑n
i=1 xi −

∑n
i=1 biθ (x). ⋄

The group-space representation of any function ψ : Rn → R is [ψ]−1
b : Rn → R defined by

[ψ]−1
b (x) :=

∑n
i=1 xi − ψ(x)
∑n

i=1 bi
.

A function ψ : Rn → R is called superadditive if −ψ is subadditive. ψ is called pseudo-periodic
if ψ(x+ ei) = ψ(x) + 1 for all standard unit vectors ei ∈ Rn and x ∈ Rn.

We collect some useful facts above the above definitions below.

Proposition 6.3. Let b ∈ [0, 1)n \ {0}.

(i) If ψ : Rn → R is pseudo-periodic, then [ψ]−1
b is periodic modulo Zn.

(ii) If π is a minimal valid function for Ib, then [π]b is superadditive and pseudo-periodic.

(iii) If ψ is pseudo-periodic then [[ψ]−1
b ]b = ψ.

Proof. If ψ : Rn → R is pseudo-periodic, then observe that for any x ∈ Rn and unit vector
ei, ψ(x) = ψ((x − ei) + ei) = ψ(x − ei) + 1, i.e., ψ(x − ei) = ψ(x) − 1. By iterating, we
observe that ψ(x + z) = ψ(x) +

∑

zi for all x ∈ Rn and z ∈ Zn. Therefore, [ψ]−1
b (x + z) =

∑n
i=1

xi+
∑n

i=1
zi−ψ(x)−

∑n
i=1

zi∑n
i=1

bi
=

∑n
i=1

xi−ψ(x)∑n
i=1

bi
= [ψ]−1

b (x). This establishes (i).
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(ii) follows from Proposition 3 in [9].

To establish (iii), first observe that by (i) above [ψ]−1
b is periodic modulo Zn. Therefore,

by Remark 6.2, [[ψ]−1
b ]b(x) =

∑n
i=1 xi −

∑n
i=1 bi[ψ]

−1
b (x) =

∑n
i=1 xi −

∑n
i=1 bi

∑n
j=1

xj−ψ(x)∑n
j=1

bj
=

ψ(x).

Remark 6.4. The definition for group-space representation in [9] is given only for superad-
ditive and pseudo-periodic ψ, and the domain of [ψ]−1

b (x) is defined to be [0, 1)n. We give the
definition for more general functions and allow the domain of [ψ]−1

b (x) to be Rn to make cal-
culations easier. By Proposition 6.3 (i), restricted to pseudo-periodic functions, our definition
of [ψ]−1

b (x) is simply a periodization of the definition from [9]. ⋄

Let b1 ∈ (0, 1) and b2 ∈ [0, 1)m \ {0}. If f : R → R+ and g : Rm → R+ are minimal
valid functions for Ib1 and Ib2 , respectively, then the sequential merge f ⋄ g : R×Rm → R is
defined as

f ⋄ g := [ψ]−1
(b1,b2)

where ψ : R× Rm → R is the function ψ(x1, x2) = [f ]b1(x1 + [g]b2(x2)).

Remark 6.5. It is not true in general that if f, g are minimal, then f ⋄g is minimal. However,
when f, g are minimal valid functions, f ⋄ g is periodic modulo Zn. Indeed, since f ⋄ g :=
[ψ]−1

(b1,b2)
, by Proposition 6.3 (i) it suffices to check that ψ(x1, x2) defined above is pseudo-

periodic when f, g are minimal. By Proposition 6.3 (ii), [f ]b1 , [g]b2 are both pseudo-periodic.
Therefore, ψ(x1 +1, x2) = [f ]b1(x1 +1+ [g]b2(x2)) = [f ]b1(x1 + [g]b2(x2))+ 1 = ψ(x1, x2)+ 1,
using pseudo-periodicity of [f ]b1. On the other hand, for any unit vector ei ∈ Rm, we have
ψ(x1, x2+e

i) = [f ]b1(x1+[g]b2(x2+e
i)) = [f ]b1(x1+[g]b2(x2)+1) = [f ]b1(x1+[g]b2(x2))+1 =

ψ(x1, x2) + 1, where the second equality uses pseudo-periodicity of [g]b2 and the last equality
uses pseudo-periodicity of [f ]b1.

In Dey and Richard’s original definition from [9], the domain of f ⋄g is defined as [0, 1)×
[0, 1)m, and restricted to this domain, our definition is exactly the same as theirs. Thus, our
definition over R × Rm is simply a periodization of Dey and Richard’s definition for f ⋄ g,
when f, g are minimal functions. Since we will only apply the sequential merge operation
on minimal valid functions, there is no discrepancy between the definition in [9] and our
definition. ⋄

For the remainder of this section, we consider b ∈ [1/2, 1). Although the specific con-
struction of πk provided in Section 2 uses b ∈ (0, 1/2], creating πk for b ∈ [1/2, 1) can be done
by defining πk(x) := π̃k(1− x) for x ∈ [0, 1] (and then enforcing periodicity by Z), where π̃k
is the function for I1−b constructed in Section 2 (see also Theorem A.1).

Let φ denote the GMI function for Ib (defined in (1.3)). For n ∈ N, n ≥ 2, let Πnk : Rn → R

be defined by
Πnk(x1, . . . , xn) := πk ⋄ (φ ⋄ (φ ⋄ (... ⋄ φ) ...)) (x1, . . . , xn),

where the sequential merge contains one copy of πk and n − 1 copies of φ. For m ∈ N and
m ≥ 1, let Φm denote φ ⋄ (φ ⋄ (... ⋄ φ) ...), where there are m copies of φ in the sequential
merge.

We require a couple of definitions (also taken from [9]) before we proceed with the proof
of Theorem 6.1.

15



1. For m ∈ N, a function θ : Rm → R is nondecreasing if for all x, y ∈ Rm, x ≤ y implies
θ(x) ≤ θ(y).

2. For m ∈ N and a valid function π : Rm → R+, the set E(π) defined in (4.1) is said to be
unique up to scaling if for any continuous nonnegative function θ : Rm → R+ satisfying
E(π) ⊆ E(θ), θ is a scaling of π, i.e, θ = απ where α ∈ R.

Remark 6.6. Dey and Richard note that every extreme function for Ib is unique up to scaling,
see the top of page 6 in [9]. In particular, the GMI function φ = π2 is unique up to scaling.

⋄

As mentioned in Remark 6.5, f ⋄g is not necessarily minimal even if f, g are both minimal.
The following proposition gives conditions under which f ⋄ g is indeed minimal and will be
useful in what follows.

Proposition 6.7. [9, Proposition 7] Let m ∈ N, b1 ∈ (0, 1), and b2 ∈ [0, 1)m \ {0}. Let
f : R → R be a minimal function for Ib1 and g : Rm → R be a minimal function for Ib2 such
that [f ]b1 is nondecreasing. Then f ⋄ g is minimal for I(b1,b2).

To deduce that f ⋄ g is a facet, one needs additional assumptions. We now state the
main theorem that guarantees facetness from the sequential-merge operation, due to Dey
and Richard [9].

Theorem 6.8. [9, Theorem 5] Let m ∈ N, b1 ∈ (0, 1), and b2 ∈ [0, 1)m \ {0}. Let f : R → R

be a minimal function for Ib1 and g : Rm → R be a minimal function for Ib2 such that the
following hold:

1. f and g are piecewise linear, continuous functions,

2. [f ]b1 and [g]b2 are both nondecreasing,

3. E(f) and E(g) are unique up to scaling, and

4. f and g are facets for their respective infinite group relaxations.

Then f ⋄ g is a facet for I(b1,b2).
1

We will prove that Πnk is a facet of Ib1n
by showing that πk and Φn−1 satisfy all the

conditions of Theorem 6.8. We divide these into subsections to help organize our arguments.

6.1 Minimality of πk,Φn−1

The minimality of πk, k ≥ 2 was established in Section 3; we concentrate on Φn−1.

Proposition 6.9. Let b ∈ [1/2, 1). The function [πk]b is nondecreasing for every k ≥ 2.

1The definition of facet used in [9] is slightly different from our definition, and corresponds to what the
authors in [4] refer to as weak facet. However, the proof in [9] works for the definition of facet used in this
current manuscript. Moreover, we insist on f, g to be minimal valid functions, whereas Dey and Richard
consider valid functions that are periodic modulo Zn, which is a slightly weaker hypothesis than minimality.
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Proof. Let x, y ∈ R such that x < y. By the definition of the lifting-space representation of
πk and Remark 6.2, we see that

[πk]b(y)− [πk]b(x) = (y − bπk(y))− (x− bπk(x)) = (y − x)− b(πk(y)− πk(x)).

If [πk]b(y) < [πk]b(x), then
1
b
< πk(y)−πk(x)

y−x
. However, this contradicts that the largest slope

(and the only positive slope) in πk is 1
b
(this crucially uses the fact that we are using πk with

b ∈ [1/2, 1)). Thus, [πk]b is nondecreasing.

Proposition 6.10. Let b ∈ [1/2, 1). Then Φm is minimal for Ib1m
for every m ∈ N.

Proof. We proceed by induction on m. If m = 1, then Φm = φ = π2 and the result follows
from Theorem 1.1. So assume that Φm is minimal for Ib1m

for m ∈ N, and consider Φm+1.
Note that Φm+1 = φ ⋄ Φm. From Proposition 6.9, [φ]b = [π2]b is nondecreasing. Since φ and
Φm are minimal by the induction hypothesis, Φm+1 is minimal for Ib1m+1

by Proposition 6.7.

6.2 πk and Φn−1 are piecewise linear and continuous

πk is piecewise linear and continuous by Propositions 2.1 and 2.3. We analyze Φn−1. A nice
formula for the sequential-merge procedure was stated in Proposition 5 of [9] and is applied
to Φm and Πnk below.

Proposition 6.11. Let b ∈ [1/2, 1). For m ∈ N with m ≥ 2 and x ∈ Rm,

Φm(x) =

(m− 1)Φm−1(x−1) + φ

(

∑m
i=1 xi − (m− 1)bΦm−1(x−1)

)

m
.

For k ∈ N with k ≥ 2 and x ∈ Rn,

Πnk(x) =

(n− 1)Φn−1(x−1) + πk

(

∑n
i=1 xi − (n− 1)bΦn−1(x−1)

)

n
.

We get the following corollary.

Proposition 6.12. Let b ∈ [1/2, 1). For m ∈ N with m ≥ 2, Φm is piecewise linear and
continuous. For k ∈ N with k ≥ 2, The function Πnk is piecewise linear and continuous.

Proof. By Proposition 2.3, πk and φ are piecewise linear functions. By Proposition 6.11 and
since piecewise linear continuous functions are preserved under composition, the result follows
by induction.

6.3 [πk]b and [Φn−1]b1n−1
are nondecreasing

For k ∈ N with k ≥ 2, [πk]b is nondecreasing by Proposition 6.9. We analyze [Φm]b1m
.

Proposition 6.13. Let b ∈ [1/2, 1). Then [Φm]b1m
is nondecreasing for every m ∈ N.
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Proof. We prove it by induction on m. For m = 1, since φ = π2, it follows that [φ]b
is nondecreasing. Assume that [Φm−1]b1m−1

is nondecreasing and consider [Φm]b1m
. Let

(x1, x2), (y1, y2) ∈ R× Rm−1 be such that (x1, x2) ≤ (y1, y2). Recall that Φm = φ ⋄ Φm−1 :=
[ψ]−1

(b,b1m−1)
where ψ(z1, z2) = [φ]b(z1 + [Φm−1]b1m−1

(z2)). As shown in Remark 6.5, ψ is
pseudo-periodic since φ and Φm−1 are minimal by Proposition 6.10. Therefore, applying
Proposition 6.3 (iii),

[Φm]b1m
(x1, x2) = [φ]b(x1 + [Φm−1]b1m−1

(x2))

≤ [φ]b(y1 + [Φm−1]b1m−1
(y2))

= [Φm]b1m
(y1, y2),

where the inequality holds because [φ]b, [Φm−1]b1m−1
are nondecreasing. Thus [Φm]b1m

is
nondecreasing.

6.4 E(πk) and E(Φm) are unique up to scaling

Proposition 6.14. Let b ∈ [1/2, 1). For m ∈ N, the sets E(πk) and E(Φm) are unique up to
scaling.

Proof. First, we consider πk. If k = 2, then by Remark 6.6 we have that E(πk) is unique up
to scaling. So let k ≥ 3 and let ξ : R → R+ be a continuous function such that E(πk) ⊆ E(ξ).
We claim that ξ = ξ(b)πk.

If ξ(b) = 0, then ξ(x) + ξ(b − x) = 0 for each x ∈ R since E(ξ) ⊇ E(πk). As ξ is
nonnegative, this implies that ξ(x) = 0 for each x ∈ R and so ξ = 0πk. Now suppose that
ξ(b) 6= 0. It is sufficient to show that the function defined pointwise by ξ̃(x) := 1

ξ(b)ξ(−x)

is equal to the function defined by π̃k(x) := πk(−x). Recall that π̃k is extreme as discussed
after Remark 6.5.

Observe that E(π̃k) ⊆ E(ξ̃). Indeed, if (x, y) ∈ E(π̃k), then π̃k(x+y) = π̃k(x)+π̃k(y), and
πk(−x−y) = πk(−x)+πk(−y) then follows from the definition of π̃k. Since E(πk) ⊆ E(ξ), this
implies ξ̃(x+y) = 1

ξ(b)ξ(−x−y) =
1
ξ(b)ξ(−x)+

1
ξ(b)ξ(−y) = ξ̃(x)+ ξ̃(y). Hence E(π̃k) ⊆ E(ξ̃).

This observation has a few implications. First, it implies ξ̃(0) + ξ̃(0) = ξ̃(0) and so ξ̃(0) = 0,
and also that x̃i(b) = 1. Next, since π̃k is periodic, Proposition 4.4 implies that ξ̃ is periodic.
Finally, since ξ̃ is continuous and periodic, it is locally bounded.

Using π = π̃k and θ = ξ̃ in Lemma 4.9, it follows that ξ̃ = π̃k on Ik3 ∪ Ik6 . From
Proposition 4.7 and again setting π = π̃k and θ = ξ̃, we obtain that ξ̃ = π̃k on Ik2 ∪ Ik4 . It is
left to show that ξ̃ = π̃k on Ik1 and Ik5 .

Let U =
[

0, b2
(

1
8

)k−2
]

and observe that U + U =
[

0, b
(

1
8

)k−2
]

= Ik1 . It follows from the

definition of π̃k that π̃k(x)+π̃k(y) = π̃k(x+y) for all x, y, x+y ∈ Ik1 , so U×U ⊆ E(π̃k) ⊆ E(ξ̃).

Recall that ξ̃(0) = π̃k(0) = 0. Also, since ξ̃ = π̃k on Ik2 , ξ̃
(

b
(

1
8

)k−2
)

= π̃k

(

b
(

1
8

)k−2
)

. Thus

ξ̃ = π̃k on the endpoints of Ik1 . Moreover, Lemma 4.3 implies that ξ̃ is affine over Ik1 . Since
π̃k is also affine over Ik1 and ξ̃ = π̃k at the endpoints, we have ξ̃ = π̃k on Ik1 . The fact that
ξ̃ = π̃k on Ik5 follows by symmetry (note that ξ̃ is also symmetric because E(π̃k) ⊆ E(ξ̃)).
Therefore ξ̃ = π̃k everywhere.
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Now consider Φm. Dey and Richard’s proof of Theorem 6.8 shows that if E(f) and E(g)
are unique up to scaling, then E(f ⋄ g) is also unique up to scaling. If m = 1, then Φm = φ.
Since φ = π2, the set E(φ) is unique up to scaling by Remark 6.6. Now an induction argument
shows that E(Φm) is unique up to scaling.

6.5 The proof of Theorem 6.1

Proposition 6.15. Let b ∈ [1/2, 1). For m ∈ N, the function Φm is a facet for Ib1m .

Proof. Using induction, the result is a consequence of Theorem 6.8; the assumptions of The-
orem 6.8 are verified by the results of Propositions 6.10, 6.12, 6.13 and 6.14.

The next few propositions argue that Πnk is genuinely n dimensional with at least k slopes.
Note that, unlike the one dimensional setting in which exactly k slopes are attained, we are
unsure of exactly how many slopes Πnk attains; all we can establish is that the number of
slopes is greater than or equal to k.

Proposition 6.16. Let b ∈ [1/2, 1) and m ∈ N. Then Φm(x) = 0 if and only if x ∈ Zm.
Also, for every n, k ∈ N such that n, k ≥ 2, Πnk (x) = 0 if and only if x ∈ Zn.

Proof. We use induction on m. If m = 1, then Φm = φ and the result follows from (1.3). So
assume that Φt(x) = 0 if and only if x ∈ Zt for all t ≤ m with m, t ∈ N. Using the formulas
in Proposition 6.11 and the induction hypothesis, it directly follows that Φm+1(x) = 0 for all
x ∈ Zm+1. Let x ∈ Rm+1 \Zm+1. By the induction hypothesis, if x−1 6∈ Zm, then Φm(x−1) >
0, and since φ is nonnegative, Φm+1(x) > 0 follows from Proposition 6.11. If x−1 ∈ Zm,
then Φm(x−1) = 0 by the induction hypothesis, and

∑m+1
i=1 xi−mbΦm(x−1) =

∑m+1
i=1 xi 6∈ Z.

Again using the induction hypothesis, φ(
∑m+1

i=1 xi −mbΦm(x−1)) > 0 and so Φm+1(x) > 0
using the formula in Proposition 6.11.

For Πnk the result follows by applying the same argument as above and noting that πk(x) =
0 if and only if x ∈ Z; see Proposition 2.1.

Proposition 6.17. Let b ∈ [1/2, 1). The function Πnk is genuinely n dimensional for every
n, k ∈ N such that n, k ≥ 2.

Proof. Assume to the contrary that Πnk is not genuinely n dimensional. Then there exist a
linear transformation T : Rn → Rn−1 and a function Ψ : Rn−1 → R such that Πnk = Ψ ◦ T .
Since T is linear with nontrivial kernel, there must exist x ∈ ker(T ) such that x 6∈ Zn. It
follows that

Πnk(x) = Ψ ◦ T (x) = Ψ(0) = Ψ ◦ T (0) = Πnk(0) = 0.

However, Proposition 6.16 implies that x ∈ Zn, which is a contradiction.

Lemma 6.18. Let b ∈ [1/2, 1) and m ∈ N. Then Φm(x) = 1
mb

∑m
i=1 xi for all x ∈ Rm+ with

‖x‖∞ < b.

Proof. We proceed by induction on m. If m = 1, then Φm = φ and the result follows by the
definition of the GMI in (1.3). So let m ≥ 2 and assume that Φm−1(x) =

1
(m−1)b

∑m−1
i=1 xi for

all x ∈ Rm−1
+ with ‖x‖∞ < b.
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Let x ∈ Rm+ with ‖x‖∞ < b. Using Proposition 6.11 and the induction hypothesis, we see
that

Φm(x) =

(m− 1)Φm−1(x−1) + φ

(

∑m
i=1 xi − (m− 1)bΦm−1(x−1)

)

m

=
1
b

∑m
i=2 xi + φ(x1)

m
.

Since |x1| < b, we can apply the definition of the GMI to the previous equality and see

Φm(x) =
1
b

∑m
i=2 xi +

1
b
x1

m
=

1

mb

m
∑

i=1

xi,

as desired.

Proposition 6.19. Let b ∈ [1/2, 1). The function Πnk has at least k slopes for every n, k ∈ N

such that n, k ≥ 2.

Proof. By Theorem 1.3, πk has k nondegenerate intervals J1, . . . , Jk ⊆ R such that πk is affine
over each Ji with slope σi ∈ R, i.e., πk(x) = σix+ di for some di ∈ R. Moreover, σi 6= σj for
i 6= j. For each i = 1, . . . , k, let Ri ⊆ Rn be defined by

Ri := {x ∈ Rn : x1 ∈ Ji, x−1 ∈ Bn−1},

where Bn−1 = {x ∈ Rn−1
+ : ‖x‖∞ < b}. We claim that Πnk is affine over each Ri, and attains

a different slope on each Ri.
In order to see that Πnk is affine over Ri, let x ∈ Ri. By Proposition 6.11, we have

Πnk(x) =
(n− 1)Φn−1(x−1) + πk(

∑n
i=1 xi − (n− 1)bΦn−1(x−1))

n

=
1
b

∑n
i=2 xi + πk(x1)

n
by Lemma 6.18

=
1

bn

n
∑

i=2

xi +
σix1 + di

n
since x ∈ Ri

=

(

σi
n
,
1

bn
1n−1

)

· x+
di
n
.

Thus, Πnk(x) is affine over Ri with gradient (σi
n
, 1
bn
1n−1).

Since each σi is distinct for i = 1, . . . , n, each gradient (σi
n
, 1
bn
1n−1) is distinct. Note that

as Ri is full dimensional, this vector is indeed a gradient. Hence, Πnk has at least k slopes, as
desired.

of Theorem 6.1. Since facets are periodic with respect to Zn, we may assume that b ∈ (0, 1).
First, we prove the result for b ∈ [1/2, 1). Sections 6.1, 6.2, 6.3, 6.4, and Propositions 4.1 and
6.15 establish that πk and Φn−1 satisfy the assumptions for Theorem 6.8. Thus, Πnk is a facet
for Ib1n . Proposition 6.17 shows that Πnk is genuinely n dimensional, and Proposition 6.19
shows that Πnk has at least k slopes. This gives the desired result.

Now, let b ∈ (0, 1/2]. By Theorem A.1 and the previous case of b ∈ [1/2, 1), we obtain
the desired result.
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A Appendix

Theorem A.1. Let n ≥ 1 be a natural number. A function θ : Rn → R+ is minimal/extreme/facet
for Ib when b ∈ [0, 1/2]n \ {0} if and only if θ̃ : Rn → R+ defined by θ̃(x) := θ(−x) is mini-
mal/extreme/facet for I1−b, respectively, where 1 ∈ Rn is the vector of all ones.

Proof. The result essentially follows by applying Theorem 8.2 in [16]. However, since that
paper considers the so-called mixed-integer problem, while we are looking at the pure integer
problem, we include a proof for completeness.

We show one direction as the other follows from swapping the roles of b and 1−b. Suppose
that θ is minimal for Ib with b ∈ [0, 1/2]n \ {0}. Define θ̃(x) := θ(−x). We check that θ̃ is
minimal using Theorem 1.1. If w ∈ Zn then so is −w, and therefore θ̃(w) = θ(−w) = 0 since
θ is minimal. Let x, y ∈ Rn and note that

θ̃(x+ y) = θ(−x− y) ≤ θ(−x) + θ(−y) = θ̃(x) + θ̃(y),

where the inequality follows from the subadditivity of θ. Hence θ̃ is subadditive. Finally, let
r ∈ Rn and note that

θ̃(r) + θ̃((1− b)− r) = θ(−r) + θ(b− (1− r)) = θ(−r) + θ(b− (−r)) = 1,

where the second equation follows from the periodicity of θ and the third equation from the
symmetry of θ. Hence θ̃ is symmetric about 1− b. From Theorem 1.1, θ̃ is minimal.

Now assume that θ is extreme. Let θ1, θ2 be valid for I1−b such that θ̃ = θ1+θ2
2 . We claim

that θ̃i(r) := θi(−r), i = 1, 2, is a valid function for Ib. This would imply θ̃ = θ1 = θ2 from
the extremality of θ. Let y ∈ Ib. Then ỹ(r) := y(−r) ∈ I1−b. Note that for i = 1, 2,

∑

r∈Rn

θ̃i(r)y(r) =
∑

r∈Rn

θi(−r)y(r) =
∑

r∈Rn

θi(−r)ỹ(−r) ≥ 1,

since θi is valid for I1−b.

The proof that θ is a facet if and only if θ̃ is a facet is similar.

of Proposition 2.1. We prove this using induction on k. For k = 2, the result is easily verified
using (1.3). So let k ≥ 3 and assume that πk−1 is well-defined, nonnegative, and positive

on R \ Z. First, we will show that πk is well-defined at the points {b
(

1
8

)k−2
, 2b(18 )

k−2, b −
2b(18 )

k−2, b − b(18)
k−2, b}, that is, we will show πk is well-defined at the boundaries of the

intervals on which it is defined. This will show that πk is well-defined on [0, 1), and since πk
is periodic by definition, it will follow that πk is well-defined everywhere.
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Note that

42−k

1− b
−

(

1

1− b

)

b

(

1

8

)k−2

=

(

2k−2 − b

b− b2

)

b

(

1

8

)k−2

=

(

2k−2 − b

1− b

)(

1

8

)k−2

> 0, (A.1)

where the inequality follows since k ≥ 3 and b ∈ (0, 1). Also, observe that

1− 42−k

1− b
−

(

1

1− b

)

(

b− b

(

1

8

)k−2
)

=
1− 2k−2

1− b
+

(

2k−2 − b

b− b2

)

(

b− b

(

1

8

)k−2
)

=
1 + b((18 )

k−2 − 1)− 42−k

1− b

≥
1 + 1

2 ((
1
8 )
k−2 − 1)− 42−k

1− b

> 0, (A.2)

where the inequalities follow since b ∈ (0, 12 ] and k ≥ 3. Equations (A.1) and (A.2) show that

πk is well-defined and positive at the points b
(

1
8

)k−2
and b− b

(

1
8

)k−2
.

Observe that b ∈ Ij5 ∩ I
j
6 . Since

1−2k−2

1−b +
(

2k−2−b
b−b2

)

b = 1, it follows that πk is well-defined

and positive at b.

Notice that 2b
(

1
8

)k−2
∈ Ik2 ⊆ Ik−1

1 by definition. Similarly, b − 2b
(

1
8

)k−2
∈ Ik4 ⊆ Ik−1

5 .
Therefore, by induction,

42−k

1− b
−

(

1

1− b

)

2b

(

1

8

)k−2

= πk−1

(

2b

(

1

8

)k−2
)

> 0, (A.3)

and
1− 42−k

1− b
−

(

1

1− b

)

(

b− 2b

(

1

8

)k−2
)

= πk−1

(

b− 2b

(

1

8

)k−2
)

> 0, (A.4)

where the inequalities follows since πk−1 is nonnegative. Thus, πk is well-defined and positive
on 2b(18 )

k−2 and b− 2b(18 )
k−2.

Continuity of πk follows from the recursive piecewise definition and the confirmation above
that the values are well-defined on the boundaries of the pieces.

We now show that πk is nonnegative and πk(x) = 0 if and only if x ∈ Z. Let x ∈ [0, 1). If
x ∈ Ik3 ∪ I

k
6 , then πk(x) = πk−1(x) > 0 by the induction hypothesis. Observe that πk is affine

on the intervals Ik1 , I
k
2 , I

k
4 , and I

k
5 . From Equations (A.1)-(A.4), πk is positive on the endpoints

of each of the latter intervals, except for when x = 0. Thus, if x ∈ Ik1 \{0}∪ I
k
2 ∪ I

k
4 ∪ I

k
5 , then

πk(x) > 0 and πk(0) = 0. Finally, if x ∈ R \ [0, 1), then by the periodicity of πk, it follows
that πk(x) > 0 and πk(x) = 0 if x ∈ Z.
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