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Abstract We study the Unsplittable Flow problem (UFP) on trees with a submodular
objective function. The input to this problem is a tree with edge capacities and a
collection of tasks, each characterized by a source node, a sink node, and a demand.
A subset of the tasks is feasible if the tasks can simultaneously send their demands
from the source to the sink without violating the edge capacities. The goal is to select a
feasible subset of the tasks that maximizes a submodular objective function. Our main
result is an O(k log n)-approximation algorithm for Submodular UFP on trees where
k denotes the pathwidth of the given tree. Since every tree has pathwidth O(log n),
we obtain an O(log2 n) approximation for arbitrary trees. This is the first non-trivial
approximation guarantee for the problem, matching the best known approximation
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ratio for UFP on trees with a linear objective function. Our main technical contribution
is a new geometric relaxation for UFP on trees that builds on the recent work of
Bonsma et al. (2014, FOCS), Anagnostopoulos et al. (Amazing 2+ε approximation
for unsplittable flow on a path, SIAM, pp 26–41, 2014) for UFP on paths with a linear
objective. Our relaxation is very structured, so it can be combined with the contention
resolution framework of Chekuri et al. (2009, STOC). Our approach is robust and
extends to several related problems, such as UFP with bag constraints and the Storage
Allocation Problem. Additionally, we study the special case of UFP on trees with
a linear objective and upward instances where, for each task, the source node is a
descendant of the sink node. Such instances generalize UFP on paths. We build on the
work of Bansal et al. (A quasi-PTAS for unsplittable flow on line graphs, ACM, pp
721–729, 2006) for UFP on paths and obtain a QPTAS for upward instances when the
input data is quasi-polynomially bounded.We complement this result by showing that,
unlike the path setting, upward instances are APX-hard if the input data is arbitrary.

Keywords Unsplittable flow problem · Submodular functions · Approximation
algorithms

Mathematics Subject Classification 68W25 · 68Q25 · 90C05

1 Introduction

Submodular functions are a rich class of functions with many applications both in
theory and in practice. On the theoretical side, submodularity is a key concept in
combinatorial optimization and economics with deep mathematical consequences.
On the practical side, submodular functions arise naturally in a variety of settings
such as data summarization, sensor placement, inference in graphical models, image
segmentation, social networks, auctions, and exemplar clustering [8,17,20,21,23–26].

One of the main reasons for the success of submodularity is that it combines a
significant modeling power with a certain degree of tractability. This delicate balance
between generality and tractability has made submodular functions very appealing,
and there has been a significant interest in optimizing submodular functions subject
to a variety of constraints.

The traditional approach to submodular maximization makes extensive use of the
classical Greedy algorithm of Nemhauser, Wolsey, and Fisher [27]. The Greedy algo-
rithmand its continuous counterparts arewell-suited for constraints such as cardinality,
matroids, and knapsack, but they fail to handle other types of natural constraints. Thus
there is an increasing need to develop algorithms for general constraints.

A major contribution in this direction comes from the work of Chekuri et al. [15]
which has developed a powerful framework for submodular function maximization
with general constraints. Their framework leverages the power of mathematical pro-
gramming relaxations coupled with structured rounding schemes called contention
resolution (CR) schemes. In particular, it unifies several previous results for special
cases (e.g., matroids or knapsack constraints) and thus captures the types of con-
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straints for which we know how to optimize submodular functions. This has led to the
following very interesting meta-question:

For which type of constraints can we provide structured relaxations that admit good
CR schemes?

In this paper, we address this question in the specific case of the unsplittable flow
problem (UFP). In this setting, we are given an edge-capacitated, undirected graph
and a collection of tasks; each task is specified by a source vertex, a sink vertex, and a
demand. The goal is to select a maximum profit subset of the tasks that can be routed
unsplittably, i.e., the task’s demand is routed along a single path from the source to
the sink subject to the edge capacities.

The problem is well-studied, and most of the results focus on linear objectives.
Despite its apparent simplicity, already UFP on paths captures several well-studied
problems, including the knapsack problem (when the graph is a single edge) and
resource allocation problems.

UFP is quite challenging even on paths and trees, and one of the main reasons for
the difficulty is the lack of LP relaxations with small integrality gaps. The natural LP
relaxation for the problem has an�(n) integrality gap even on paths [11], and standard
approaches for strengthening the LP by adding valid inequalities fail to improve the
integrality gap significantly [14]. Chekuri et al. [14] gave a novel LP relaxation for
UFP on paths that strengthens the standard LP using clique type of constraints, and
they showed that it has an O(log n) integrality gap. The relaxation of [14] can also
be extended to trees, and understanding this relaxation has been an interesting and
challenging open question.1

The design of good relaxations for UFP is motivated not only by the goal of
obtaining better approximations for linear objectives, but also by the need of handling
more general constraints and objective functions. In particular, the current approaches
for submodular objectives rely on structured relaxations with good CR schemes. As
a result, there is a discrepancy between the approximation guarantees for linear and
submodular objectives. There has been a long line of work for UFP on paths with
a linear objective that led to a constant factor approximation [5,7]; these approaches
combine the standard LP relaxation with dynamic programming techniques. Chekuri
et al. [14] give a combinatorial greedy algorithm for UFP on trees with a linear
objective that achieves an O(log2 n) approximation. Chakaravarthy et al. [10] study
the generalization of the UFP with a linear objective, called bagUFP, where tasks
are partitioned into bags and a feasible solution is allowed to select at most one task
per bag. They give O(log n) approximation algorithm for bagUFP on paths based
on a primal-dual approach. Grandoni et al. [19] improve the approximation factor to
O(log n/ log log n), and to O(1) in the uniform-weight setting. Note that bagUFP
is a special case of UFP with a submodular objective. In general, for UFP with a
submodular objective, an O(log n) approximation for paths can be easily obtained by
combining the results of [14] and [15]. In contrast, no non-trivial approximation was
known for trees prior to our work. Chekuri et al. [15] consider instances of submodular

1 Friggstad and Zao [18] showed an O(log2 n) upper bound on the integrality gap of the relaxation of [14]
for UFP on trees with a linear objective. This upper bound is shown via a primal-dual analysis which is not
suitable for designing a CR scheme.
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UFP on trees that satisfy a certain assumption, called the no-bottleneck assumption
(NBA),2 and they give a constant factor approximation for such instances. However,
the no-bottleneck assumption is very restrictive and removing this restriction poses
several technical challenges, particularly for the design of mathematical programming
relaxations.

Thus, there has been an extensive work onUFP on paths but relatively fewer results
on trees. SinceUFPmodels the allocation of communication bandwidths in networks,
we believe that it is worthwhile to develop a better understanding for more complex
network topologies, such as trees. Also, submodular objective functions are much
richer than linear objectives, and can model for instance linear objective functions
with additional constraints.

Our contributions. We give the first approximation algorithm for submodular UFP
on trees and the first relaxationwith amatching integrality gap. Our algorithm achieves
an approximation ratio of O(k log n) on trees with pathwidth k. As each tree has path-
width O(log n), this gives an O(log2 n)-approximation for arbitrary trees, matching
the best known result for linear objective functions [14]. For several special cases of
the problem, such as paths, spiders, and caterpillars, our approximation ratio improves
to O(log n) (since in those cases k = O(1)), and such a ratio was not even known for
linear objectives. Thus our result generalizes and improves the best approximations
known for UFP on paths with a submodular objective and UFP on trees with a linear
objective.

Theorem 1 There is a O(k·log n)approximation for SubmodularUFPon trees,where
k is the pathwidth of the tree and n is the number of nodes in the tree. Additionally,
there is a polynomial-sized relaxation for the problem with a matching integrality gap.

We obtain our result via a new geometric LP relaxation for UFP on trees that
is very different from the clique-based approach of [14]. Our relaxation builds on
a powerful two-dimensional geometric viewpoint developed in the context of the
UFP problem on paths with a linear objective [7]. This viewpoint connects UFP to
structured instances of the Maximum Independent Set of Rectangles (MISR) prob-
lem [1,12,13], which in turn allows one to handle instances ofUFP on paths for which
the standard LP relaxation fails. The geometry was exploited to obtain a combinatorial
algorithm for such instances that is based on dynamic programming. A related two-
dimensional visualization was used in [2], again as the basis of a dynamic program.
These approaches, however, break down for submodular UFP on trees; in the two-
dimensional viewpoints, an input path corresponds to a subinterval of the x-axis and
this is no longer meaningful for trees. Also, dynamic programming approaches are not
suitable for submodular objective functions. In contrast to previous work, the focus in
this paper is to translate these geometric insights to an LP relaxation forUFP on trees.
We give a CR scheme for our relaxation that can be combined with the framework
of [15] to obtain approximation guarantees for submodular objectives. The core of
our reasoning is that our LP-formulation not only decides which tasks to select, but
also computes a drawing of them as non-overlapping rectangles on suitable subpaths

2 The no-bottleneck assumption states that the maximum demand of any task is at most the minimum
capacity of any edge.
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of the tree. Our LP is a polynomial-sized extended formulation and, to our knowl-
edge, this is the first time that an extended formulation is used in the context of CR
schemes.

A very important feature of the CR scheme framework is that it allows one to
combine several constraints, thus extending the applicability of our approach to two
generalized settings. First, in the Submodular Bag-UFP on trees problem, the input
tasks are partitioned into bags and a feasible solution is allowed to select at most
one task per bag [10].3 We obtain an O(k log n) approximation for Submodular Bag-
UFP on trees of pathwidth k. Second, we obtain an O(log n) approximation for the
Submodular Storage Allocation Problem on trees. This problem has the same input as
UFP, with additional requirements that each selected task gets a private subinterval
of width equal to the demand, contained in [0, ue) for each edge e used by the task.
We require these subintervals to be disjoint for any two tasks sharing an edge of
the tree, intuitively enforcing each task to get a contiguous portion of the resource
spectrum.

Finally, we round up our contributions with the following results for a special case
of UFP on trees with a linear objective function. An instance of UFP on tree is an
upward instance if the input tree is rooted and, for every task, the source node of the
task is an ancestor of the sink node (or vice-versa).

Theorem 2 There is a (1+ε) approximation algorithm for upward instances ofUFP
on trees with running time npoly(log(n/ε)) log(dmax/dmin). In particular, if the demands are
quasi-polynomially bounded, this yields a QPTAS.

Unlike for UFP on paths [5], we show that the dependency of the running time
on the term log(dmax/dmin) can not be removed for upward instances of UFP on
trees. In fact, assuming the Exponential Time Hypothesis (ETH), the running time of
our approximation scheme is essentially tight. This illustrates an inherent distinction
between paths and upward instances on trees. Also, this establishes the problem’s
status as a very rare problem that allows a QPTAS on quasi-polynomially bounded
input but is APX-hard on general instances.

Theorem 3 There is a constant ε0 such that for all δ > 0 any (1+ ε0)-approximation
for upward instances ofUFP on trees runs in time of at least npoly(log n) log1−δ(dmax/dmin),
unless ETH fails. Also, the problem is APX-hard.

Other related work. The problem of maximizing submodular functions subject to
various constraints is very well-studied; we refer the reader to [15] for an overview.
UFP with a linear objective is also extensively studied. The best approximation is a
(2 + ε) approximation [2] and a QPTAS [4,6] for UFP on paths, and an O(log2 n)

approximation for UFP on trees [14].

3 For linear objective functions, the bag constraints can be “glued” with the objective function, yielding an
instance of SubmodularUFP. It is not clear though whether this holds in general for any initial submodular
objective function.

123



A. Adamaszek et al.

2 Preliminaries

Formal problem definitions. The input of Unsplittable Flow problem on trees (UFP-
tree) consists of an undirected tree T = (V, E) with edge capacities ue ∈ Z+, and a
set of tasks T . Each task i ∈ T is characterized by a start vertex si ∈ V , an end vertex
ti ∈ V , a demand di ∈ Z+, and a profit wi ∈ Z+. For each task i ∈ T denote by pi
the unique path between si and ti in T . A subset of tasks T ′ ⊆ T is said to be feasible
if

∑
i∈T ′ : pi�e di ≤ ue for each edge e ∈ E . The goal is to find a feasible solution

maximizing w(T ′):= ∑
i∈T ′ wi .

The Submodular UFP-tree problem is a generalization of UFP-tree, where
instead of a linear weight function w we are given a submodular objective function
f : 2T → R+ and the goal is to select a feasible subset T ′ ⊆ T maximizing f (T ′).
A function f : 2T → R+ is submodular if f (A) + f (B) ≥ f (A ∩ B) + f (A ∪ B)

for any two subsets A, B ⊆ T . We assume that f is given as a value oracle: In a unit
of computational time, the algorithm may specify S ⊆ T and obtain the value f (S).

Path Decomposition and pathwidth. A path decomposition of a graph G is given
by a collection X = {X1, X2, . . . , Xm} satisfying
– Xi ⊆ V (G) for each i = 1, . . . ,m. We refer to each set Xi as a bag.
– For each edge uv ∈ E(G), there is a bag Xi such that u, v ∈ Xi .
– For every three indices i < j < k, we have Xi ∩ Xk ⊆ X j .

The pathwidth of a graph G is a minimum value k for which there exists a path
decomposition X of G where for each bag Xi ∈ X we have |Xi | ≤ k + 1. Any tree
has pathwidth of at most O(log n) [22].

3 Geometric relaxation for submodular UFP on trees

In this section, we present our O(k · log n) approximation algorithm for Submodular
UFP-tree. We first describe a pseudo-polynomial sized LP relaxation for UFP-tree
with a linear objective function. In Sect. 3.2, we show how to reduce the size of the
LP to polynomial. In Sect. 3.3, we extend our algorithm to a submodular objective
function.

3.1 A pseudo-polynomial sized relaxation

In the following, we give a geometric LP-relaxation for UFP-treewith a linear objec-
tive function. The relaxation has pseudo-polynomial size.

Reduction to intersecting instances. We reduce the general case to the case in which
the path of each task contains the root of the tree. We call such instances intersecting
instances. Chekuri et al. [14] showed that, via a standard centroid decomposition, we
can reduce an arbitrary instance to a collection of intersecting instances at a loss of
O(log n) in the approximation ratio.

Lemma 1 (Chekuri et al. [14]) Suppose that there is a polynomial time α-
approximation for UFP-tree on intersecting instances. Then there is a polynomial
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time O(α · p log n) approximation algorithm for the problem on arbitrary trees. More-
over, this holds for the generalization of the problem in which the objective function
is sub-additive.4

3.1.1 Partitioning into paths

In the remainder of this section, we assume that we are given an intersecting instance
on a tree T of pathwidth k. Our goal is to compute a O(k)-approximation for such
instances, so that using Lemma 1we obtain a O(k log n)-approximation for the general
problem. First, we split a given tree into a collection P of paths such that each input
task shares an edge with at most O(k) paths inP . Then, we define a new LP relaxation
for the problem with a randomized rounding with alteration strategy. The relaxation
will be based on a two-dimensional geometric viewpoint for each path in P .

For our path partition P we require that each path P ∈ P is an upward path, i.e.,
one endpoint of the path is an ancestor in T of the other endpoint. The following
observation follows from the property of an intersecting instance.

Observation 1 For each task i and each upward path P, if i uses an edge of P then
it uses the top edge of P.

Definition 1 Consider an intersecting instance I of UFP-tree on a rooted tree T . Let
P = {P1, . . . , P�} be a collection of paths in T . We say that P is a K-nice splitting
for I if it has the following properties.

– The paths in P are edge-disjoint, upward, and they partition the edges of the tree
T .

– Each task of I uses an edge of at most K paths in P .

The next lemma shows the existence of a O(k)-nice splitting.

Lemma 2 Consider an intersecting instance I ofUFP-tree on a rooted tree T of path-
width k. There is a polynomial time algorithm that constructs an O(k)-nice splitting
for I .

Proof Consider an intersecting instance I of UFP-tree on a rooted tree T of pathwidth
k. Our algorithm will assign colors to the edges of T . For each color j , edges colored
with j will form a path Pj in the O(k)-nice splitting of T .

The algorithm is recursive and is applied to a subtree of the form Tuv , where uv is
an edge of T such that u is a parent of v. Then Tuv is a tree Tv ∪ {uv}, where Tv is a
subtree of T rooted at v. The algorithm will color the edges of the subtree, and return
an integer kuv which is the maximum number of colors in any root-to-leaf path of Tuv .
Now we describe the algorithm. If Tuv contains only a single edge uv, then uv is given
a color and kuv is set to 1. Otherwise uv has some children edges vv1, vv2, . . . , vvq
(i.e., the children of v are v1, . . . , vq ), and we recursively color the subtrees Tvv j for
all j = 1, . . . , q. Assume that each subtree uses a distinct set of colors. Then we give

4 A set function f : 2V → R is sub-additive if f (A ∪ B) ≤ f (A) + f (B) for any two disjoint sets A and
B. Note that a non-negative submodular function is sub-additive.
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the edge uv the same color as an edge vv j such that j maximizes kvv j . We set kuv to
max j kvv j . The following claim is immediate.

claim 1 When the algorithm finishes coloring a subtree Tuv , edges of the same color
form an upward path. Moreover, any root-to-leaf path in Tuv contains edges from at
most kuv color classes.

Now we show that the number of colors used is proportional to k.
In order to achieve this, we show that if we run the above algorithm on a subtree Tuv

and obtain kuv ≥ 3k′ for some positive integer k′, then the pathwidth of the subtree
Tv (i.e., excluding the vertex u) is at least k′.

We prove this by induction on k′. Since the pathwidth is at least 1, the base case
(for k′ = 1) holds.

Now, let P be a collection of paths output by the algorithm, and Q a root-to-leaf
path that intersects the maximum number of paths in P , where this number is at least
3k′. We traverse the path Q = e1e2 . . . eq from root to leaf. Then we must have
ke1 ≥ 3k′ and ke1 ≥ ke2 ≥ . . . ≥ keq = 1. Due to the way we constructed our paths,
since Q intersects the maximum number of paths in P we have that ke j−1 ≤ ke j + 1
for all j . Let ea be the edge on Q closest to the root for which kea = 3k′ − 1. Our
algorithm guarantees that its parent edge ea−1 must have another child edge e′

a such
that ke′

a
≥ kea = 3k′ − 1 (e′

a is the edge that obtains the same color as ea−1). Using
the same argument, let eb and ec be the top-most edges on Q such that keb = 3k′ − 2
and kec = 3k′ − 3, respectively. Again, the algorithm guarantees that there are edges
e′
b and e

′
c with one endpoint at Q such that ke′

b
≥ 3k′ − 2 and ke′

c
≥ 3k′ − 3. The three

subtrees Te′
a
, Te′

b
and Te′

c
are disjoint, and they are “attached” to the path Q via edges

e′
a, e

′
b, e

′
c respectively. Denote by Ta, Tb, Tc the subtrees Te′

a
, Te′

b
and Te′

c
excluding

the edges e′
a, e

′
b, e

′
c, respectively.

By the induction hypothesis, each of Ta, Tb, Tc has pathwidth at least k′−1.Assume
for contradiction that Tv has pathwidth smaller than k′, i.e., it has a path splitting
X = {X1, . . . , Xm} with |X j | ≤ k′ for all j .
claim 2 There are Xa′, Xb′ , Xc′ ∈ X s.t. Xa′ ⊆ Ta , Xb′ ⊆ Tb and Xc′ ⊆ Tc.

Proof Assume that this does not hold for Ta (the arguments are similar for Tb and Tc.)
The decomposition X restricted to nodes in V (Ta) gives a path decomposition for Ta
of pathwidth less than k′ − 1, a contradiction. �

W.l.o.g. we can assume that a′ < b′ < c′. Therefore, the set of vertices in the
bag Xb′ forms a vertex cut in Tv separating the two components Xa′ and Xc′ . This is
impossible, because Ta and Tc are connected in Tv\V (Tb) via the path Q. We obtain
a contradiction. ��

3.1.2 Geometric viewpoint

Let P = {P1, . . . , P�} be an O(k)-nice splitting of the instance that is guaranteed by
Lemma 2. We use P to write an LP relaxation for the problem, based on the following
geometric viewpoint. For a path P ∈ P , let TP be the set of tasks from T using an
edge of P .
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Fig. 1 A one-sided staircase
instance of UFP-path, and a
drawing of a feasible set of tasks
using rectangles

If we restrict the tasks in our instance to a path P in T , we get an instance of
the Unsplittable Flow problem on paths (UFP-path) in a natural way. For each task
i ∈ TP , theUFP-path instance has a corresponding task whose path is pi ∩ P . Notice
that each task i ∈ TP uses the top edge of P , so we can assume w.l.o.g. that when
traversing the edges of P from top to bottom, their capacities are non-increasing. We
call this a one-sided staircase instance.

We claim that for such UFP-path instance on a path P , each feasible subset of the
tasks can be represented as a collection of non-overlapping rectangles drawn under-
neath the capacity profile, such that each task i has a corresponding rectangle of height
di whose projection on P is the path of i . We interpret these rectangles as open sets
and call such a drawing a representing drawing (see Fig. 1).

Lemma 3 Consider an instance of UFP-path on a path P in which all of the tasks
use the first edge of P. Any feasible subset of the tasks admits a representing drawing.

Proof Let I be a feasible set of tasks for a path P , where each task i ∈ I uses the
first edge of P . We can construct a drawing for I as follows. We order the tasks in
a non-increasing order with respect to the length of pi ∩ P , breaking ties arbitrarily.
We consider the tasks in this order and, for the current task j ∈ I , we assign a height
hi = ∑

i< j di . Each task i ∈ I corresponds to a rectangle whose projection on the
height-axis is [hi , hi + di ), and projection on P is pi ∩ P . It corresponds to placing
the newly drawn rectangle on top of the rectangles we have drawn so far.

Clearly, these rectangles are pairwise non-overlapping. We now show that the rect-
angles are drawn underneath the capacity profile. Consider an edge e ∈ E , and let
Ie ⊆ I be the subset of tasks using e. Due to our ordering procedure, the tasks in Ie
are exactly the |Ie| first tasks in I . Therefore the projection of all the corresponding
rectangles on the height-axis is the interval [0,∑i∈Ie di ). That fits under the capacity
profile, as ue ≥ ∑

i∈I :e∈pi di = ∑
i∈Ie di . ��

3.1.3 LP relaxation

Using this geometric viewpoint, wewrite an LP relaxation for intersecting instances of
UFP-tree as follows. Recall that we have an O(k)-nice splitting P of the tree T . We
add constraints to the relaxation to enforce that there is a representing drawing for the
selected tasks on each path P ∈ P; we remark that these constraints will automatically
enforce the capacity constraints.

Variables. The IP has the following variables. For each task i , we have a variable
xi ∈ {0, 1} with the interpretation that xi = 1 if task i is in the solution. For each path
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P ∈ P , each task i ∈ TP , and each height h, we have a variable y(i, h, P) ∈ {0, 1}
with the interpretation that y(i, h, P) = 1 if the rectangle for task i is drawn at height
h in the representing drawing for P . The allowed heights h are the ones satisfying
h + di ≤ ue for each edge e ∈ pi ∩ P , i.e., such that the rectangle fits under the
capacity profile. We introduce variables y(i, h, P) only for such heights.

Constraints. For each P ∈ P and each i ∈ TP , we have a constraint

∑

h s.t. ∀e∈pi∩P : h+di≤ue

y(i, h, P) = xi . (1)

For each path P ∈ P , we add constraints enforcing that in the representing drawing for
P the rectangles do not overlap, by imposing constraints that any point q underneath
the capacity profile is covered by at most one rectangle. Since all tasks use the first
edge of P , it suffices to consider only points q on a vertical line going through the
first edge of P , i.e., points q = (x0, h) where x0 is any x-coordinate strictly between
the first and the second vertex of P and h is an integral height that is at most the
capacity of the first edge of P . We use R(i, h, P) to denote a rectangle representing
task i on P drawn at height h, i.e., R(i, h, P) is a rectangle of height di , with a bottom
y-coordinate h, and whose projection on the x-axis equal pi ∩ P . For each path P ∈ P
and each point q = (x0, h) as described above we have a constraint

∑

i∈TP

∑

(h′ : q∈R(i,h′,P))

y(i, h′, P) ≤ 1. (2)

We refer to the resulting LP relaxation asRectangle-LP (P). It clearly has pseudo-
polynomial complexity. In the following, we show an O(k)-approximation based on
LP rounding.

3.1.4 An LP rounding algorithm

Let (x, y) be a feasible solution toRectangle-LP (P). We use a randomized rounding
with alteration strategy (as introduced in [9]) to select a subset of the tasks and a
representing drawing for them on each path P ∈ P . We proceed in two phases. In the
selection phase, we pick a subset of the tasks and determine a drawing for them. The
drawing in this phase may contain overlapping rectangles. In the alteration phase, we
pick a subset of the selected tasks whose corresponding rectangles do not overlap.

Selection phase.We select a (not necessarily feasible) set S of tasks. For each task
i , we add i to S independently at random with probability xi/(c1 · k), where c1 > 1 is
a sufficiently large constant that will be determined later. We refer to the tasks in the
random sample S as the selected tasks. Additionally, for each task i ∈ S and each path
P ∈ P such that i ∈ TP , we choose a rectangle representing the drawing of i on P , as
follows. We choose a height h for the rectangle independently at random according to
the probability distribution {y(i, h, P)/xi }h . Note that the constraints (1) ensure that
the values y(i, h, P)/xi form a probability distribution over the allowed heights h.

Let h(i, P) be the height chosen for task i on the path P; we use the rectangle
R(i, h(i, P), P) to represent task i on the path P . Let R denote the resulting draw-
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ing, i.e., R is the collection of rectangles selected for the tasks in S. Each rectangle
R(i, h, P) is inR with probability xi · y(i,h,P)

xi
= y(i, h, P).

Alteration phase. In the alteration phase, we select a subset S′ ⊆ S of the tasks
such that the rectanglesR′ ⊆ R representing them on the paths are non-overlapping.
Recall that we view the rectangles as open sets and thus two rectangles overlap iff
they contain a common point in their interiors. We consider the paths of P in an
arbitrary order. For each P ∈ P , let S(P) = {i ∈ S : i ∈ TP }. Our goal is to choose
a subset S′(P) ⊆ S(P) such that the rectangles {R(i, h(i, P), P) : i ∈ S′(P)} are
non-overlapping. We choose the set of accepted tasks S′(P) as follows.

We order the tasks in S(P) in non-increasing order according to their demands,
breaking ties arbitrarily. We consider the tasks in this order. Let i be the current task.
We add i to S′(P) if the rectangle R(i, h(i, P), P) does not overlap with any of the
rectangles {R(i ′, h(i ′, P), P) : i ′ ∈ S′(P)} for the tasks we have accepted so far.

We refer to the tasks in S′(P) as the tasks accepted on P , and the tasks in S(P) −
S′(P) as the tasks rejected on P . The following key lemma shows that each selected
task i ∈ S(P) is accepted with a constant probability. The main observation is that, for
each task j , appearing before i in the ordering, if the rectangles R(i, h(i, P), P) and
R( j, h( j, P), P) overlap, then R( j, h( j, P), P) contains the top left or the bottom
left corner of R(i, h(i, P), P) since d j ≥ di ; it now suffices to check the constraints
only at two points.

Lemma 4 For any path P and i ∈ TP , Pr[i /∈ S′(P) | i ∈ S(P)] ≤ 2/(c1 · k).
Finally, we use the sets {S′(P) : P ∈ P} to select a subset S′ ⊆ S such that the

rectangles R′ ⊆ R representing S′ on each path of P are non-overlapping. We set
S′ = {i ∈ S : ∀P∈P :i∈TP i ∈ S′(P)}, i.e., a task is accepted if it was accepted for all
paths. It follows from Lemma 4 and the union bound that each selected task is rejected
with probability at most |{P ∈ P : i ∈ TP }| · 2

c1k
≤ 1/2 if c1 is sufficiently large.

More precisely, if P is ck-nice, then this happens when c1 ≥ 4c. We summarize the
rounding step in the following lemma.

Lemma 5 Consider aUFP-tree instance that has a K -nice splittingP , and let (x, y)
be a feasible solution to Rectangle-LP (P). Let S be a random sample of the tasks
such that each task i is in S independently at random with probability xi/(4K ). There
is a polynomial-time algorithm that constructs a feasible solution S′ ⊆ S such that,
for each task i , Pr[i ∈ S′ | i ∈ S] ≥ 1/2.

For linear objective functions, this yields a pseudo-polynomial timeLP-basedO(k)-
approximation for intersecting instances of UFP-tree and, with Lemma 1, a pseudo-
polynomial time O(k log n)-approximation for arbitrary instances of UFP-tree.

3.2 A polynomial-sized relaxation

In this section, we show how to turn the LP from the previous section to a polynomial
sized one. Notice that the pseudo-polynomial running time is caused by the fact that
the rectangles for the tasks in T can be drawn at pseudo-polynomially many heights.
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We show that restricting to a polynomial sized set of heights incurs only an O(1)
factor loss in the approximation ratio.

Task classification. For a path P ∈ P and a task i ∈ TP , let bP (i):=mine∈pi∩P ue
be the bottleneck capacity of i on P . We say that a task i ∈ TP is big on P if
di > 1

16 · bP (i). Otherwise we say that i is small on P .
Allowed heights. For each path P ∈ P and task i ∈ TP , we will now construct

a set H(i, P) of allowed heights for drawing the rectangle corresponding to i on P .
If i is big on P , we set H(i, P) = {bP (i) − di }, i.e., the only allowed height is
obtained by drawing the rectangle for i as high as possible underneath the capacity
profile. If i is small on P , for the integer j such that bP (i) ∈ [2 j , 2 j+1), we set
H(i, P) = ⋃

r∈N0: r�2 j−3/n�≤2 j−1{2 j−1 + r�2 j−3/n�}. We have |H(i, P)| ≤ 8n. Let
H be the union of all setsH(i, P). By construction, H has polynomial size.

Restricted LP. Denote by Restricted-Rectangle-LP (P , H) the LP relaxation
where we introduce variables y(i, h, P) and the constraints (1) and (2) only for the
heights h ∈ H. AsH has polynomial size, the size of Restricted-Rectangle-LP (P ,
H) is also polynomial. The following lemma shows that the LP restricted to these
heights still admits a good fractional solution. Combining it with Lemma 5 yields the
desired polynomial time approximation algorithm for linear UFP-tree.

Lemma 6 For each feasible integral solution T ′ ⊆ T of an instance of UFP-tree,
there is a feasible fractional solution (x, y) forRestricted-Rectangle-LP (P ,H) s.t.
(∀i ∈ T ′)xi = 1

64 .

Wedevote the remainder of this subsection to proving Lemma 6. Let T ′ ⊆ T be any
feasible solution for an instance of UFP-tree. We define the fractional solution (x, y)
as follows. First, for each task i ∈ T ′, we set xi :=1/64; we set xi :=0 for all other tasks.
Thus it only remains to define the vector y. For each path P and each task i ∈ T ′ using
P we identify a height h(i, P) ∈ H(i, P) such that if we set y(i, h(i, P), P):=1/64
for each task i ∈ T ′ using P then all constraints of type (2) are satisfied. Note that the
constraints of type (1) are then automatically satisfied.

Consider a task i ∈ T ′ that is big on P . In this case, only the height bP (i) − di is
allowed for task i on the path P , and thus we set h(i, P):=bP (i) − di . Lemma 4.4
in [7] implies that each point underneath the capacity profile of P can be overlapped by
at most 32 rectangles corresponding to big tasks in T ′ when each of these rectangles
is drawn at maximum height. This implies the following proposition.

Proposition 1 Let P ∈ P and let TB(P) denote all tasks in T ′ that are big on P.
Then for each point q = (x0, h) such that x0 is strictly between the first and the second
vertex of P we have that

∑

i∈TB (P)

∑

(h′ : q∈R(i,h′,P))

y(i, h′, P) ≤ 1/2. (3)

We now define the heights for the small tasks. Let j ∈ N and let T ( j)
S (P) denote all

tasks i ∈ T ′ that are small on P and that have the property that bP (i) ∈ [2 j , 2 j+1).
Due to the latter property and since all tasks use the first edge of P , there is an
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edge e ∈ P used by all tasks in T ′ s.t. ue < 2 j+1. Therefore we must have that
∑

i∈T ( j)
S (P)

di ≤ 2 j+1. Since they are small, for each task i ∈ T ( j)
S (P) it must hold

that di ≤ 2 j+1/16 = 2 j−3. We partition the tasks in T ( j)
S (P) greedily into 16 groups

T ( j,1)
S (P), . . . , T ( j,16)

S (P) such that
∑

i∈T ( j,k)
S (P)

di ≤ 2 j−2 for each k ∈ {1, . . . , 16}
(we do not optimize the constants here in the interest of a cleaner presentation).

Lemma 7 For each group T ( j,k)
S (P) we can assign a height h(i, P) ∈ H(i, P) to

each task i ∈ T ( j,k)
S (P) such that h(i, P) ∈ [2 j−1, 2 j ), h(i, P) + di ≤ 2 j , and the

corresponding rectangles are non-overlapping.

Proof Imagine that we increase the demand of each task i ∈ T ( j,k)
S (P) to the value

d ′
i that is the next higher integral multiple of

⌈
2 j−3

n

⌉
, i.e., d ′

i :=
⌈
di/

⌈
2 j−3

n

⌉⌉
· � 2 j−3

n �.
Then

∑

i∈T ( j,k)
S (P)

d ′
i ≤ d(T ( j,k)

S (P)) + n ·
⌈
2 j−3

n

⌉

≤ 2 j−2 + n · 2
j−2

n
≤ 2 j−1.

Now consider the following drawing of T ( j,k)
S (P) using rectangles whose heights

correspond to the new demands d ′
i . We start drawing the rectangles at height 2 j−1.

We consider the tasks in arbitrary order. Starting at height 2 j−1, we draw each task
i using a rectangle of height d ′

i , and we place this rectangle on top of the rectangles
we have already drawn. Let h(i, P) denote the height of the rectangle for task i in the
resulting drawing.

Since the demands d ′
i are multiples of �2 j−3/n� and the starting height is 2 j−1, we

have h(i, P) = 2 j−1+r�2 j−3/n� for some integer r ∈ {0, . . . , �n/2 j−3�}. Therefore
h(i, P) ∈ H(i, P). Moreover, for each task i ∈ T ( j,k)

S (P), we have h(i, P) + di ≤
2 j−1 + ∑

i∈T ( j,k)
S (P)

d ′
i ≤ 2 j . ��

For each task i ∈ T ( j,k)
S (P), we set y(i, h(i, P), P):=1/64, where h(i, P) is the

height given by Lemma 7. Since the rectangles for tasks in a given group T ( j)
S (P) do

not overlap and there are at most 16 groups, it follows that each point underneath the
capacity profile is contained in at most 16 rectangles.

Proposition 2 Let P ∈ P . For each point q = (x0, h) such that x0 is strictly between
the first and the second vertex of P we have that

∑

j∈N

∑

i∈T ( j)
S (P)

∑

(h′ : q∈R(i,h′,P))

y(i, h′, P) ≤ 1/2. (4)

Propositions 1 and 2 imply that all constraints of type (2) are satisfied and thus
(x, y) forms a feasible solution to Restricted-Rectangle-LP (P , H). Thus there
is a fractional solution with a value of at least OPT/64. For a linear objective, the

123



A. Adamaszek et al.

rounding from Sect. 3.1 gives us an integral solution of value �(OPT/(k log n)). For
a submodular objective, we will show in Sect. 3.3 that, by combining the rounding
from Sect. 3.1 with the CR framework of [15], we also obtain an integral solution with
a value of �(OPT/(k log n)).

3.3 Submodular objective via the CR scheme framework

In this section, we extend our results to submodular objectives by combining the results
from the previous section with the framework from [15].

Let N be a finite ground set. Let I ⊆ 2N be a family of subsets of N , and PI a
convex relaxation for the constraints imposed by I, such that PI is down-monotone
and solvable.5 Let x ∈ PI and let support(x) = {i ∈ N : xi > 0}. For any b ∈ [0, 1],
let b ·PI = {bx : x ∈ PI}. Let R(x) be a random sample of N such that each element
i ∈ N is in R(x) independently at random with probability xi . For a set function
f : 2N → R+ let F : [0, 1]N → R+ denote the multilinear extension of f , which is
defined as F(x):=E[ f (R(x))].
Definition 2 ([15]) For b, c ∈ [0, 1], a (b, c)-balanced CR scheme π for a polytope
PI is a procedure that for every x ∈ b · PI and A ⊆ N returns a random set πx (A)

satisfying

(i) πx (A) ⊆ support(x) ∩ A and πx (A) ∈ I with probability 1, and
(ii) for all i ∈ support(x), Pr[i ∈ πx (R(x)) | i ∈ R(x)] ≥ c.

We use the CR schemes as in [15]. First, we compute a vector x∗ with F(x∗) ≥
�(max{F(x ′) : x ′ ∈ PI}). Then, we compute a random sample R(x) with x :=b · x∗.
We apply the CR scheme π and obtain the set πx (R(x)). We know that for each
element i we have that Pr[i ∈ R(x)] = b · x∗

i and Pr[i ∈ πx (R(x)) | i ∈ R(x)] ≥ c.
Thus, Pr[i ∈ πx (R(x))] ≥ bc · x∗

i which can be used to show that E[ f (πx (R(x)))] ≥
	(bc) · max{F(x ′) : x ′ ∈ PI}.
Theorem 4 ([15]) Let f : 2N → R+ be a submodular function. Let I ⊆ 2N be a
family of feasible solutions and let PI ⊆ [0, 1]N be a convex relaxation for I that is
down-monotone and solvable. Suppose that there is a (b, c)-balanced CR scheme for
PI . Then there is a polynomial time randomized algorithm that constructs a solution
I ∈ I such that

E[ f (I )] ≥ 	(bc) · max{F(x) : x ∈ PI}.

To apply the above framework, let P denote the set of points x for which there
exists a vector y such that (x, y) is contained in the polytope defined by Restricted-
Rectangle-LP (P , H). Clearly, P is down-monotone and solvable. Similarly as in
the case of linear objective functions, P contains a fractional point with large profit

5 We call a polytope P ⊆ [0, 1]N down-monotone if for all z, z′ ∈ [0, 1]N we have that z ≤ z′ and z′ ∈ P
implies that z ∈ P. The polytope is solvable if one can optimize any linear function over P in polynomial
time.
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according to F : Let T ∗ be an optimal integral solution. By Lemma 6, 1
64 · 1T ∗ ∈ P.

Moreover, it is straightforward to verify that F
( 1
64 · 1T ∗

) ≥ 1
64 f (T ∗). Somax{F(x) :

x ∈ PI} = �(OPT).
By Lemma 5, there is a (1/	(k), 1/2)-balanced CR scheme for P. Therefore we

can apply Theorem 4 to obtain our main result for Submodular UFP-tree.

Theorem 5 There is a polynomial time O(k) approximation algorithm for Submod-
ular UFP-tree on intersecting instances and, therefore, an O(k log n) approximation
for arbitrary instances, where k is the pathwidth of the tree.

4 Applications

We describe how our techniques can be applied to obtain approximation algorithms
for Submodular Bag-UFP-tree and Submodular Bag-SAP-tree.

Bag-UFP. In the Submodular Bag-UFP-tree we have the same input as for UFP-
tree and additionally the input tasks T are partitioned into bags T1, . . . , Ts and we
are allowed to select at most one task per bag. We start with the same approach as
for Submodular UFP-tree and invoke Lemma 1 to reduce the general case to the
case of intersecting instances at the expense of a factor O(log n) in the approximation
ratio. Then we formulate the problem using Rectangle-LP (P) and add to it the set
of constraints

∑

i∈T j

xi ≤ 1 ∀ j ∈ {1, . . . , s}. (5)

Similarly to the case of UFP-tree, we round the resulting LP using randomized round-
ing with alteration. In the selection phase, we again sample each task i with probability
xi/(c′

1 · k) for some large constant c′
1 and choose the heights for its rectangles accord-

ing to the distribution given by y(i, h, P)/xi . In the alteration phase, we accept a task
i in a bag T j if none of its corresponding rectangles overlaps with a rectangle of a
previously accepted task and if no task from T j has been accepted before. Similarly
as in Lemma 5 we can show that Pr[i ∈ S′|i ∈ S] ≥ 1/2 (as each selected task i is
rejected due to overlapping with a previously accepted task with probability at most
|{P ∈ P : i ∈ TP }| · 2

c′
1k
, and is rejected due to another task from the same bag

being previously accepted with probability at most 2
c′
1k
). This yields a CR scheme and,

thus, an algorithm for Submodular Bag-UFP-tree. As described in Sect. 3.2 we can
restrict the set of allowed heights to polynomial size (observe that the reasoning there
only argues about tasks from an optimal solution.) The following theorem summarizes
our contribution on Submodular Bag-UFP-Tree.

Theorem 6 There is a polynomial time O(k · log n)-approximation algorithm for
Submodular Bag-UFP-tree where k is the pathwidth of an input tree.

We note that one can model submodular bagUFP with an instance of submodular
UFP for a different submodular function: in case that the computed set of tasks contains
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several tasks from a bag, this new function selects only one task from each such bag
such that the profit of the original submodular function ismaximized.However, it is not
clear how to evaluate this new submodular function efficiently if one has only oracle-
access to the original submodular function. Therefore, we give a separate algorithm
for Submodular Bag-UFP-Tree.

Storage Allocation. The input to SAP-tree is that of UFP-tree, with an additional
requirement that for each selected task i in T ′ ⊆ T we have to compute a value
h(i) ≥ 0 such that h(i) + di ≤ ue for each edge e ∈ pi , and [h(i), h(i) + di ) ∩
[h(i ′), h(i ′) + di ′) = ∅ for any two tasks i, i ′ ∈ T ′ with pi ∩ pi ′ �= ∅. This gives each
task i ∈ T ′ the portion [h(i), h(i) + di ) of the resource spectrum.

We invoke Lemma 1 to reduce the instance to a collection of intersecting instances.
In contrast to UFP-tree,

on such instances it essentially suffices to focus on edges incident to the root when
checking feasibility.

Proposition 3 For an intersecting instance of SAP-tree, a pair (T ′, h) with T ′ ⊆ T
is a feasible solution if and only if

– for any edge e incident to the root and for any two tasks i, i ′ ∈ T ′ such that
pi , pi ′ � e we have [h(i), h(i) + di ) ∩ [h(i ′), h(i ′) + di ′) = ∅, and

– for each task i ∈ T ′ we have that h(i) ≤ ue − di for each edge e ∈ pi .

We set up a similar LP asRectangle-LP (P), however, taking into account that we
model SAP-tree, rather than UFP-tree. To keep the notation close toRectangle-LP
(P), we introduce a variable xi for each task i ∈ T and a variable y(i, h) for each task
i ∈ T and a height h ∈ N such that h ≤ ue −di for each edge e ∈ pi (as in the second
property of Proposition 3), indicating that task i is selected and drawn at height h. For
each task i ∈ T , we have the constraints

∑

h:h≤ue−di ∀e∈pi∩P

y(i, h) = xi (6)

to enforce that the values y(i, h)/xi form a probability distribution for the possible
heights of task i . For each task i ∈ T we add the constraint xi ≤ 1, to ensure that
each task is selected at most once. Then, for each edge e incident to the root and each
integer q, we add the constraint

∑

(i∈T : pi�e)

∑

(h′ : q∈[h′,h′+di ))

y(i, h′) ≤ 1. (7)

Intuitively, the constraints (7) model that on edge e the rectangles corresponding to the
selected tasks do not overlap (as required by the first property of Proposition 3). Denote
by SAP-LP (P) the resulting linear program. The key difference to Rectangle-LP
(P) is now that each task no longer appears on up to k different paths of P with up
to k different rectangles with different heights, but only on two edges. Therefore, we
can round SAP-LP (P) using randomized rounding with alteration by losing only a
constant factor, instead of a factor O(k).
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Formally,we sample a set of tasks S such that each task i is added to S independently
at random with probability xi/c′′

1 (in contrast to the probability xi/(c1 · k) as in the
case of UFP-Tree). Like above, we choose a height h for i independently at random
according to the probability distribution y(i, h)/xi . In the alteration phase, again we
order the tasks non-increasingly by demands and reject a task if on one of its two
edges incident to the root it conflicts with a previously accepted task, i.e., a constraint
of type (7) would be violated. Denote by S′ the set of accepted tasks.

Lemma 8 For each task i ∈ T we have that Pr[i /∈ S′|i ∈ S] ≤ 1/c′′
2 for some

constant c′′
2 ∈ O(c′′

1).

By choosing c′′
1 sufficiently large we ensure that Pr[i ∈ S′|i ∈ S] ≤ 1/2 and with

a similar reasoning as for UFP-tree we obtain a O(1)-approximation algorithm for
intersecting instances of SAP-tree. We can also extend the above argumentation to
submodular objective functions and to the setting with bag constraints, i.e., Submod-
ular Bag-SAP-tree. Also, we can apply a similar reasoning as in Sect. 3.2 to get an
LP-formulation with polynomial size.

Theorem 7 There is a polynomial time O(log n)-approximation algorithm for Sub-
modular Bag-SAP-tree.

5 Upward instances

5.1 An algorithm

In this section we first prove Theorem 2. Assume that we are given an upward instance
of UFP-tree on a tree T with a set of tasks T . By losing a factor 1 + O(ε) in the
approximation ratio we can assume that for each i ∈ T we have that wi is a power of
1 + ε and wi ∈ [1, n/ε) (tasks with a weight of at most ε

n · maxi wi can be discarded
by losing only a factor of 1 + ε). We first show that we can assume w.l.o.g. that each
vertex in the tree T has a degree of at most three.

Lemma 9 There is a polynomial time algorithm that for any instance of UFP-tree
on an n-vertex tree T produces an equivalent instance on an O(n)-vertex tree T ′, s.t.
each vertex of T ′ has a degree of at most 3.

Proof Suppose T has a vertex v with degree d ≥ 4. Let {v1, . . . , vd} be neighbors of
v and let v1 be the parent of v. Replace v by a gadget containing v, a new vertex v′,
and an edge vv′ with infinite capacity. We keep the edges vv1 and vv2 with the same
capacities as before, and all vertices in {v3, . . . , vd} are defined to be children of v′,
where each edge v′v j has capacity cvv j for j ≥ 3.

We repeat this operation until every vertex has a degree of at most three. ��
For simplicity, assume that each vertex in T is either a leaf or has a degree of exactly

three (enforcing this condition can increase the number of vertices by at most n). Let
vr denote the root of T . We devise a recursive procedure with O(log n) levels. In the
first step, we identify a (center) vertex vm of T with the property that T \{vm} has
three connected components, each of them having at most n/2 vertices. Such a vertex

123



A. Adamaszek et al.

always exists. Let V1 denote the vertices of T in the connected component of T \{vm}
containing vr , and V2, V3 the vertices in the other two components of T , respectively.
For j ∈ {1, 2, 3} let Tj denote T [Vj ∪ {vm}]. Denote by P the path from vm to vr .

Approximate profiles. We partition T into classes such that the tasks in each
class have roughly the same demand and profit. For each pair (k, �) with k ∈
{�log1+ε dmin�, . . . , �log1+ε dmax�}, � ∈ {1, . . . , �log1+ε(n/ε)�}, define a set of tasks
T (k,�) = {i ∈ T |(1 + ε)k ≤ di < (1 + ε)k+1 ∧ (1 + ε)� ≤ wi < (1 + ε)�+1}.
Notice that there are Oε(log(dmax/dmin) log(n)) sets. For each pair (Tj , T (k,�)) with
j ∈ {2, 3} we guess an approximation of how much capacity is used on the edges of
P by tasks from T (k,�) having a start vertex in Tj .

Denote by OPT (k,�, j) the optimal solution restricted to tasks in T (k,�) which
start in Tj and use an edge of P . For each edge e ∈ P we define a value

u(k,�, j)
e := ∑

i∈OPT (k,�, j):pi�e di , which is the capacity used by OPT (k,�, j) on e.

Observe that when traversing P from vm towards vr , the values of u(k,�, j)
e are non-

increasing. These values yield a non-increasing profile u(k,�, j) on P with possibly
polynomially many different values. We claim that there is a much simpler profile
ū(k,�, j) that attains only Oε(log n) different values from some quasi-polynomial size
set, underestimates the real profile, but is still large enough s.t.we canfit a (1+ε/ log n)-
approximate subset of OPT (k,�, j) into ū(k,�, j). The following lemma can be shown
with a similar reasoning as in [4].

Lemma 10 Let k, � ∈ N and j ∈ {2, 3}. There is a partition of the path P into
s = O(log n/ε) subpaths P(k,�, j)

1 , . . . , P(k,�, j)
s , a function ū(k,�, j) : P → N, and a

set of tasks A(k,�, j) ⊆ OPT (k,�, j) such that

– w(A(k,�, j)) ≥ (1 + ε
log n )−1 · w(OPT (k,�, j)),

– for each s′ ≤ s and each edge e ∈ P(k,�, j)
s′ it holds that

∑
i∈A(k,�, j):pi�e di ≤

ū(k,�, j)
e ≤ u(k,�, j)

e ,
– for each s′ ≤ s we have that for any two edges e, e′ ∈ P(k,�, j)

s′ it holds that

ū(k,�, j)
e = ū(k,�, j)

e′ , and

– the values of ū(k,�, j)
e are from a quasi-polynomial size set.

Proof Fix s = 	(log n/ε).We can assume that |OPT (k,�, j)| ≥ s, as otherwise setting
A(k,�, j) = OPT (k,�, j) and ū(k,�, j)(e) = u(k,�, j)(e′) solves the problem. In that case
each value ū(k,�, j)(e) is a sum of at most s demands di , and therefore the number of
possible values of ū(k,�, j)(e) is quasi-polynomial in n.

Let D = ∑
i∈OPT (k,�, j) di be the total demand of the tasks in OPT (k,�, j). Notice

that D ∈ [(1 + ε)k, n · (1 + ε)k+1).
Define d(e) = ∑

i∈OPT (k,�, j):e�pi di for any edge e ∈ P . For s′ = 1, . . . , s we set

P(k,�, j)
s′ = {e ∈ P : d(e) ∈ [ s−s′

s D, s−s′+1
s D)}. As the total capacity of the tasks of

OPT (k,�, j) on the edges of P is non-increasing, each P(k,�, j)
s′ forms a path. Notice

that some of the paths P(k,�, j)
s′ might be empty.

We define the function ū(k,�, j) : P → N as follows. Let P ′ be the path containing an
edge e ∈ P . Then ū(k,�, j)(e):=max{(1+ε)k ·(1+ 1

s )
i : i ∈ N and (1+ε)k ·(1+ 1

s )
i ≤

123



Submodular unsplittable flow on trees

mine′∈P ′ d(e′)}, i.e., we take the value mine′∈P ′ d(e′) and round it down to the nearest
value of the form (1 + ε)k · (1 + 1

s )
i . From this, we obtain that for any edge e ∈ P ,

ū(k,�, j)(e) ≤ d(e) = u(k,�, j)(e), and for any pair of edges e, e′ belonging to the same
path P ′ we have ū(k,�, j)(e) = ū(k,�, j)(e′). The number of possible values of ū(k,�, j)(e)
is O(log2 n/ε).

We define sets A(k,�, j) as follows. We order the tasks i ∈ OPT (k,�, j) non-
increasingly by |pi ∩ P|, breaking ties arbitrarily. Then, we greedily select the set
of tasks B from OPT (k,�, j), until d(B) ≥ 2D/s. We set A(k,�, j) = OPT (k,�, j)\B.

Wewill show that for any e ∈ P , it holds
∑

i∈A(k,�, j):pi�e di ≤ ū(k,�, j)(e). Let e be an

edge belonging to P ′ = {e′ ∈ P : d(e′) ∈ [ s−s′
s D, s−s′+1

s D)}. Then d(e) < s−s′+1
s D

and ū(k,�, j)(e) ≥ s−s′
s D/(1+ 1

s ) > (d(e)−D/s)/(1+ 1
s ) ≥ d(e)−2D/s. If all tasks

from the set B use e, then
∑

i∈A(k,�, j):pi�e di = ∑
i∈OPT (k,�, j):pi�e di − ∑

i∈B di ≤
d(e) − 2D/s < ū(k,�, j)(e). Otherwise, the only tasks of OPT (k,�, j) using e are the
tasks in B, and

∑
i∈A(k,�, j):pi�e di = 0.

It remains to show thatw(A(k,�, j)) ≥ (1+ ε
log n )−1 ·w(OPT (k,�, j)). As all tasks in

OPT (k,�, j) have approximately the same demand and weight (up to a factor (1+ ε)),
we get |B| ≤ 4|OPT (k,�, j)|/s and w(B) ≤ 8w(OPT (k,�, j))/s. As w(A(k,�, j)) =
w(OPT (k,�, j)) − w(B) and s = 	(log n/ε), the claim follows. ��
In parallel we guess an approximative capacity profile due to Lemma 10 for each pair
(Tj , T (k,�)).

There are only n( 1
ε
log n)O(1) log(dmax/dmin) possible guesses.

Recursion. We recurse on the following three subproblems.

– The first subproblem is defined by T1 and all tasks whose start and end vertices
lie in T1. For the edge capacities, we take into account that the edges of P have
smaller capacity since the guessed capacity profiles use up some capacity. Each
edge e ∈ P has then a residual capacity of ue − ∑

j=2,3
∑

k,� ū
(k,�, j)
e .

– The second subproblem is defined by T2 ∪ P and all tasks having their start vertex
in T2. On each edge in T2 we have its full capacity available, on each edge e ∈ P
the available capacity is the sum of the capacities due to the previously guessed
profiles:

∑
k,� ū

(k,�,2)
e .

– The third subproblem is defined on T3 ∪ P symmetrically to the second.

This defines the first step of our recursion. When we proceed, each arising sub-
problem is defined on a subtree T ′ of the input tree T and a path P ′ which is the path
from vr to the vertex in T ′ that is closest to vr .

Each edge of T ′ ∪ P ′ has a given a capacity (that might be smaller than in T ).
Additionally, we are given a set of tasks T ′ that is exactly the set of input tasks that
have their respective start vertex in T ′. Our goal is to find a good approximation for
this subproblem. When we recurse on it, we perform the procedure described above
with the center vertex v′

m of T ′, i.e., we guess the approximative profiles on the path
between v′

m and vr in T ′ ∪ P ′ and then recurse on the three arising subproblems.6

6 Note that selecting the center vertex of T ′ is not the same as selecting that of T ′ ∪ P ′.
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We do this recursive procedure until we obtain subproblems in which T ′ consists of
only one single edge. The resulting instance is equivalent to an instance of Unsplittable
Flow on Paths. We compute a (1+ ε)-approximation for it in time nOε (log n) using the
algorithm in [5].

Analysis. When given one of the subproblems, the number of possible guesses
for the profiles on the path between the center v′

m of T ′ and vr is at most

n( 1
ε
log n)O(1) log(dmax/dmin). Thus, each node in the recursion tree has at most

n( 1
ε
log n)O(1) log(dmax/dmin) children. As in each recursive step we recurse on the cen-

ter vertex of the respective tree T ′, our recursion depth is O(log n). Finally, solving
the leaf subproblems requires at most nOε (log n) time, see [5].

Lemma 11 The running time of the above algorithm is upper bounded by

nOε (log n)( 1
ε
)O(1) log(dmax/dmin).

For the approximation factor, each level of the recursion incurs a loss by a factor of at
most (1+ ε

log n )−1. Since our recursion depth is O(log n) this yields an approximation
ratio of (1 + O(ε)), completing the proof of Theorem 2.

5.2 Hardness

In this section we prove Theorem 3, based on the assumption that SAT is not in
DTIME(2o(n)). We start from the near-linear PCP theorem. There are many PCPs in
the literaturewhoseproof lengths are near-linear in the size of the original SAT formula,
e.g., Dinur’s PCP [16]. The following theorem can be derived by combining known
tools in the literature, more precisely the PCP theorem and the bounded occurrences
reduction from [3,16,28].

Theorem 8 ([3,16,28]) There is a universal constant ε0 > 0 such that there is a
polynomial time algorithm that transforms any n-variable SAT formula φ into another
formula φ′ satisfying the following properties

• φ′ is a 3SAT formula and each variable appears at most 3 times, i.e., it is a 3SAT(3)
formula.

• φ′ has at most O(n poly log n) variables and clauses.
• (Completeness:) If φ is satisfiable, then φ′ is satisfiable.
• (Soundness:) If φ is not satisfiable, then any assignment to φ′ satisfies at most

(1 − ε0) fraction of clauses.

For a CNF formula φ, we denote by SAT(φ) the maximum number of clauses that
can be satisfied by any assignment.

Theorem 9 There is a polynomial time reduction that transforms any 3SAT(3) formula
φ′ with N variables and M clauses into a UFP-tree upward instance (T, T ) such that
OPT(T, T ′) = 4N + SAT(φ′). Moreover, the demand of every task i ∈ T ′ satisfies
di ∈ [1, 2O(M)].

We prove this theorem in the next subsection. We show now that this theorem
yields our hardness result. Start from an n-variable SAT formula φ, invoke Theorem 8
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to obtain φ′, and then Theorem 9 to obtain (T, T ). Our reduction guarantees that
|T |, |T | ≤ nO(1) and dmax

dmin
= 2O(M) ≤ 2n poly log n .

All these steps so far have taken a polynomial running time. Assume for con-
tradiction that there is an algorithm A, that is an approximation scheme for

UFP-trees running in time (for constant ε) 2poly log |T ′|nlog
1−δ

(
dmax
dmin

)

. We have that
log dmax/dmin = O(M) ≤ n poly log n, and therefore, log1−δ(dmax/dmin) ≤ n1−δ/2

for sufficiently large n. Therefore, the running time of invoking the algorithm A is
N poly log N log1−δ(dmax/dmin) ≤ 2o(n) for sufficiently large n. Moreover,

– in the completeness case, we have OPT(T, T ) = 4N + M , and
– in the soundness case, we haveOPT(T, T ) < 4N + (1−ε0)M < (1−ε/8)(4N +

M). The second inequality follows from the fact that our formula φ′ is a 3SAT(3)
formula, so we have that N ≤ M ≤ 3N , which implies that 4N + (1 − ε0)M =
4N −ε0M/2+(1−ε0/2)M ≤ (4N −ε0N/2)+(1−ε0/2)M ≤ (1−ε0/8)(4N +
M).

Since there is a gap of (1− ε0/8), running the approximation schemeA on (T, T ′)
can distinguish the two cases in time 2o(n), contradicting the ETH.

5.3 Proof of Theorem 9

Suppose that we are given a 3-BOUNDED-3-SAT formula φ with n variables
x1, . . . , xn andm clauses {C1, . . . ,Cm}=:C with the property that every literal appears
at most three times. Note that this implies thatm ≤ 3n. We create an instance of UFP-
tree. Our tree can be decomposed into a path P and a set of edges E ′ such that every
edge in E ′ is connected to one vertex on P and each vertex on P is connected to
at most one edge of E ′, see Fig. 2. The path P has three parts. The first part has m
vertices and each vertex corresponds to exactly one clause C ∈ C. For each clause
C ∈ C we denote by vC the vertex for C . The second part has exactly n vertices and
each vertex corresponds to exactly one variable. For each variable x j we denote by v j

the vertex corresponding to x j in the second part. The third part of P has 2n vertices
and for each variable x j there is one vertex that we denote by v j+ and one vertex that
we denote by v j−. Additionally, each vertex in the third part is connected to exactly
one edge in E ′. For each vertex v j+ (resp. v j−) in the third part of P , denote by v′

j+
(resp. v′

j−) the corresponding vertex that it is connected to by an edge in E ′.
Now we define the input tasks. First, for each clause we define three tasks. Let C

be a clause containing the three variables x j , xk, x� (possibly in a negated form). We
define three tasks forC : i(C, j), i(C, k) and i(C, �). Intuitively, if φ is satisfiable then
we want to select the task among the three of them that corresponds to the variable
satisfying C . All three tasks i(C, j), i(C, k), i(C, �) have a weight of 1 and their start
vertex is vC . If the variable x j appears positively in C then the end vertex of i(C, j)
is defined to be v′

j+, otherwise the end vertex of i(C, j) is v′
j−. We define the end

vertices of i(C, k), i(C, �) accordingly. We do this procedure with all clauses in C.
We set the edge capacities on the first part of P and the task demands to ensure that

– for each clause C containing the three variables x j , xk, x� any feasible solution
selects at most one of the tasks i(C, j), i(C, k), i(C, �),
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vC
. . .

vj
.... . . ...

vj+ vj−
... ...

v′
j+ v′

j−

i(C, j)

i(j,−)

0
4

4m

4m+n

∞

v1 vn

Fig. 2 A sketch of the reduction. The plot shows the capacity profile on the edges of the edges in E , drawn
in logarithmic scale. Gray and black lines denote the paths of the tasks i(C, j) and i( j,−), respectively.
The black dotted line shows the path of the task i( j,+)

– if we select exactly one task corresponding to each clause (no matter which one)
then we do not violate the edge capacities on the first part of P .

We achieve this by setting the capacity of each edge (vCm′ , vCm′+1
) to be 4m

′
and the

capacity of the edge (vCm , v1) to be 4m . We set the demand of each of the three tasks
corresponding to the clause Cm′ to be 3

4 · 4m′
. It is clear then that any feasible solution

can select at most one of the tasks for each clause. Moreover, the second property
above follows from a geometric sum argument. Note that here we crucially need that
the input values do not need to be quasi-polynomially bounded.

We define two tasks for each variable x j , one task i( j,+) and one task i( j,−),
both with a weight of 4. The start vertex of both of them is v j and the end vertex of
i( j,+) is v′

j− and the end vertex of i( j,−) if v′
j+. Intuitively, if φ is satisfiable and

x j is set to true in the satisfying assignment then we want to select the task i( j,+), if
x j is set to false in the satisfying assignment then we want to select i( j,−).

We set the edge capacities on the second part of P and the demands of the tasks
i( j,+), i( j,−) (for all variables x j ) such that

– for each x j any feasible solution selects only one of the tasks i( j,+), i( j,−),
– if we select exactly one task corresponding to each clause (no matter which one)
and exactly one task corresponding to each variable then we do not violate the
edge capacities on the second part of P .

We achieve this by setting the capacity of each edge (v j , v j+1) to be 4m · 4 j and the
demand of each task i( j,+) and i( j,−) to be 3

4 · 4m · 4 j . Like above, it is clear that at
most one of the tasks i( j,+) and i( j,−) can be selected in a feasible solution. Also,
the second property can be verified by a geometric sum argument.
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We set the edge capacities of the third part of P to ∞. We define the capacity of
each edge (v j+, v′

j+) ∈ E ′ (of (v j−, v′
j−) ∈ E ′) such that

– if i( j,−) (resp. i( j,+)) is selected then it uses the whole capacity of (v j+, v′
j+)

(resp. of (v j−, v′
j−))

– if i( j,−) (resp. i( j,+)) is not selected then all three other tasks using (v j+, v′
j+)

(resp. of (v j−, v′
j−)) can be selected.

To this end, we set the capacity of (v j+, v′
j+) to 3

4 · 4m · 4 j . Since a total demand of
tasks is at most 3 · 4m the second property also holds.

Lemma 12 If φ is satisfiable, then the optimal solution to ourUFP-tree instance has
a value of at least 4n + m.

Proof Consider a satisfying assignment of φ. Let x j be a variable. If in the assignment
x j is set to true then we select the task i( j,+). Otherwise, we select the task i( j,−).
For each clause there must be one variable that satisfies the clause. Consider a clause
C that is satisfied by a variable x j . We select the task i(C, j). The total profit of this
solution is 4n +m. It remains to argue that the solution is feasible. On the edges on P
we satisfy the capacity constraints since we selected only one task corresponding to
each variable and at most one task for each clause. Consider an edge (v j+, v′

j+) ∈ E ′
(edge (v j−, v′

j−) can be argued similarly.) If we do not select the task i( j,−) then the
other three tasks using it do not use more than the available capacity on (v j+, v′

j+).
If we select the task i( j,−) then we do not select any task i(C, j) using (v j+, v′

j+).
The reason is that if we selected such a task then x j would satisfy the clause C . But
if i(C, j) used (v j+, v′

j+) then this would mean that x j appeared positively in C .
However, since we selected the task i( j,−) this means that the satisfying assignment
set x j to false which contradicts that x j satisfies C . ��
Weprove that if any variable assignment can satisfy atmostm′ clauses then the optimal
solution to our instance of UFP-tree has a value of at most 4n + m′. First, we need
the following lemma about the structure of an optimal solution.

Lemma 13 For each x j , any optimal solution selects either i( j,+) or i( j,−).

Proof Assume by contradiction that there is an optimal solution S such that for a
variable x j neither i( j,+) nor i( j,−) are selected. Due to the way we defined
the capacities on P and the task demands, the solution S can contain at most
one task in {i( j ′,+), i( j ′,−)} for each variable x j ′ and at most one task in
{i(C, j), i(C, k), i(C, �)} for each clause C containing variables x j , xk, x�. More-
over, if we select at most one task in {i( j ′,+), i( j ′,−)} for each variable x j ′ and
at most one task in {i(C, j), i(C, k), i(C, �)} for each clause C containing variables
x j , xk, x� then we do not violate the capacities on P . Thus, if we add i( j,+) to S then
on P we will not violate the capacity of any edge. We add i( j,+) to S and remove all
other tasks that use (v j−, v′

j−). The task i( j,+) yields a profit of 4 and the other three
tasks using (v j−, v′

j−) have a total profit of at most 3. Thus, we obtain a solution that
is more valuable than S, a contradiction to the choice of S being optimal. ��
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Lemma 14 If any assignment can satisfy at most m′ clauses, then the optimal solution
to our instance of UFP-tree has a value of at most 4n + m′.

Proof We prove a contrapositive statement. Suppose that we have a solution S with
w(S) > 4n +m′. By Lemma 13 for each variable x j either i( j,+) ∈ T ′ or i( j,−) ∈
T ′. These tasks contribute a profit of 4n in w(S), so a profit of more than m′ must
come from the tasks i(C, j). We construct an assignment of the variables of φ by
setting each variable x j to true if and only if i( j,+) ∈ S. We claim that for each
task i(C, j) ∈ S the variable x j satisfies C , implying that more than m′ clauses are
satisfied and thus completing the proof.

Assume that i(C, j) ∈ S uses the edge (v j+, v′
j+) (the other case that i(C, j) ∈

S uses the edge (v j−, v′
j−) can be proven similarly). This implies that x j appears

positively inC . Also,we know that the task i( j,−) uses the full capacity of (v j+, v′
j+).

Thus, i( j,−) /∈ S and therefore we set x j to be true in our variable assignment. Thus,
C is satisfied by our assignment. ��
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