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Max-Cut under Graph Constraints

Jon Lee⋆, Viswanath Nagarajan, and Xiangkun Shen

IOE Dept., University of Michigan, Ann Arbor, MI 48109, USA.

Abstract. An instance of the graph-constrained max-cut (GCMC) prob-
lem consists of (i) an undirected graph G = (V,E) and (ii) edge-weights
c :

(

V

2

)

→ R+ on a complete undirected graph. The objective is to find
a subset S ⊆ V of vertices satisfying some graph-based constraint in G

that maximizes the weight
∑

u∈S,v 6∈S
cuv of edges in the cut (S, V \ S).

The types of graph constraints we can handle include independent set,
vertex cover, dominating set and connectivity. Our main results are for
the case when G is a graph with bounded treewidth, where we obtain a
1

2
-approximation algorithm. Our algorithm uses an LP relaxation based

on the Sherali-Adams hierarchy. It can handle any graph constraint for
which there is a (certain type of) dynamic program that exactly opti-
mizes linear objectives.

Using known decomposition results, these imply essentially the same
approximation ratio for GCMC under constraints such as independent
set, dominating set and connectivity on a planar graph G (more generally
for bounded-genus or excluded-minor graphs).

1 Introduction

The max-cut problem is an extensively studied combinatorial-optimization prob-
lem. Given an undirected edge-weighted graph, the goal is to find a subset S ⊆ V
of vertices that maximizes the weight of edges in the cut (S, V \ S). Max-cut
has a 0.878-approximation algorithm [14] which is known to be best-possible
assuming the “unique games conjecture” [17]. It also has a number of practical
applications, e.g., in circuit layout, statistical physics and clustering.

In some applications, one needs to solve the max-cut problem under addi-
tional constraints on the subset S. Consider for example, the following clustering
problem. The input is an undirected graph G = (V,E) representing, say, a so-
cial network (vertices V denote users and edges E denote connections between
users), and a weight function c :

(

V

2

)

→ R+ representing, a dissimilarity measure
between pairs of users. The goal is to find a subset S ⊆ V of users that are
connected in G while maximizing the weight of edges in the cut (S, V \ S). This
corresponds to finding a cluster of connected users that is as different as possible
from its complement set. This “connected max-cut” problem also arises in image
segmentation applications [22,16].

⋆ Research of J. Lee was partially supported by NSF grant CMMI–1160915 and ONR
grant N00014-14-1-0315.
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Designing algorithms for constrained versions of max-cut is also interesting
from a theoretical standpoint. For max-cut under certain types of constraints
(such as cardinality or matroid constraints) good approximation algorithms are
known, e.g., [2,1]. In fact, many of these results have since been extended to
the more general setting of submodular objectives [12,9]. However, not much is
known for max-cut under “graph-based” constraints as in the example above.

In this paper, we study a large class of graph-constrained max-cut problems
and present unified approximation algorithms for them. Our results require that
the constraint be defined on a graph G of bounded treewidth. (Treewidth is a
measure of how similar a graph is to a tree structure — see §2 for definitions.)
We note however that for a number of constraints (including the connectiv-
ity example above), we can combine our algorithm with known decomposition
results [10,11] to obtain essentially the same approximation ratios when the con-
straint graph G is planar/bounded-genus/excluded-minor.

Problem definition. The input to the graph-constrained max-cut (GCMC) prob-
lem consists of (i) an n-vertex undirected graph G = (V,E) which implicitly
specifies a collection CG ⊆ 2V of feasible vertex subsets, and (ii) (symmetric)
edge-weights c :

(

V

2

)

→ R+. The GCMC problem is then as follows:

max
S∈CG

∑

u∈S,v 6∈S

c(u, v). (1)

In this paper, we assume that the constraint graph G has bounded treewidth.
We also assume that the graph constraint CG admits an exact dynamic program
for optimizing a linear objective, i.e. for:

max
S∈CG

∑

u∈S

f(u), where f : V → R is any given vertex weights. (2)

Note that the GCMC objective (1) is a quadratic function of the solution S,
whereas our assumption (2) involves a linear function of the solution S. See §2
for more precise definitions/assumptions.

1.1 Our Results and Techniques

Our main result can be stated informally as follows.

Theorem 1 (GCMC result — informal). Consider any instance of the GCMC

problem on a bounded-treewidth graph G = (V,E). Suppose there is an exact
dynamic program for optimizing any linear function subject to constraint CG.
Then we obtain a 1

2 -approximation algorithm for GCMC.

This algorithm uses a linear-programming relaxation for GCMC based on the
dynamic program (for linear objectives) which is further strengthened via the
Sherali-Adams LP hierarchy. The resulting LP has polynomial size whenever the
number of dynamic program states associated with a single tree-decomposition
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node is constant (see §2 for the formal definition).1 The rounding algorithm is
a natural top-down procedure that randomly chooses a “state” for each tree-
decomposition node using the LP’s probability distribution conditional on the
choices at its ancestor nodes. The final solution is obtained by combining the
chosen states at each tree-decomposition node, which is guaranteed to satisfy
constraint CG due to properties of the dynamic program. We note that the
choice of variables in the Sherali-Adams LP as well as the rounding algorithm are
similar to those used in [15] for the sparsest cut problem on bounded-treewidth
graphs. An important difference in our result is that we apply the Sherali-Adams
hierarchy to a non-standard LP that is defined using the dynamic program for
linear objectives. (If we were to apply Sherali-Adams to the standard LP, then
it is unclear how to enforce the constraint CG during the rounding algorithm.)
Another difference is that our rounding algorithm needs to make a correlated
choice in selecting the states of sibling nodes in order to satisfy constraint CG—
this causes the number of variables in the Sherali-Adams LP to increase, but it
still remains polynomial since the tree-decomposition has constant degree.

The requirement in Theorem 1 on the graph constraint CG is satisfied by
several interesting constraints and thus we obtain approximation algorithms for
all these GCMC problems. See Section 4 for details.

Theorem 2 (Applications). There is a 1
2 -approximation algorithm for GCMC

under the following constraints in a bounded-treewidth graph: independent set,
vertex cover, dominating set, connectivity.

We note that many other constraints such as precedence, connected domi-
nating set, and triangle matching also satisfy our requirement. In the interest of
space, we only present details for the constraints mentioned in Theorem 2. We
also note that for some of these constraints (e.g., independent set) one can come
up with a problem specific algorithm where the approximation ratio depends on
the treewidth k. Our result is stronger since the algorithm is more general, and
the ratio is independent of k.

For many of the constraints above, we can use known decomposition re-
sults [10,11] to obtain approximation algorithms for GCMC when the constraint
graph has bounded genus or excludes some fixed minor (e.g., planar graphs).

Corollary 1. There is a (12 − ǫ)-approximation algorithm for GCMC under the
following constraints in an excluded-minor graph: independent set, vertex cover,
dominating set. Here ǫ > 0 is a fixed constant.

Corollary 2. There is a (12−ǫ)-approximation algorithm for connected max-cut
in a bounded-genus graph. Here ǫ > 0 is a fixed constant.

Our approach can also handle other types of objectives. If g : 2V → R+ is the sum
of a polynomial number of functions each of which is monotone, submodular and
defined on a constant-size subset of V , then we obtain a (1− 1

e
)-approximation

1 For other polynomial time dynamic programs, the LP has quasi-polynomial size.
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algorithm for the problem of maximizing g(S) subject to S ∈ CG. The graph con-
straint CG is as above.2 The main idea is to use the correlation gap of monotone
submodular function.[3,9]

1.2 Related Work

For the basic undirected max-cut problem, there is an elegant 0.878-approximation
algorithm [14] via semidefinite programming. This is also the best one can hope
for, assuming the unique games conjecture [17].

Most of the prior work on constrained max-cut has focused on cardinality,
matroid and knapsack constraints [2,1,12,9,18,19]. Constant-factor approxima-
tion algorithms are known for max-cut under the intersection of any constant
number of such constraints — these results hold in the substantially more gen-
eral setting of non-negative submodular functions. The main techniques used
here are local search and the multilinear extension [8] of submodular functions.
These results made crucial use of certain exchange properties of the underlying
constraints, which are not true for graph-based constraints that we consider.

Closer to our setting, a version of the connected max-cut problem was stud-
ied recently in [16], where the connectivity constraint as well as the weight
function were defined on the same graph G. The authors obtained an O(log n)-
approximation algorithm for general graphs, and an exact algorithm on bounded-
treewidth graphs (which implied a PTAS for bounded-genus graphs); their al-
gorithms relied heavily on the uniformity of the constraint/weight graphs. In
contrast, we consider the connected max-cut problem where the connectivity
constraint and the weight function are unrelated; in particular, our problem gen-
eralizes max-cut even when G is a trivial graph (e.g., a star). Moreover, our
algorithms work for a much wider class of constraints. We note however that
our results require graph G to have bounded treewidth — this is also necessary
since some of the constraints we consider (e.g., independent set) are inapprox-
imable in general graphs. (For connected max-cut itself, obtaining a non-trivial
approximation ratio when G is a general graph remains an open question.)

In terms of techniques, the closest work to ours is [15]. We use ideas from [15]
in formulating the (polynomial size) Sherali-Adams LP as well as in the rounding
algorithm. There are important differences too, as discussed in §1.1.

Finally, our result adds to a somewhat small list [6,20,5,4,15,13] of algorithmic
results based on the Sherali-Adams [21] LP hierarchy. We are not aware of a
more direct approach to obtain a constant-factor approximation algorithm even
for connected max-cut when the constraint graph G is a tree.

2 Preliminaries

Basic definitions. For an undirected complete graph on vertices V and subset
S ⊆ V , let δS be the set of edges with exactly one end-point in S. For any weight
function c :

(

V
2

)

→ R+ and subset F ⊆
(

V
2

)

, we use c(F ) :=
∑

e∈F ce.

2 This setting is interesting only for constraints such as independent set, triangle
matching and precedence that are not “upward closed”.

4



Tree Decomposition. Given an undirected graph G = (V,E), this consists of a
tree T = (I, F ) and a collection of vertex subsets {Xi ⊆ V }i∈I such that:

– for each v ∈ V , the nodes {i ∈ I : v ∈ Xi} are connected in T , and
– for each edge (u, v) ∈ E, there is some node i ∈ I with u, v ∈ Xi.

The width of such a tree-decomposition is maxi∈I(|Xi|−1), and the treewidth
of G is the smallest width of any tree-decomposition for G.

We will work with “rooted” tree-decompositions that also specify a root node
r ∈ I. The depth d of such a tree-decomposition is the length of the longest root-
leaf path in T . The depth of any node i ∈ I is the length of the r − i path in
T .

For any i ∈ I, the set Vi denotes all the vertices at or below node i, that is

Vi := ∪k∈Ti
Xk, where Ti = {k ∈ I : k in subtree of T rooted at i}.

The following known result provides a convenient representation of T .

Theorem 3 (Balanced Tree Decomposition [7]). Let G = (V,E) be a graph
of treewidth k. Then G has a rooted tree-decomposition (T = (I, F ), {Xi|i ∈ I})
where T is a binary tree of depth 2⌈log 5

4
(2|V |)⌉ and treewidth at most 3k + 2.

This tree-decomposition can be found in O(|V |) time.

Dynamic program for linear objectives. We assume that the constraint CG admits
an exact dynamic programming (DP) algorithm for optimizing linear objectives,
i.e. for the problem (2). There is some additional notation that is needed to
formally describe the DP: this is necessary due to the generality of our results.

Definition 1 (DP) With any tree-decomposition (T = (I, F ), {Xi|i ∈ I}), we
associate the following:

1. For each node i ∈ I, there is a state space Σi.
2. For each node i ∈ I and σ ∈ Σi, there is a collection Hi,σ ⊆ 2Vi of subsets.
3. For each node i ∈ I, its children nodes {j, j′} and σ ∈ Σi, there is a collection

Fi,σ ⊆ Σj ×Σj′ of valid combinations of children states.

Assumption 1 (Linear objective DP for CG) Let (T = (I, F ), {Xi|i ∈ I}) be
any tree-decomposition. Then there exist Σi, Fi,σ and Hi,σ (see Definition 1)
that satisfy the following:

1. (bounded state space) Σi and Fi,σ are all bounded by constant, that is,
maxi |Σi| = t and maxi,σ |Fi,σ| = p, where t, p = O(1).

2. (required state) For each i ∈ I and σ ∈ Σi, the intersection with Xi of every
set in Hi,σ is the same, denoted Xi,σ, that is S ∩Xi = Xi,σ for all S ∈ Hi,σ.

3. (subproblem) For each non-leaf node i ∈ I with children {j, j′} and σ ∈ Σi,

Hi,σ =
{

Xi,σ ∪ Sj ∪ Sj′ : Sj ∈ Hj,wj
, Sj′ ∈ Hj′,wj′

, (wj , wj′ ) ∈ Fi,σ

}

.

By condition 2, for any leaf ℓ ∈ I and σ ∈ Σℓ, we have Hℓ,σ = {Xℓ,σ} or ∅.
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4. (cover all constraints) At the root node r, we have CG =
⋃

σ∈Σr
Hr,σ.

The most restrictive assumption is the first condition. To the best of our
knowledge, all natural constraints that admit a dynamic program on bounded-
treewidth graphs (for linear objectives) satisfy conditions 2-4. Even in cases when
condition 1 is not true, a relaxed version holds (where t and p are polynomial),
and our approach gives a quasi-polynomial time 1

2 -approximation algorithm.

Example: Here we outline how independent set satisfies the above requirements.

– The state space of each node i ∈ I consists of all independent subsets of Xi.
– The subsets Hi,σ consist of all independent subsets S ⊆ Vi with S ∩Xi = σ.
– The valid combinations Fi,σ consist of all tuples (wj , wj′) where the child

states wj and wj′ are “consistent” with state σ at node i.

A formal proof of why the independent-set constraint satisfies Assumption 1
appears in Section 4. There, we also discuss a number of other graph constraints
satisfying our assumption.

The following result follows from Assumption 1.

Claim 1 For any S ∈ CG, there is a collection {b(i) ∈ Σi}i∈I such that:

– for each node i ∈ I with children j and j′, (b(j), b(j′)) ∈ Fi,b(i),
– for each leaf ℓ we have Hℓ,b(ℓ) 6= ∅, and
– S =

⋃

i∈I Xi,b(i).

Moreover, for any vertex u ∈ V , if u ∈ I denotes the highest node containing u
then u ∈ S ⇐⇒ u ∈ Xu,b(u).

Proof. We define the states b(i) in a top-down manner; we will also define an
associated subset Bi ∈ Hi,b(i) at each node i. At the root, we set b(r) = σ such
that S ∈ Hr,σ: this is well-defined by Assumption 1(4). We also set Br = S.
Having set b(i) and Bi ∈ Hi,b(i) for any node i ∈ I with children {j, j′}, we use
Assumption 1(3) to write

Bi = Xi,b(i) ∪ Sj ∪ Sj′ where Sj ∈ Hj,wj
, Sj′ ∈ Hj′,wj′

and (wj , wj′ ) ∈ Fi,b(i).

Then we set b(j) = wj and Bj = Sj for all the children J of node i. It is now
easy to verify the first three conditions in the claim.

Since S =
⋃

i∈I Xi,b(i), it is clear that u ∈ Xu,b(u) =⇒ u ∈ S. In the other
direction, suppose u 6∈ Xu,b(u): we will show u 6∈ S. Since u is the highest node
containing u, it suffices to show that u 6∈ Bu above. But this follows directly
from Assumption 1(2) since Bu ∈ Hu,b(u), u ∈ Xu and u 6∈ Xu,b(u).

Sherali-Adams LP hierarchy. This is one of the several “lift-and-project” proce-
dures that, given a {0, 1} integer program, produces systematically a sequence
of increasingly tighter convex relaxations. The Sherali-Adams procedure [21]
involves generating stronger LP relaxations by adding new variables and con-
straints. The rth round of this procedure has a variable y(S) for every subset S
of at most r variables in the original integer program — the new variable y(S)
corresponds to the joint event that all the original variables in S are one.
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3 Approximation Algorithm for GCMC

In this section, we prove:

Theorem 4. Consider any instance of the GCMC problem on a bounded-treewidth
graph G = (V,E). If the graph constraint CG satisfies Assumption 1 then we ob-
tain a

1
2 -approximation algorithm.

Algorithm outline: We start with a balanced tree-decomposition T of graph
G, as given in Theorem 3; recall the associated definitions from §2. Then we
formulate an LP relaxation of the problem using Assumption 1 (i.e. the dynamic
program for linear objectives) and further strengthened by applying the Sherali-
Adams operator. Finally we use a natural top-down rounding that relies on
Assumption 1 and the Sherali-Adams constraints.

3.1 Linear Program

We start with some additional notation related to the tree-decomposition T
(from Theorem 3) and our dynamic program assumption (Assumption 1).

– For any node i ∈ I, Ti is the set of nodes on the r − i path along with the
children of all nodes except i on this path. See also Figure 1.

– P is the collection of all node subsets J such that J ⊆ Tℓ1 ∪ Tℓ2 for some
pair of leaf-nodes ℓ1, ℓ2. See also Figure 1.

– s(i) ∈ Σi denotes a state at node i. Moreover, for any subset of nodes N ⊆ I,
we use the shorthand s(N) := {s(k) : k ∈ N}.

– ū ∈ I denotes the highest tree-decomposition node containing vertex u.

rr

Ti

i

j j′

l1 l2

Tl1 Tl2

The grey nodes is a set in P .

Fig. 1. Examples of (i) a set Ti and (ii) a set in P .
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The variables in our LP are y(s(N)) for all {s(k) ∈ Σk}k∈N and N ∈ P . Vari-
able y(s(N)) corresponds to the joint event that the solution (in CG) “induces”
state s(k) (in terms of Assumption 1) at each node k ∈ N .

We also use variables zuv defined in constraint (3) that measure the probabil-
ity of an edge (u, v) being cut. Constraints (4) are the Sherali-Adams constraints
that enforce consistency among the y variables. Constraints (5)-(7) are from the
dynamic program (Assumption 1) and require valid state selections.

maximize
∑

{u,v}∈(V2)

cuvzuv (LP)

zuv =
∑

s(ū)∈Σū

u∈Xū,s(ū)

∑

s(v̄)∈Σv̄

v 6∈Xv̄,s(v̄)

y(s({ū, v̄})) +
∑

s(ū)∈Σū

u6∈Xū,s(ū)

∑

s(v̄)∈Σv̄

v∈Xv̄,s(v̄)

y(s({ū, v̄})),

∀{u, v} ∈
(

V

2

)

; (3)

y(s(N)) =
∑

s(i)∈Σi

y(s(N ∪ {i})), ∀N ∈ P , i /∈ N : N ∪ {i} ∈ P ; (4)

∑

s(r)∈Σr

y(s(r)) = 1; (5)

y(s({i, j, j′})) = 0, ∀i ∈ I, s(i) ∈ Σi, (s(j), s(j
′)) /∈ Fi,s(i); (6)

y(s(ℓ)) = 0, ∀ℓ ∈ I, s(ℓ) ∈ Σℓ : Hℓ,s(ℓ) = ∅; (7)

0 ≤ y(s(N)) ≤ 1, ∀N ∈ P , {s(k) ∈ Σk}k∈N . (8)

Claim 2 For any node i ∈ I with children j, j′ and s(k) ∈ Σk for all k ∈ Ti,

y(s(Ti)) =
∑

s(j)∈Σj

∑

s(j′)∈Σj′

y(s(Ti ∪ {j, j′}). (9)

Proof. Note that Ti ∪ {j, j′} ⊆ Tℓ for any leaf node ℓ in the subtree below i. So
Ti ∪ {j, j′} ∈ P and the variables y(s(Ti ∪ {j, j′}) are well-defined. The claim
now follows by two applications of constraint (4).

In constraint (6), we use j and j′ to denote the two children of node i ∈ I.

3.2 The Rounding Algorithm

We start with the root node r ∈ I. Here {y(s(r)) : s(r) ∈ Σr} defines a prob-
ability distribution over the states of r. We sample a state a(r) ∈ Σr from this
distribution. Then we continue top-down: given the chosen state a(i) of any
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node i, we sample states for both children of i simultaneously from their joint
distribution given at node i.

Input : Optimal solution of LP.
Output: A vertex set in CG.

1 Sample a state a(r) at the root node by distribution y(s(r));
2 Do process all nodes i in T in order of increasing depth :
3 Sample states a(j), a(j′) for the children of node i by joint distribution

Pr[a(j) = s(j) and a(j′) = s(j′)] =
y(s(Ti ∪ {j, j′}))

y(s(Ti))
, (10)

where s(Ti) = a(Ti).
4 end
5 Do process all nodes i in T in order of decreasing depth :
6 Ri = Xi,a(i) ∪Rj ∪Rj′ where j, j′ are the children of i.
7 end
8 R = Rr;
9 return R.

Algorithm 1: Rounding Algorithm for LP

3.3 Algorithm Analysis

Lemma 1. (LP) is a valid relaxation of GCMC.

Proof. Let S ∈ CG be any feasible solution to the GCMC instance. Let {b(i)}i∈I

denote the states given by Claim 1 corresponding to S. For any subset N ∈ P
of nodes, and for all {s(i) ∈ Σi}i∈N , set

y(s(N)) =

{

1, if s(i) = b(i) for all i ∈ N ;
0, otherwise.

It is easy to see that constraints (4) and (8) are satisfied. By the first two
properties in Claim 1, it follows that constraints (6) and (7) are also satisfied.
The last property in Claim 1 implies that u ∈ S ⇐⇒ u ∈ Xu,b(u) for any vertex
u ∈ V . So any edge {u, v} is cut exactly when one of the following occurs:

– u ∈ Xu,b(u) and v 6∈ Xv,b(v);
– u 6∈ Xu,b(u) and v ∈ Xv,b(v).

Using the setting of variable zuv in (3) it follows that zuv is exactly the indicator
of edge {u, v} being cut by S. Thus the objective value in (LP) is c(δS).

Lemma 2. (LP) has a polynomial number of variables and constraints. Hence
the overall algorithm runs in polynomial time.

Proof. There are
(

n
2

)

= O(n2) variables zuv. Since the tree is binary, we have
|Ti| ≤ 2d for any node i, where d = O(log n) is the depth of the tree-decomposition.

9



Moreover there are only O(n2) pairs of leaves as there are O(n) leaf nodes. For
each pair ℓ1, ℓ2 of leaves, we have |Tℓ1 ∪ Tℓ2 | ≤ 4d. Thus |P| ≤ O(n2) · 24d =
poly(n). By Assumption 1, we have max |Hi,σ| = t = O(1), so the number of
y-variables is at most |P| · t4d = poly(n). This shows that (LP) has polynomial
size and can be solved optimally in polynomial time. Finally, it is easy to see
that the rounding algorithm runs in polynomial time.

Lemma 3. The algorithm’s solution R is always feasible.

Proof. Note that the distribution used in Step 1 is always valid due to Claim 2;
so the states a(i)s are well-defined.

We now show that for any node i ∈ I with children j, j′ we have (a(j), a(j′)) ∈
Fi,a(i). Indeed, at the iteration for node i (when a(j) and a(j′) are set) us-
ing the probability distribution in (10) and by constraint (6), we obtain that
(a(j), a(j′)) ∈ Fi,a(i) with probability one.

We show that for each node i ∈ I, the subset Ri ∈ Hi,a(i) by induction on the
height of i. The base case is when i is a leaf. In this case, due to constraint (7)
(and the validity of the rounding algorithm) we know that Hi,a(i) 6= ∅. So Ri =
Xi,a(i) ∈ Hi,a(i) by Assumption 1(3). For the inductive step, consider node i ∈ I
with children j, j′ where Rj ∈ Hj,a(j) and Rj′ ∈ Hj′,a(j′). Moreover, from the
property above, (a(j), a(j′)) ∈ Fi,a(i). Now using Assumption 1(3) we have Ri =
Xi,a(i) ∪Rj ∪Rj′ ∈ Hi,a(i). Thus the final solution R ∈ CG.

Claim 3 A vertex u is contained in solution R if and only if u ∈ Xū,a(ū).

Proof. This proof is identical to that of the last property in Claim 1.

In the rest of this section, we show that every edge (u, v) is cut by solution R
with probability at least zuv/2, which would prove the algorithm’s approximation
ratio. Lemma 4 handles the case when ū ∈ Tv̄ (the case v̄ ∈ Tū is identical). And
Lemma 5 handles the (harder) case when ū 6∈ Tv̄ and v̄ 6∈ Tū.

We first state some useful claims before proving the lemmas.

Observation 1 (see [15] for a similar use of this principle) Let X,Y be
two jointly distributed {0, 1} random variables. Then Pr(X = 1)Pr(Y = 0) +
Pr(X = 0)Pr(Y = 1) ≥ 1

2 [Pr(X = 0, Y = 1) + Pr(X = 1, Y = 0)].

Proof. Let Pr(X = 0, Y = 0) = x, Pr(X = 0) = a, Pr(Y = 0) = b. The
probability table is as below:

x a− x a

b− x 1 + x− a− b 1− a

b 1− b

Then we want to show a(1− b)+ b(1−a) ≥ 1
2 (a+ b−2x) ⇔ a+ b+2x ≥ 4ab.

Since each probability is in [0, 1], we have 0 ≤ x ≤ min{a, b} and a+ b− 1 ≤ x.
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If a + b > 1, we have a + b + 2x ≥ 3a+ 3b − 2 > 1. If ab < 1
4 , it is done. If

1
4 ≤ ab ≤ 1, we have 6

√
ab− 2 ≥ 4ab. Then a+ b+ 2x ≥ 3a+ 3b− 2 ≥ 4ab.

If a+ b ≤ 1, we have a+ b+ 2x ≥ a+ b ≥ 2
√
ab ≥ 4ab.

Combine the above two cases, we have the observation is true.

Claim 4 For any node i and state s(k) ∈ Σk for all k ∈ Ti, the rounding
algorithm satisfies Pr[a(Ti) = s(Ti)] = y(s(Ti)).

Proof. We proceed by induction on the depth of node i. It is clearly true when
i = r, i.e. Ti = {r}. Assuming the statement is true for node i, we will prove it for
i’s children. Let j, j′ be the children nodes of i; note that Tj = Tj′ = Ti ∪{j, j′}.
Then using (10), we have

Pr[a(Tj) = s(Tj) | a(Ti) = s(Ti)] =
y(s(Ti ∪ {j, j′}))

y(s(Ti))
.

Combined with Pr[a(Ti) = s(Ti)] = y(s(Ti)) we obtain Pr[a(Tj) = s(Tj)] =
y(s(Tj)) as desired.

Claim 5 For any u, v ∈ V , s(ū) ∈ Σū and s(v̄) ∈ Σv̄, we have

y(s({ū, v̄})) =
∑

s(k)∈Σk

k∈Ti\ū\v̄

y(s(Ti ∪ {ū, v̄})),

where i is the least common ancestor of ū and v̄.

Proof. Since i is the least common ancestor of ū and v̄, we have Ti ∪{ū, v̄} ∈ P .
Then the claim follows by repeatedly applying constraint (4).

Lemma 4. Consider any u, v ∈ V such that ū ∈ Tv̄. Then the probability that
edge (u, v) is cut by solution R is zuv.

Proof. Applying Claim 4 with node i = v̄, for any {s(k) ∈ Σk : k ∈ Tv̄},
we have Pr[a(Tv̄) = s(Tū)] = y(s(Tū)). Let Du = {s(ū) ∈ Σū|u ∈ s(ū)} and
Dv = {s(v̄) ∈ Σv̄|v ∈ s(v̄)}. Since ū ∈ Tv̄,

Pr[u ∈ R, v 6∈ R] =
∑

s(ū)∈Du

∑

s(v̄) 6∈Dv

∑

s(k)∈Σk

k∈Tv̄\ū\v̄

y(s(Tū)) =
∑

s(ū)∈Du

∑

s(v̄) 6∈Dv

y(s(ū, v̄))

The last equality above is by repeated application of constraint (4). Similarly
we have

Pr[u 6∈ R, v ∈ R] =
∑

s(ū) 6∈Du

∑

s(v̄)∈Dv

y(s(ū, v̄)),

which combined with constraint (5) implies Pr[|{u, v} ∩R| = 1] = zuv.

Lemma 5. Consider any u, v ∈ V such that ū 6∈ Tv̄ and v̄ 6∈ Tū. Then the
probability that edge (u, v) is cut by solution R is at least zuv/2.
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Proof. In order to simplify notation, we define:

z+uv =
∑

s(ū)∈Σū

u∈Xū,s(ū)

∑

s(v̄)∈Σv̄

v 6∈Xv̄,s(v̄)

y(s({ū, v̄})), z−uv =
∑

s(ū)∈Σū

u6∈Xū,s(ū)

∑

s(v̄)∈Σv̄

v∈Xv̄,s(v̄)

y(s({ū, v̄})).

Note that zuv = z+uv + z−uv.
Let Du = {s(ū) ∈ Σū|u ∈ s(ū)} and Dv = {s(v̄) ∈ Σv̄|v ∈ s(v̄)}. Let i

denote the least common ancestor of nodes ū and v̄. For any choice of states
{s(k) ∈ Σk}k∈Ti

define:

z+uv(s(Ti)) =
∑

s(ū)∈Du

∑

s(v̄) 6∈Dv

y(s(Ti ∪ {ū, v̄}))
y(s(Ti))

,

and similarly z−uv(s(Ti)).
In the rest of the proof we fix states {s(k) ∈ Σk}k∈Ti

and condition on the
event E that a(Ti) = s(Ti). We will show:

Pr[|{u, v} ∩R| = 1 | E ] ≥ 1

2

(

z+uv(s(Ti)) + z−uv(s(Ti))
)

. (11)

By taking expectation over the conditioning s(Ti), this would imply Lemma 5.
We now define the following indicator random variables (conditioned on E).

Iu =

{

0 if a(ū) 6∈ Du

1 if a(ū) ∈ Du

and Iv =

{

0 if a(v̄) 6∈ Dv

1 if a(v̄) ∈ Dv

.

Observe that Iu and Iv (conditioned on E) are independent since ū 6∈ Tv̄ and
v̄ 6∈ Tū. So,

Pr[|{u, v}∩R| = 1 | E ] = Pr[Iu = 1] ·Pr[Iv = 0]+Pr[Iu = 0] ·Pr[Iv = 1] (12)

For any s(k) ∈ Σk for k ∈ Tū \ Ti, we have by Claim 4 and Ti ⊆ Tū that

Pr[a(Tū) = s(Tū) | a(Ti) = s(Ti)] =
Pr[a(Tū) = s(Tū)]

Pr[a(Ti) = s(Ti)]
=

y(s(Tū))

y(s(Ti))
.

Therefore

Pr[Iu = 1] =
∑

s(ū)∈Du

∑

k∈Tū\Ti\{ū}
s(k)∈Σk

y(s(Tū))

y(s(Ti))
=

∑

s(ū)∈Du

y(s(Ti ∪ {ū}))
y(s(Ti))

.

The last equality follows from the (4) constraint. Similarly,

Pr[Iv = 1] =
∑

s(v̄)∈Dv

y(s(Ti ∪ {v̄}))
y(s(Ti))

.
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Now define {0, 1} random variables X and Y jointly distributed as:

Y = 0 Y = 1
X = 0 Pr[Iv = 1]− z−uv(s(Ti)) z−uv(s(Ti))
X = 1 z+uv(s(Ti)) Pr[Iu = 1]− z+uv(s(Ti))

Note that Pr[X = 1] = Pr[Iu = 1] and Pr[Y = 1] = Pr[Iv = 1]. So, applying
Observation 1 and using (12) we have:

Pr[|{u, v} ∩R| = 1 | E ] ≥ 1

2
(Pr[X = 0, Y = 1] + Pr[X = 1, Y = 0]) ,

which implies (11).

4 Applications

In this section, we show a number of graph constraints that satisfy Assump-
tion 1 and thereby obtain 1

2 -approximation algorithms for GCMC under these
constraints (on bounded-treewidth graphs).

Recall that the underlying graph G is given by its tree-decomposition (T =
(I, F ), {Xi|i ∈ I}) from Theorem 3. Recall also the definition of a dynamic
program on this tree-decomposition, as given in Definition 1.

4.1 Independent Set

Given graph G = (V,E) and edge-weights c :
(

V
2

)

→ R+ we want to maximize
c(δS) where S is an independent set in G.

For each node i ∈ I define state space Σi = {σ ⊆ Xi |σ is an independent set}.
For each node i ∈ I and σ ∈ Σi, we define:

– set Xi,σ = σ.
– collectionHi,σ = {S ⊆ Vi |Xi∩S = σ and S is an independent set in G[Vi]}.
– Fi,σ = {(wj1 , wj2) | for each j ∈ {j1, j2}, wj ∈ Σj such that wj ∩ Xi = σ ∩

Xj} which denotes valid combinations. Note that the condition wj ∩ Xi =
σ ∩Xj enforces wj to agree with σ on vertices of Xi ∩Xj.

We next show that these satisfy all the conditions in Assumption 1.

Assumption 1 part 1. We have t = max |Σi| ≤ 2k = O(1) for bounded-treewidth
k. Also p = max |Fi,σ| ≤ t2 since each node has at most two children.

Assumption 1 part 2. By definition, for any S ∈ Hi,σ we have S∩Xi = σ = Xi,σ.

Assumption 1 part 3. For any leaf ℓ ∈ I and σ ∈ Σℓ it is clear thatHℓ,σ = {Xi,σ}.
Consider now any non-leaf node i and σ ∈ Σi. Let

Z = {Xi,σ ∪Sj1 ∪Sj2 : Sj1 ∈ Hj1,wj1
, Sj2 ∈ Hj2,wj2

, (wj1 , wj2) ∈ Fi,σ}. (13)

We first prove Hi,σ ⊆ Z. For any S ∈ Hi,σ and child j ∈ {j1, j2} let Sj =
S ∩ Vj and wj = S ∩Xj ; since S is independent Sj is also an independent set,
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and Sj ∈ Hj,wj
. Note that S ∩ Xi = Xi,σ. Since Vi = Xi ∪ Vj1 ∪ Vj2 , we have

S = Xi,σ ∪ Sj1 ∪ Sj2 . Moreover, we have σ ∩ Xj = S ∩ Xi ∩ Xj = wj ∩ Xi for
each j ∈ {j1, j2}. So we have (wj1 , wj2 ) ∈ Fi,σ and hence S ∈ Z.

We next prove Z ⊆ Hi,σ. Consider any S = Xi,σ ∪ Sj1 ∪ Sj2 as in (13).
For j ∈ {j1, j2} by definition of Fi,σ and Hj,wj

, we have σ ∩ Xj = wj ∩ Xi =
(Sj ∩Xj)∩Xi; since Xi∩ (Vj \Xj) = ∅ (by definition of the tree-decomposition)
we have Xi ∩ Sj = Xi ∩ Xj ∩ Sj = σ ∩ Xj . Thus we have Xi ∩ S = σ. It just
remains to prove that S is an independent set in G[Vi]. Since Sj1 , Sj2 and Xi,σ

are independent sets, if S were not independent then we must have an edge (u, v)
where u ∈ Vj1 ∪Xi and v ∈ Vj2 \Xi (or the symmetric case); this is not possible
due to the tree-decomposition. So S ∈ Hi,σ.

Assumption 1 part 4. This follows directly from the definition of Hi,σ.

4.2 Connectivity

Given graph G = (V,E) and edge-weights c :
(

V

2

)

→ R+ we want to maximize
c(δS) where S is a connected vertex-set in G.

For each node i ∈ I define the state space

Σi = {(Bi, Pi) |Bi ⊆ Xi, Pi is a partition of Bi}.

Here a state σ = (Bi, Pi) specifies which subset Bi of the vertices (in Xi) are
included in the solution and what is the connectivity pattern Pi among them.

For each node i ∈ I and σ = (Bi, Pi) ∈ Σi, we define:

– set Xi,σ = Bi.
– if i = r (at the root) Σr = {(Br, Pr) |Br ⊆ Xr, Pr = {Br}}.
– if i 6= r then Hi,σ = {S ⊆ Vi |Xi ∩ S = Bi, each part of Pi is connected in

G[S] and every connected component of G[S] contains some vertex of Bi}.
– partition P̄i denotes the connected components in G[Bi].
– Fi,σ consists of (wj1 , wj2) where for j ∈ {j1, j2}, wj = (Bj , Pj) ∈ Σj such

that Bi ∩Xj = Bj ∩Xi and each part of Pj contains some vertex of Bi, and
Pi is satisfied

3 by P̄i ∪ Pj1 ∪ Pj2 . Note that for some states there may be no
such pair (wj1 , wj2) : in this case Fi,σ is empty.

Assumption 1 part 1. For each node i, the possible number of vertex subsets Bi is
at most 2k and the possible number of partitions Pi is at most kk, where k is the
treewidth. So for a bounded-treewidth k, we have t = max |Σi| ≤ kk+1 = O(1).
Then p = max |Fi,σ| ≤ t2 = O(1).

Assumption 1 part 2. This follows directly from the definition of Hi,σ and Xi,σ.

3 Given two partitions Q and R, their union P = Q∪R is the refined partition where
a pair of elements are in the same part iff they occur in the same part of either Q

or R. Moreover, a partition P is said to be satisfied by another partition P ′ if P ′ is
a refinement of P , i.e. every pair of elements in the same part of P also lie in the
same part of P ′.
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Assumption 1 part 3. Let Z be as in (13) with the new definitions of H and
F for connectivity (as above). The leaf case is trivial, so we consider a non-leaf
node i ∈ I and σ = (Bi, Pi) ∈ Σi. To reduce notation we just use j to denote a
child of i; we will not specify j ∈ {j1, j2} each time.

We first prove Hi,σ ⊆ Z. For any S ∈ Hi,σ, let Sj = Vj ∩S and Bj = Xj ∩S.
Let Pj be a partition of Bj with a part C ∩Bj for every connected component C
in G[Sj ]. Let wj = (Bj , Pj). We will show that Sj ∈ Hj,wj

and (wj1 , wj2 ) ∈ Fi,σ.

– Sj ∈ Hj,wj
. By definition of Bj , we haveXj∩Sj = Xj∩Vj∩S = Xj∩S = Bj .

We only need to prove each connected component of G[Sj ] has at least one
vertex of Bj . We will in fact show that each component of G[Sj ] has at
least one vertex of Bi (i.e. in Bj ∩ Bi). Suppose (for contradiction) there is
some connected component C in G[Sj ] which does not have any vertex of
Bi. By S ∈ Hi,σ we know that in the (larger) graph G[S] component C has
to be connected to some vertex u ∈ Bi. Then there is a path π in G[S] from
some vertex u′ ∈ C to u such that u′ is the only vertex of C on π (see also
Figure 2). Let (u′, v′) be the first edge of π, so u′ ∈ C ⊆ Sj and v′ ∈ S \ Sj .
By tree-decomposition, there is some node containing both u′ and v′. Since
u′, v′ ∈ Vi and u′ ∈ Sj , v

′ 6∈ Sj , that node can only be i. This means u′ ∈ Bi,
contrary to our assumption. Therefore we have Sj ∈ Hj,wj

.
– (wj1 , wj2) ∈ Fi,σ. We have Bi ∩ Xj = Bj ∩ Xi by definition of wj . Since

we already proved that each connected component of G[Sj ] has at least one
vertex of Bj ∩ Bi, we know that each part of partition Pj has at least one
vertex of Bi. By tree-decomposition we have G[Vi] = G[Xi]∪G[Vj1 ]∪G[Vj2 ],
so G[S] = G[Bi] ∪ G[Sj1 ] ∪ G[Sj2 ]. Hence partition Pi is satisfied by P̄i ∪
Pj1 ∪ Pj2 . Thus (wj1 , wj2) ∈ Fi,σ.

b1

b3

b2

b4

u = b5

Bi = {b1, . . . , b5}

u
′

v
′

C1 C2 C3

π

Fig. 2. Maximal connected component of G[Sj ]

Next we prove Z ⊆ Hi,σ. Consider any S ∈ Z given by S = Bi ∪Sj1 ∪Sj2 as
in (13). The fact that S∩Xi = Bi follows exactly as in the case of an independent-
set constraint. Since Pi is satisfied by P̄i ∪ Pj1 ∪ Pj2 and Sj connects up each
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part of Pj , it follows that G[S] = G[Bi] ∪G[Sj1 ] ∪G[Sj2 ] connects up each part
of Pi. It remains to show that each connected component of G[S] has a vertex
of Bi. Since (wj1 , wj2 ) ∈ Fi,σ we know that each part of Pj has a Bi-vertex.
By Sj ∈ Hj,wj

, we know that each component of G[Sj ] contains some vertex
u ∈ Bj , and this vertex u is connected to some vertex v ∈ Bi (as each part of
Pj contains a Bi-vertex); so every component of G[Sj ] contains some vertex of
Bi. Hence each component of G[S] = G[Bi]∪G[Sj1 ]∪G[Sj2 ] also contains some
vertex of Bi.

Assumption 1 part 4. By our definition of Σr, any solution given byHr,σ requires
all chosen vertices to be connected. Thus this assumption is satisfied.

4.3 Vertex Cover

Given graph G = (V,E) and edge-weights c :
(

V

2

)

→ R+ we want to maximize
c(δS) where S is a vertex cover in G (i.e. S contains at least one end-point of
each edge in E).

For each node i ∈ I define the state spaceΣi = {σ ⊆ Xi |σ is a vertex cover in G[Xi]}.
For each node i ∈ I and σ ∈ Σi, we define:

– set Xi,σ = σ.
– collection Hi,σ = {S ⊆ Vi |Xi ∩ S = σ and S is a vertex cover in G[Vi]}.
– Fi,σ = {(wj1 , wj2) | for each j ∈ {j1, j2}, wj ∈ Σj such that wj ∩ Xi = σ ∩

Xj} which denotes valid combinations. Note that the condition wj ∩ Xi =
σ ∩Xj enforces wj to agree with σ on vertices of Xi ∩Xj.

The proof of the above notation satisfying Assumption 1 is identical to the
independent set proof.

4.4 Dominating Set

Given graph G = (V,E) and edge-weights c :
(

V

2

)

→ R+ we want to maximize
c(δS) where S is a dominating set in G (i.e. every vertex in V is either in S or
a neighbor of some vertex in S).

For each node i ∈ I define the state space

Σi = {(Bi, Yi) |Bi ⊆ Xi, Yi ⊆ Xi}.

For vertex set S ⊆ V , we use N(S) to denote S and the neighbor vertices of S.
Here a state σ = (Bi, Yi) specifies which subset Bi of the vertices (in Xi) are

included in the solution and what subset Yi of the vertices (in Xi) should be
dominated.

For each node i ∈ I and σ = (Bi, Yi) ∈ Σi, we define:

– set Xi,σ = Bi

– if i = r (at the root) Σr = {(Br, Yr) |Br ⊆ Xr, Yr = ∅}.
– if i 6= r then Hi,σ = {S ⊆ Vi|Xi ∩S = Bi, S is a dominating set of Vi \ Yi in

G[Vi]}
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– Fi,σ consists of (wj1 , wj2) where for j ∈ {j1, j2}, wj = (Bj , Yj) ∈ Σj such
that Bi ∩Xj = Bj ∩Xi and Vi \ Yi ⊆ (Vj1 \ Yj1) ∪ (Vj2 \ Yj2) ∪N(Bi). Note
that for some states there may be no such pair (wj1 , wj2) : in this case Fi,σ

is empty.

Assumption 1 part 1. For each node i, the possible number of vertex subsets Xi,
Yi is at most 2k, where k is the treewidth. So for a bounded-treewidth k, we
have t = max |Σi| ≤ 22k = O(1). Then p = max |Fi,σ| ≤ t2 = O(1).

Assumption 1 part 2. This follows directly from the definition of Hi,σ and Xi,σ.

Assumption 1 part 3. Let Z be as in (13) with the new definitions of H and F
for dominate set (as above). The leaf case is trivial, so we consider a non-leaf
node i ∈ I and σ = (Bi, Yi) ∈ Σi. To reduce notation we just use j to denote a
child of i; we will not specify j ∈ {j1, j2} each time.

We first prove Hi,σ ⊆ Z. For any S ∈ Hi,σ, let Sj = Vj ∩S and Bj = Xj ∩S.
Let Yj = Xj \ N(Sj). Let wj = (Bj , Yj). We will show that Sj ∈ Hj,wj

and
(wj1 , wj2) ∈ Fi,σ.

– Sj ∈ Hj,wj
. By definition of Bj , we haveXj∩Sj = Xj∩Vj∩S = Xj∩S = Bj .

We only need to prove Sj is a dominating set of Vj \ Yj in G[Vj ]. For all
v ∈ Vj \ Yj : If v ∈ Xi, since v ∈ Vj , we have v ∈ Xj. Since v 6∈ Yj and
v ∈ Xj , by Yj = Xj \N(Sj), we have v ∈ N(Sj) by tree-decomposition, that
is v is dominated by Sj . If v 6∈ Xi, we have v ∈ Vi \ Yi. Then v is dominated
by S. There is some u ∈ S such that (u, v) ∈ E. Then by tree-decomposition,
since v ∈ Vj and v 6∈ Xi, we have u ∈ Vj . Then since Sj = S ∩ Vj , we have
u ∈ Sj . v is dominated by Sj . Then we have Sj will dominate Vj \ Yj . Thus
we have Sj ∈ Hj,wj

.

– (wj1 , wj2) ∈ Fi,σ. We have Bi ∩Xj = Bj ∩Xi and Yj = Xj ∩ (Yi ∪N(Bj))
by definition of wj . It remains to show that Vi \ Yi ⊆ (Vj1 \ Yj1) ∪ (Vj2 \
Yj2) ∪ N(Bi). For all v ∈ Vi \ Yi, we have v is dominated by S. There is
u ∈ S such that (u, v) ∈ E. If u ∈ Xi, then we have u ∈ Bi thus v ∈ N(Bi).
If u ∈ Vj \ Xi, we have u ∈ Sj . By tree-decomposition, u 6∈ Xi, u ∈ Vj

and (u, v) ∈ E gives us v ∈ Vj . If v 6∈ Xj , we have v ∈ Vj \ Yj . If v ∈ Xj ,
since u ∈ Sj , v ∈ N(u), we have v ∈ N(Sj). Then by Yj = Xj \ N(Sj),
we have v 6∈ Yj . Thus v ∈ Vj \ Yj . Therefore, for all v ∈ Vi \ Yi, we have
v ∈ (Vj1\Yj1)∪(Vj2\Yj2)∪N(Bi). Thus Vi\Yi ⊆ (Vj1\Yj1)∪(Vj2\Yj2)∪N(Bi).

Next we prove Z ⊆ Hi,σ. Consider any S ∈ Z given by S = Bi ∪ Sj1 ∪ Sj2

as in (13). The fact that S ∩ Xi = Bi follows exactly as in the case of an
independent-set constraint. It remains to show that S is a dominating set of
Vi \ Yi. For all v ∈ Vi \ Yi, we have v ∈ (Vj1 \ Yj1) ∪ (Vj2 \ Yj2) ∪N(Bi). Since
Sj is a dominate set of Vj \ Yj and Bi is a dominate set of N(Bi), we have
v is dominated by Bi ∪ Sj1 ∪ Sj2 , v is dominated by S. Thus we have S is a
dominating set of Vi \ Yi. S ∈ Hi,σ.

Assumption 1 part 4. By our definition of Σr, any solution given byHr,σ requires
all vertices are dominated. Thus this assumption is satisfied.
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5 Bounded-genus and Excluded-minor Graphs

Here we use known decomposition results to show that our results can be ex-
tended to a larger class of graphs, and prove Corollary 1 and 2.

5.1 Excluded-minor graph

Recall the following decomposition of any excluded-minor graph into graphs of
bounded treewidth.

Theorem 5. [11] For a fixed graph H, there exists a constant cH such that, for
any integer h ≥ 1 and for every H-minor-free graph G, the vertices of G can be
partitioned into h+1 sets such that any h of that sets induce a graph of treewidth
at most cHh. Furthermore, such partition can be found in polynomial time.

Algorithm 2 for Corollary 1 is given below. For a subset Vi ⊆ V , let Gi be the
graph obtained by contracting Vi to vnew . Then the edge weight on Gi is defined
as

ci(u, v) =

{

c(u, v), if u, v ∈ V \ Vi
∑

w∈Vi
c(u,w), if u ∈ V \ Vi, v = vnew

(14)

We have vnew can increase treewidth by at most one since we can add it to each
tree node and give a feasible tree-decomposition.

We will show Corollary 1 with the following claims.

Claim 6 Let V1, . . . , Vh be a partition of V . Let S′ be any vertex subset of V .
Then there is some i such that c(δ(S′ \ Vi)) ≥ (1− 2

h
)c(δS′).

Proof. Since Vi, . . . , Vh is a partition of V , we have
∑h

i=1 c(δ(S
′ ∩ Vi)) ≤ 2c(δS′).

Then mini c(δ(S
′ ∩ Vi)) ≤ 2

h
c(δS′) ⇔ maxi c(δ(S

′ \ Vi)) ≥ (1− 2
h
)c(δS′).

Claim 7 Let V1, . . . , Vh be a partition of V . Let S′ be any vertex subset of V .
Then there is some i such that c(δ(S′ ∪ Vi)) ≥ (1− 2

h
)c(δS′).

Proof. Since Vi, . . . , Vh is a partition of V , we have
∑h

i=1 (c(δS
′)− c(δ(S′ ∪ Vi))) ≤

2c(δS′). Then mini (c(δS
′)− c(δ(S′ ∪ Vi))) ≤ 2

h
c(δS′) ⇔ maxi c(δ(S

′ ∪ Vi)) ≥
(1− 2

h
)c(δS′).

Claim 8 Let Vi be a subset of V . Suppose S′ is a feasible solution of some
GCMC problem and S \ Vi is a feasible solution in G[V \ Vi] with same graph
constraint. Then the solution Si given by GCMC algorithm in G[V \ Vi] has cut
value c(δSi) ≥ 1

2c(δS
′ \ Vi).

Proof. Since S\Vi is a feasible solution in G[V \Vi], we have the optimal solution,
S∗ in G[V \ Vi] has cut value c(δS∗) ≥ c(δS′ \ Vi). By Theorem 4, we have
c(δSi) ≥ 1

2c(δS
∗), thus we have c(δSi) ≥ 1

2c(δS
′ \ Vi).
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Input : H-minor-free graph G

Output: A vertex set in CG

1 Use Theorem 5 to partition V into V1, . . . , Vh;
2 if independent-set constraint then
3 for i = 1 to h do
4 Solve GCMC in G[V \ Vi] with edge-weight c;
5 Let Si be the solution.;
6 S = argmaxS∈{Si}

c(δSi)

7 end

8 end
9 if vertex-cover or dominating-set constraint then

10 for i = 1 to h do
11 Solve GCMC in Gi with edge-weight ci and require vnew to be part of

the solution;
/* this requirement can be achieved by adding constraints

y(s(r)) = 0 for all vnew 6∈ s(r) to (LP) */

12 Let S′
i be the solution.;

13 Si = S′
i \ {vnew} ∪ Vi;

14 i = argmaxj=1...h c(δ(Sj));

15 S = Si;

16 end

17 end
18 return S;

Algorithm 2: Algorithm for excluded minor graph

Claim 9 Let Vi be a subset of V . Let Gi and ci be defined as (14). Suppose S′ is a
feasible solution of some GCMC problem and S′\Vi∪{vnew} is a feasible solution
in Gi with same graph constraint. Then the solution Si given by GCMC algorithm
in Gi has cut value ci(δSi) ≥ 1

2c(δ(S
′ ∪Vi)) and c(δ(Si \ {vnew}∪Vi)) = ci(δSi).

Proof. Since S′ \ Vi ∪ {vnew} is a feasible solution in Gi, we have the optimal
solution, S∗ in Gi has cut value ci(δS

∗) ≥ ci(δ(S
′ \ Vi ∪ {vnew})). By Theorem

4, we have ci(δSi) ≥ 1
2ci(δS

∗). Then by definition of ci we have ci(δSi) ≥
1
2c(δ(S

′ ∪ Vi})) and c(δ(Si \ {vnew} ∪ Vi)) = ci(δSi).

Claim 10 Let S∗ be the optimal solution of GCMC with independent-set con-
straint. The solution S given by the Algorithm 2 is a feasible solution to the
original GCMC problem and c(δS) ≥ 1

2 (1 − 2
h
)c(δS∗).

Proof. Since S is an independent set in G[V \Vi], then it is an independent set in
G. S is a feasible solution to the original GCMC problem. Also we have that S∗\Vi

is a feasible solution in G[V \Vi]. Then by Claim 8, we have c(δS) ≥ 1
2c(δ(S

∗\Vi))
and by Claim 6, we have c(δ(S∗ \ Vi)) ≥ (1 − 2

h
)c(δS∗). Combine the last two

inequalities, we have c(δS) ≥ 1
2 (1− 2

h
)c(δS∗).

Claim 11 Let S∗ be the optimal solution of GCMC with vertex-cover constraint.
The solution S given by the Algorithm 2 is a feasible solution to the original
GCMC problem and c(δS) ≥ 1

2 (1− 6
h
)c(δS∗).
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Proof. Since S′
i is a vertex cover of Gi. Then by definition of Gi, Si ∪ Vi is a

vertex cover of G. And by definition of Gi and ci, we have S∗ ∪ {vnew} \ Vi is a
feasible solution for Gi. Then by Claim 9, c(δS) ≥ 1

2c(δS
∗ ∪ Vi). And by Claim

7, we have c(δS∗ ∪ Vi) ≥ (1 − 2
h
)c(δS∗). Combine the last two inequalities, we

have c(δS) ≥ 1
2 (1 − 2

h
)c(δS∗).

Claim 12 Let S∗ be the optimal solution of GCMC with dominating-set con-
straint. The solution S given by the Algorithm 2 is a feasible solution to the
original GCMC problem and c(δS) ≥ 1

2 (1 − 2
h
)c(δS∗).

Proof. Since S′
i is a dominating set of Gi. Then by definition of Gi, Si ∪ Vi is a

dominating set of G. And by definition of Gi and ci, we have S∗ ∪ {vnew} \Vi is
a feasible solution for Gi. Then by Claim 9, c(δS) ≥ 1

2c(δS
∗∪Vi). And by Claim

7, we have c(δS∗ ∪ Vi) ≥ (1 − 2
h
)c(δS∗). Combine the last two inequalities, we

have c(δS) ≥ 1
2 (1 − 2

h
)c(δS∗).

5.2 Bounded-genus graph

Here we use:

Theorem 6. [10] For a bounded-genus graph G and an integer h, the edge of
G can be partitioned in h color classes E1, . . . , Eh such that contracting all the
edges in any color class leads to a graph with treewidth O(h). Further, the color
classes are obtained by a radial coloring and have the following property: If edge
e = (u, v) is in class i, then every edge e′ such that e∩ e′ 6= ∅ is in class i− 1 or
i or i + 1.

The proof of Corollary 2 using Theorem 6 is identical to the proof in [16] for the
“uniform” connected max-cut problem. For each Ei, let Si be the solution in G
with Ei contracted, then S′

i = {v|v ∈ Si or v is contracted to some vertex of Si}
is connected in G. Although our edge-weights c are defined on a complete graph,
the proof of [16] still works. The main reason is that each vertex gets contracted
in at most 3 of the graphs G with Ei contracted.
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modular function subject to a matroid constraint. SIAM J. Comp. 40(6), 1740–66
(2011)
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