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Abstract In this paper, we study randomized quasi-Monte Carlo (QMC) integration
using digitally shifted digital nets. We express the mean square QMC error of the n-th
discrete approximation fn of a function f : [0,1)s→ R for digitally shifted digital
nets in terms of the Walsh coefficients of f . We then apply a bound on the Walsh
coefficients for sufficiently smooth integrands to obtain a quality measure called
Walsh figure of merit for root mean square error, which satisfies a Koksma-Hlawka
type inequality on the root mean square error. Through two types of experiments, we
confirm that our quality measure is of use for finding digital nets which show good
convergence behaviors of the root mean square error for smooth integrands.

1 Introduction

Quasi-Monte Carlo (QMC) integration is one of the well-known methods for
high-dimensional numerical integration [4, 9]. Let P be a point set in the s-
dimensional unit cube [0,1)s with finite cardinality |P|, and f : [0,1)s→ R a Rie-
mann integrable function. The QMC integration by P gives an approximation of
I( f ) :=

∫
[0,1)s f (xxx)dxxx by the average IP( f ) := |P|−1

∑xxx∈P f (xxx).
We often consider a special class of point sets, namely digital nets [4]. Let

Zb = Z/bZ be the residue class ring modulo b, which is identified with the set
{0, . . . ,b− 1}, and Zs×n

b the set of s× n matrices over Zb for a positive integer n.
We define the function ψ : Zs×n

b 3 X = (xi, j) 7→ xxx = (∑n
j=1 xi, j · b− j)s

i=1 ∈ [0,1)s,
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where xi, j is considered to be an integer and the sum is taken in R. Then a point
set P ⊂ [0,1)s is called a digital net over Zb when P = ψ(P) for some subgroup
P⊂ Zs×n

b . Thus, we can recognize a subgroup P⊂ Zs×n
b itself as a digital net.

Recently, the discretization fn of a function f has been introduced to analyze the
QMC integration in the framework of the digital computation [8]. We define the
n-digit discretization fn : Zs×n

b → R by

fn(X) :=
1

Vol(In(X))

∫
In(X)

f (xxx)dxxx,

for X = (xi, j) ∈ Zs×n
b . Here In(X) := ∏

s
i=1[∑

n
j=1 xi, jb− j,∑n

j=1 xi, jb− j +b−n). We de-
note the true integral of fn by I( fn) := b−sn

∑X∈Zs×n
b

fn(X), which indeed equals
I( f ).

In [8], Matsumoto, Saito and Matoba treat the QMC integration of the n-th discrete
approximation IP( fn) := |P|−1

∑X∈P fn(X) for b = 2. They consider the discretized
integration error Err( fn;P) := IP( fn)− I( fn) instead of the usual integration error
Err( f ;ψ(P)) := Iψ(P)( f )−I( f ). The difference between them is called the discretiza-
tion error and bounded by maxX∈Zs×n

b
| f (ψ(X))− fn(X)|. When the discretization

error is negligibly small, we have Err( fn;P)≈ Err( f ;ψ(P)), which is a part of their
setting we adopt.

Using Dick’s result for n-smooth functions [2], Matsumoto, Saito and Matoba [8]
proved the Koksma-Hlawka type inequality for Err( fn;P):

|Err( fn;P)| ≤Cb,s,n|| f ||n×WAFOM(P), (1)

where Cb,s,n is a constant independent of f and P, || f ||n is the norm of f defined in
[2] and WAFOM(P) is the Walsh figure of merit, a quantity which depends only on
P and can be computed in O(sn|P|) steps. More recently, this result is generalized by
Suzuki [12] for digital nets over a finite abelian group G.

The inequality (1) implies that if WAFOM(P) is small, Err( fn;P) can also be
small. Since WAFOM(P) is efficiently computable, we can find P with small
WAFOM(P) by computer search. Numerical experiments showed that a stochas-
tic optimization heuristic can find P with WAFOM(P) small enough, and that such
P performs well for a problem from computational finance [8].

In this paper, as a further study of [8, 12], we discuss randomized QMC integration
using digitally shifted digital nets for the n-digit discretization fn. A digitally shifted
digital net P+σ ⊂ Zs×n

b is defined for a subgroup P and an element σ of Zs×n
b . Here

σ is chosen uniformly and randomly. The randomized QMC integration by P+σ of
the n-digit discretization fn gives the approximation IP+σ ( fn) of I( fn). By adding
a random element σ , it becomes possible to obtain some statistical estimate on the
integration error. Such an estimate is not available for deterministic digital nets.

We note that randomized QMC integration using digitally shifted digital nets has
already been studied in previous works [1, 6], where a digital shift σσσ is chosen from
[0,1)s and the QMC integration using P⊕σσσ is considered to give the approximation
of I( f ). Here ⊕ denotes digitwise addition modulo b. It is known that the estimator
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The Mean Square Quasi-Monte Carlo Error for Digitally Shifted Digital Nets 3

IP⊕σσσ ( f ) is an unbiased estimator of I( f ), so that the mean square QMC error for a
function f with respect to σσσ ∈ [0,1)s equals the variance of the estimator.

In the n-digit discretized setting which we consider in this paper, it is also possible
to show that the estimator IP+σ ( fn) is an unbiased estimator of I( fn), so that the mean
square QMC error for a function fn with respect to σ ∈ Zs×n

b equals the variance
of the estimator, see Proposition 2. For the case where the discretization error is
negligible, as in [8], we also have Varσσσ∈[0,1)s [Iψ(P)⊕σσσ ( f )]≈Var

σ∈Zs×n
b

[Iψ(P+σ)( f )]≈
Var

σ∈Zs×n
b

[IP+σ ( fn)].
The variance Var

σ∈Zs×n
b

[Iψ(P+σ)( f )] is for practical computation where each
real number in [0,1) is represented as a finite-digit binary fraction. The estima-
tor Iψ(P+σ)( f ) of I( f ) has so small a bias that the variance Var

σ∈Zs×n
b

[Iψ(P+σ)( f )] is

a good approximation of the mean square error E
σ∈Zs×n

b
[(Iψ(P+σ)( f )− I( f ))2].

From the above justifications of the n-digit discretization for digitally shifted
point sets, we focus on analyzing the variance Var

σ∈Zs×n
b

[IP+σ ( fn)] of the estimator
IP+σ ( fn). As the main result of this paper, in Section 4 below, we give a Koksma-
Hlawka type inequality to bound the variance:√

Var
σ∈Zs×n

b
[IP+σ ( fn)]≤Cb,s,n‖ f‖nW (P; µ), (2)

where Cb,s,n and ‖ f‖n are the same as in (1), and W (P; µ) is a quantity which depends
only on P and can be computed in O(sn|P|) steps. Thus, similarly to WAFOM(P),
W (P; µ) can be a useful measure of digital nets.

The remainder of this paper is organized as follows. We give some preliminaries
in Section 2. In Section 3, we consider the randomized QMC integration over a
general finite abelian group G. For a function F : G→ R, a subgroup P ⊂ G and
an element σ ∈ G, we first prove the unbiasedness of the estimator IP+σ (F) as
mentioned above, and then that the variance Varσ∈G[IP+σ (F)] can be written in
terms of the discrete Fourier coefficients of F , see Theorem 2. In Section 4, we
apply a bound on the Walsh coefficients for sufficiently smooth functions to the
variance Var

σ∈Zs×n
b

[IP+σ ( fn)], and obtain a quality measure W (P; µ) which satisfies
a Koksma-Hlawka type inequality on the root mean square error. By using the
MacWilliams-type identity given in [12], we give a computable formula of W (P; µ)
in Section 5. Finally, in Section 6, we conduct two types of experiments to show
that our new quality measure is of use for finding digital nets which show good
convergence behaviors of the root mean square error for smooth integrands.

2 Preliminaries

Throughout this paper, we use the following notation. Let N be the set of positive
integers and N0 := N∪{0}. For a set S, we denote by |S| the cardinality of S. For
z ∈ C, we denote by z the complex conjugate of z.
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The remainder of this section is devoted to recall the notion of character groups and
discrete Fourier transformation and to see the correspondence of discrete Fourier coef-
ficients and Walsh coefficients. We refer to [11] for general information on character
groups. Let G be a finite abelian group. Let T := {z∈C | |z|= 1} be the multiplicative
group of complex numbers of absolute value one. Let ωb = exp(2π

√
−1/b).

Definition 1. We define the character group of G by G∨ := Hom(G,T ), namely G∨

is the set of group homomorphisms from G to T .

There is a natural pairing • : G∨×G→ T , (h,g) 7→ h•g := h(g).
We can see that Z∨b is isomorphic to Zb as an abstract group. Throughout this

paper, we identify Z∨b with Zb by a pairing • : Zb×Zb→ T , (h,g) 7→ h•g := ω
hg
b ,

where hg is the product in Zb.
Let R be a commutative ring containing C. Let f : G→ R be a function. We define

the discrete Fourier transformation of f as below.

Definition 2. The discrete Fourier transformation of f is defined by f̂ : G∨ → R,
h 7→ |G|−1

∑g∈G f (g)(h•g). Each value f̂ (h) is called a discrete Fourier coefficient.

We assume that P ⊂ G is a subgroup. We define P⊥ := {h ∈ G∨ | h • g =
1 for all g ∈ P}. Since P⊥ is the kernel of the surjection map G∨ → P∨, we have
|P⊥|= |G|/|P|. Several important properties of the discrete Fourier transformation
are summarized below (for a proof, see [12] for example).

Lemma 1. We have

∑
h∈G∨

h•g =

{
|G| if g = 0,
0 if g 6= 0.

Theorem 1 (Poisson summation formula). Let f : G → R be a function and
f̂ : G∨→ R its discrete Fourier transformation. Then we have

1
|P| ∑g∈P

f (g) = ∑
h∈P⊥

f̂ (h).

Walsh functions and Walsh coefficients are widely used to analyze the QMC
error by digital nets. We refer to [4, Appendix A] for general information on Walsh
functions. We denote the kkk-th Walsh coefficient of f by F ( f )(kkk), while they denote
it by f̂ (kkk) in [4, Appendix A].

The relationship between Walsh coefficients and discrete Fourier coefficients is
in the following (for a proof, see [12, Proposition 2.11]). Let A = (ai, j) ∈ Zs×n

b . We
define the function φ : Zs×n

b 3 A = (ai, j) 7→ φ(A) := (∑n
j=1 ai, j ·b j−1)s

i=1 ∈ Ns
0. Note

that each element of φ(A) is strictly less than bn.

Proposition 1. Let A = (ai, j) ∈ Zs×n
b and assume that f : [0,1)s→ R is integrable.

Then we have
F ( f )(φ(A)) = f̂n(A).
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3 Mean Square Error with Respect to Digital Shifts

Let G be a general finite abelian group, P⊂G a point set and F : G→R a real-valued
function. Then QMC integration by P is an approximation IP(F) := |P|−1

∑g∈P F(g)
of the actual average value I(F) := |G|−1

∑g∈G F(g) of F over G.
For σ ∈ G, we define the digitally shifted point set P+σ by P+σ = {g+σ |

g ∈ P}. We consider the mean and the variance of the estimator IP+σ (F) for digitally
shifted point sets of P⊂ G.

First we consider the average Eσ∈G[IP+σ (F)]. We have

1
|G| ∑

σ∈G
IP+σ (F) =

1
|G| ∑

σ∈G

1
|P| ∑g∈P

F(g+σ) =
1
|P| ∑g∈P

1
|G| ∑

σ∈G
F(g+σ)

=
1
|P| ∑g∈P

I(F) = I(F),

and thus we have the following, showing that a randomized QMC integration using a
digitally shifted point set P+σ gives an unbiased estimator IP+σ (F) of I(F).

Proposition 2. For an arbitrary subset P⊂ G, we have

Eσ∈G[IP+σ (F)] = I(F).

From this, we have that the mean square QMC error equals the variance
Varσ∈G[IP+σ (F)]. Hereafter we assume that P⊂ G is a subgroup of G.

Lemma 2. Let P⊂ G be a subgroup. Then we have

IP+σ (F) = ∑
h∈P⊥

(h•σ)−1F̂(h).

Proof. Let Fσ (g) := F(g+σ). Then for h ∈ G∨, we can calculate F̂σ (h) as

F̂σ (h) =
1
|G| ∑g∈G

(h•g)Fσ (g)

= (h• (−σ))
1
|G| ∑g∈G

F(g+σ)(h• (g+σ))

= (h•σ)−1F̂(h).

Thus by Theorem 1 we have
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IP+σ (F) =
1
|P| ∑g∈P

Fσ (g)

= ∑
h∈P⊥

F̂σ (h)

= ∑
h∈P⊥

(h•σ)−1F̂(h),

which proves the result. ut

By Proposition 2 and Lemma 2, we have

Varσ∈G[IP+σ (F)] :=
1
|G| ∑

σ∈G
(IP+σ (F)−Eσ∈G[IP+σ (F)])2

=
1
|G| ∑

σ∈G
|IP+σ (F)− I(F)|2

=
1
|G| ∑

σ∈G

∣∣∣∣∣∣ ∑
h∈P⊥r{0}

(h•σ)−1F̂(h)

∣∣∣∣∣∣
2

=
1
|G| ∑

σ∈G
∑

h∈P⊥r{0}
(h•σ)−1F̂(h) ∑

h′∈P⊥r{0}
(h′ •σ)−1F̂(h′)

=
1
|G| ∑

h∈P⊥r{0}
∑

h′∈P⊥r{0}
F̂(h)F̂(h′) ∑

σ∈G
((h′−h)•σ)

= ∑
h∈P⊥r{0}

∣∣∣F̂(h)
∣∣∣2,

where the last equality follows from Lemma 1. Now we proved:

Theorem 2. Let P⊂ G be a subgroup. Then we have

Varσ∈G[IP+σ (F)] = ∑
h∈P⊥r{0}

∣∣∣F̂(h)
∣∣∣2.

In particular, we immediately obtain the next corollary for the most important case.

Corollary 1. Let P⊂ Zs×n
b be a subgroup, i.e., a digital net over Zb, and fn be the

n-digit discretization of f : [0,1)s→ R. Then we have

Var
σ∈Zs×n

b
[IP+σ ( fn)] = ∑

A∈P⊥r{0}

∣∣∣ f̂n(A)
∣∣∣2.

Our results obtained in this section can be regarded as the discretized version of
known results [1, 6].
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4 WAFOM for Root Mean Square Error

In the previous section, we obtain that the mean square QMC error is equal to a
certain sum of the squared discrete Fourier coefficients, and thus we would like
to bound the value | f̂n(A)|. By Proposition 1, it is sufficient to bound the Walsh
coefficients of f , and several types of upper bounds on the Walsh coefficients are
already known. In order to introduce bounds on the Walsh coefficients proved by
Dick [2, 3, 4], we define the Dick weight.

Definition 3. Let A = (ai, j) ∈ Zs×n
b . The Dick weight µ : Zs×n

b → N0 is defined as

µ(A) := ∑
1≤i≤s
1≤ j≤n

j×δ (ai, j),

where δ : Zb→{0,1} is defined as δ (a) = 0 for a = 0 and δ (a) = 1 for a 6= 0.

Dick [2] proved that there is a constant Cb,s,n depending only on b, s and n such
that for any n-smooth function f : [0,1)s→ R and kkk ∈ Ns it holds that |F ( f )(kkk)| ≤
Cb,s,n‖ f‖n ·b−µn(kkk) where ‖ f‖n is a norm of f for a Sobolev space and µn(kkk) is the
n-weight of kkk, which are defined in [4, (14.6) and Theorem 14.23] (we do not define
them here). By adopting this bound by Dick for our setting, we have the following
(for a proof, see [12]).

Lemma 3 (Dick). There exists a constant Cb,s,n depending only on b, s and n such
that for any n-smooth function f : [0,1)s→ R and any A ∈ Zs×n

b it holds that∣∣∣ f̂n(A)
∣∣∣≤Cb,s,n‖ f‖n ·b−µ(A).

Another upper bound on Walsh coefficients, which is tighter than above, has been
shown by Yoshiki [13] for b = 2 and is written in discrete Fourier notation.

Lemma 4 (Yoshiki). Let f : [0,1]s→ R and define Ni := |{ j = 1, . . . ,n | ai, j 6= 0}|
and NNN := (Ni)1≤i≤s ⊂ Ns

0 for A = (ai, j) ∈ Zs×n
2 . If the NNN-th mixed partial derivative

f (NNN) := (∂/∂x1)
N1 · · ·(∂/∂xs)

Ns f of f exists and is continuous, then we have∣∣∣ f̂n(A)
∣∣∣≤ ∥∥∥ f (NNN)

∥∥∥
∞

·2−(µ(A)+h(A)),

where h(A) := ∑i, j δ (ai, j) is the Hamming weight and ‖ · ‖∞ the supremum norm.

Hence, similar to [8] and [12], we define a kind of figure of merit.

Definition 4 (Walsh figure of merit for root mean square error). Let s, n be pos-
itive integers and P ⊂ Zs×n

b a subgroup. We define Walsh figure of merit for root
mean square error of P by
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8 Takashi Goda, Ryuichi Ohori, Kosuke Suzuki, and Takehito Yoshiki

W (P; µ) :=
√

∑
A∈P⊥r{0}

b−2µ(A),

W (P; µ +h) :=
√

∑
A∈P⊥r{0}

b−2(µ(A)+h(A)).

We have the main result.

Theorem 3 (Koksma-Hlawka type inequalities for root mean square error). For
an arbitrary subgroup P⊂ Zs×n

b we have√
Var

σ∈Zs×n
b

[IP+σ ( fn)]≤Cb,s,n‖ f‖nW (P; µ).

Moreover, if b = 2 then

√
Var

σ∈Zs×n
2

[IP+σ ( fn)]≤

 max
0≤NNN≤n

NNN 6=0

∥∥∥ f (NNN)
∥∥∥

∞

W (P; µ +h)

holds where the condition for the maximum is denoted by multi-index, i.e., the
maximum value is taken over NNN = (N1, . . . ,Ns) such that 0 ≤ Ni ≤ n for all i and
Ni 6= 0 for some i.

Proof. Since the proofs of these inequalities are almost identical, we only show the
latter. Apply Lemma 4 for each term of Corollary 1. For the factor

∥∥∥ f (NNN)
∥∥∥

∞

, note

that NNN depends only on A, that A runs non-zero elements of P⊥, and that Ni ≤ n for
all i. Then we have

Var
σ∈Zs×n

b
[IP+σ ( fn)]≤ ∑

A∈P⊥r{0}

 max
0≤NNN≤n

NNN 6=0

∥∥∥ f (NNN)
∥∥∥

∞

2

2−2(µ(A)+h(A))

and the result follows. ut

5 Inversion Formula for W (P;ν)

For A = (ai, j)1≤i≤s,1≤ j≤n ∈ Zs×n
b , we consider a general weight ν : Zs×n

b → R given
by

ν(A) = ∑
1≤i≤s
1≤ j≤n

νi, jδ (ai, j),

where νi, j ∈ R for 1 ≤ i ≤ s, 1 ≤ j ≤ n. In this section, we give a practically com-
putable formula for
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W (P;ν) :=
√

∑
A∈P⊥r{0}

b−2ν(A).

Note that the Dick weight µ is given by νi, j = j and the Hamming weight h is given
by νi, j = 1. The key of the formula [8, (4.2)] for WAFOM is the discrete Fourier
transformation. In order to obtain a formula for W (P;ν), we use a MacWilliams-type
identity [12], which is also based on the discrete Fourier transformation.

Let X := {xi, j(h)} be a set of indeterminates for 1≤ i≤ s, 1≤ j ≤ n, and h ∈ Zb.
The complete weight enumerator polynomial of P⊥, in a standard sense [7, Chapter
5], is defined by

GWP⊥(X) := ∑
A∈P⊥

∏
1≤i≤s
1≤ j≤n

xi, j(ai, j).

Similarly, the complete weight enumerator polynomial of P is defined by

GW ∗P (X
∗) := ∑

B∈P
∏

1≤i≤s
1≤ j≤n

x∗i, j(bi, j),

where B = (bi, j)1≤i≤s,1≤ j≤n and X∗ := {x∗i, j(g)} is a set of indeterminates for 1 ≤
i≤ s, 1≤ j ≤ n, and g ∈ Zb. We note that if we substitute GWP⊥(X) by

xi, j(0)← 1, xi, j(h)← b−2νi, j (h 6= 0), (3)

we have
GWP⊥(the above substitution) = W (P;ν)2 +1.

By the MacWilliams-type identity for GW [12, Proposition 4.1], we have

GWP⊥(xi, j(h)) =
1
|P|GW ∗P (substituted), (4)

where in the right hand side every x∗i, j(g) is substituted by

x∗i, j(g)← ∑
h∈Zb

(h•g)xi, j(h).

By substituting (3) into (4), we have the following result. Since the result follows
in the same way as in [12, Corollary 4.2], we omit the proof.

Theorem 4. Let P⊂ Zs×n
b be a subgroup. Then we have

W (P;ν) =

√√√√−1+
1
|P| ∑B∈P

∏
1≤i≤s
1≤ j≤n

(1+η(bi, j)b−2νi, j),

where η(bi, j) = b−1 if bi, j = 0 and η(bi, j) =−1 if bi, j 6= 0.

In particular, we can compute W (P; µ) and W (P; µ +h) as follows.
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10 Takashi Goda, Ryuichi Ohori, Kosuke Suzuki, and Takehito Yoshiki

Corollary 2. Let P⊂ Zs×n
b be a subgroup. Then we have

W (P; µ) =

√√√√−1+
1
|P| ∑B∈P

∏
1≤i≤s
1≤ j≤n

(1+η(bi, j)b−2 j),

W (P; µ +h) =

√√√√−1+
1
|P| ∑B∈P

∏
1≤i≤s
1≤ j≤n

(1+η(bi, j)b−2( j+1)),

where η(bi, j) = b−1 if bi, j = 0 and η(bi, j) =−1 if bi, j 6= 0.

Though computing WAFOM by definition needs iterating through P⊥, Theorem 4
and Corollary 2 gives it by iterating over P. For QMC, the size |P| can not exceed a
reasonable number of computer operations opposed to huge |P⊥|, and thus Theorem 4
and Corollary 2 is useful in many cases.

6 Numerical Experiments

To show that W works as a useful bound on root mean square errors we conduct two
types of experiments. The first one is to generate many point sets at random, and to
observe the distribution of the criterion W and variance E . The other one is to search
for low-W point sets and compare with digital nets consisting of the first terms of a
known low-discrepancy sequence.

In this section we consider only b = 2 case, so G :=Zs×n
2 is a vector space over Z2

and a digital net P⊂ G is a linear subspace. The dimension of P over Z2 is denoted
by m, i.e., |P|= 2m. We set s = 4,12 and use the following eight test functions for
xxx = (xi)1≤i≤s:

Polynomial f0(xxx) = (∑i xi)
6,

Exponential f j(xxx) = exp(a∑i xi) (a = 2/3 for j = 1 and a = 3/2 for j = 2),
Oscillatory f3(xxx) = cos(∑i xi),
Gaussian f4(xxx) = exp(∑i x2

i ),
Product peak f5(xxx) = ∏i(x2

i +1)−1,
Continuous f6(xxx) = ∏i T (xi) where T (x) = mini∈Z |3x−2i|,
Discontinuous f7(xxx) = ∏i C(xi) where C(x) = (−1)b3xc.

Assuming that the discretization error is negligible, we have that Iψ(P+σ)( f ) is
a practically unbiased estimator of I( f ). Thus we may consider that if the standard

deviation E ( f ;P) :=
√

Varσ∈G[Iψ(P+σ)( f )] of the quasi-Monte Carlo integral is

small then the root mean square error
√
Eσ∈G[(Iψ(P+σ)( f )− I( f ))2] is as small as

E ( f ;P). From the same assumption we also have that E ( f ;P) is well approximated
by
√

Varσ∈G[IP+σ ( fn)], on which we have a bound in Theorem 3.
In this section we implicitly use the weight µ +h so W (P) denotes W (P; µ +h).

The aim of the experiments is to establish that if W (P) is small then so is E ( f ;P).
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The Mean Square Quasi-Monte Carlo Error for Digitally Shifted Digital Nets 11

For this we compute W by the inversion formula in Corollary 2 and approximate
E ( f ;P) =

√
Varσ∈G[Iψ(P+σ)( f )] by sampling 210 digital shifts σ ∈ G uniformly,

randomly and independent of each other.
We observe both the criterion W and the variance E in binary logarithm, which is

denoted by lg.

6.1 The Distribution of (W ,E )

In this experiment we set m = 10,12 and n = 32, generate point sets P, compute
W (P), approximate E ( f ;P) for test functions f and observe (W ,E ).

We generate 1000 point sets P by random and uniform choice of their basis.
The event that we generate point set with linearly dependent “basis” has so low a
probability that we do not check the linear independence in the implementation.

For each (s,m, f ) we calculate the correlation coefficient between W (P) and
E ( f ;P) log-scaled, obtaining the result as in Table 1. For typical distributions of
(W (P),E ( f ;P)) for smooth, continuous nondifferentiable and discontinuous func-
tions we refer the readers to Figures 1–4. We observe that there are very high
correlations (correlation coefficient is larger than 0.85) between W (P) and E ( f ;P) if
f is smooth. Though f6 is a nondifferentiable function we have significant correlation
coefficients around 0.35. However, for the discontinuous function f7 it seems we can
do almost nothing for the root mean square error through W (P).

Table 1 The correlation coefficient between lgW (P) and lgE ( f ;P)

s 4 4 12 12
m 10 12 10 12
f0 .9861 .9920 .9821 .9776
f1 .9907 .9901 .9842 .9866
f2 .9897 .9887 .9821 .9851
f3 .9794 .9818 .8900 .8916
f4 .9723 .9599 .9975 .9951
f5 .9421 .9144 .9912 .9839
f6 .3976 .3218 .4077 .3258
f7 .0220 .0102 .0208 .0171

6.2 Comparison to Known Low-discrepancy Sequence

In this experiment we set n = 30. For 8≤m < 16, let P be a low-W point set and PNX
the digital net consisting of the first 2m points from s-dimensional Niederreiter-Xing
sequence from [10].
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Fig. 1 s = 4 and m = 10. The integrand is the
oscillatory function f3(xxx) = cos(∑i xi).
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Fig. 2 s = 12 and m = 12. The integrand is the
product peak function f5(xxx) = ∏i(x2

i +1)−1.
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Fig. 3 s = 12 and m = 10. The integrand is the
continuous nondifferentiable function f6(xxx) =
∏i T (xi) where T (x) = min j∈Z |3x−2 j|.
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Fig. 4 s = 4 and m = 12. The integrand is the
discontinuous function f7(xxx) = ∏i C(xi) where
C(x) = (−1)b3xc.

The search algorithm for low-W point sets is based on simulated annealing but
not described here. Note that point sets we obtain by this method are not extensible
in m, i.e., one cannot increase the size of P while retaining the existing points. For a
search for extensible point sets which are good in W -like (but different in weight
and exponent) criterion, see [5].

Varying m, we observe lgW (PNX), lgW (P) and for each test function lgE ( f ;PNX),
lgE ( f ;P) in Table 2. As shown in Figures 5 and 6, the W -value of point sets P
optimized in W by our method is far better than that of PNX however this is not
surprising. The W -values of PNX has plateaus and sudden drops. In Figures 7 and
8 are the root mean square errors for two test functions; we clearly observe higher
order convergence in the former for the smooth function f5 and for the discontinuous
function f7 in the latter only lower order convergence can be achieved by both
methods.
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Table 2 Comparison between Niederreiter-Xing sequence (PNX) and low-W point sets (P) in lgW
and lgE .

s m = 8 9 10 11 12 13 14 15
lgW (PNX) 4 −10.31 −12.40 −12.90 −12.98 −15.74 −15.77 −15.77 −23.20
lgW (P) 4 −12.59 −14.39 −16.39 −17.91 −19.50 −21.82 −23.67 −26.00
lgE ( f0;PNX) 4 −0.19 −2.17 −3.22 −3.45 −5.93 −5.98 −5.94 −12.75
lgE ( f0;P) 4 −2.14 −3.99 −6.03 −7.51 −9.35 −11.95 −13.63 −16.40
lgE ( f1;PNX) 4 −9.81 −11.99 −12.07 −12.12 −15.01 −15.00 −14.98 −23.26
lgE ( f1;P) 4 −12.74 −14.72 −16.54 −18.62 −20.58 −23.09 −24.82 −27.47
lgE ( f2;PNX) 4 −3.76 −5.60 −6.67 −6.93 −9.42 −9.50 −9.46 −15.92
lgE ( f2;P) 4 −5.25 −6.87 −8.82 −10.20 −11.55 −13.51 −15.34 −17.45
lgE ( f3;PNX) 4 −10.93 −13.62 −14.14 −14.47 −16.84 −16.84 −16.86 −24.03
lgE ( f3;P) 4 −13.13 −14.91 −17.00 −18.57 −20.17 −22.40 −24.28 −27.04
lgE ( f4;PNX) 4 −12.44 −14.57 −15.00 −15.14 −17.88 −17.97 −17.95 −25.30
lgE ( f4;P) 4 −13.16 −15.69 −17.26 −18.05 −19.75 −21.43 −24.32 −24.46
lgE ( f5;PNX) 4 −13.24 −15.39 −15.57 −15.67 −18.48 −18.55 −18.55 −26.47
lgE ( f5;P) 4 −13.81 −16.24 −17.89 −18.30 −20.66 −21.79 −25.12 −24.66
lgE ( f6;PNX) 4 −9.77 −11.23 −11.54 −12.13 −12.20 −14.57 −15.92 −17.60
lgE ( f6;P) 4 −8.93 −10.31 −11.70 −9.55 −11.88 −14.85 −15.56 −17.19
lgE ( f7;PNX) 4 −4.32 −4.96 −5.70 −6.17 −6.47 −6.65 −8.06 −9.22
lgE ( f7;P) 4 −4.53 −4.12 −5.25 −5.68 −6.21 −7.40 −7.05 −8.84
lgW (PNX) 12 −5.18 −6.07 −6.68 −6.82 −6.92 −6.98 −11.52 −12.01
lgW (P) 12 −6.16 −6.93 −7.89 −8.67 −9.66 −10.73 −11.67 −12.64
lgE ( f0;PNX) 12 9.95 8.89 8.00 7.84 7.80 7.76 1.39 0.09
lgE ( f0;P) 12 8.09 7.19 6.05 4.98 4.15 2.46 1.49 −0.31
lgE ( f1;PNX) 12 −0.57 −1.60 −2.43 −2.60 −2.64 −2.69 −8.27 −8.99
lgE ( f1;P) 12 −2.20 −3.05 −4.12 −5.07 −5.97 −7.35 −8.36 −9.61
lgE ( f2;PNX) 12 11.02 10.20 9.77 9.54 9.40 9.25 6.00 5.45
lgE ( f2;P) 12 10.58 9.91 9.07 8.53 7.53 6.80 5.84 5.18
lgE ( f3;PNX) 12 −6.14 −7.34 −8.32 −8.64 −8.97 −9.27 −12.74 −13.51
lgE ( f3;P) 12 −7.18 −8.01 −9.01 −10.16 −10.78 −11.86 −12.90 −13.76
lgE ( f4;PNX) 12 −10.56 −11.52 −12.07 −12.27 −12.39 −12.41 −16.99 −17.47
lgE ( f4;P) 12 −11.54 −12.36 −13.28 −14.09 −14.82 −16.17 −17.10 −18.20
lgE ( f5;PNX) 12 −10.69 −11.70 −12.33 −12.62 −12.70 −12.71 −18.09 −18.69
lgE ( f5;P) 12 −12.00 −12.86 −13.97 −14.86 −15.17 −16.99 −17.90 −19.34
lgE ( f6;PNX) 12 −13.64 −14.31 −14.93 −15.65 −16.11 −16.62 −17.10 −17.54
lgE ( f6;P) 12 −13.87 −14.16 −14.83 −15.48 −15.97 −16.45 −17.30 −18.09
lgE ( f7;PNX) 12 −4.06 −4.45 −4.93 −5.50 −6.01 −6.48 −7.02 −7.48
lgE ( f7;P) 12 −4.00 −4.51 −5.00 −5.52 −5.96 −6.50 −6.95 −7.52
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Fig. 5 W values for s = 4.
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Fig. 6 W values for s = 12.
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Fig. 7 s = 4. The integrand is the product peak
function f5(xxx) = ∏i(x2

i +1)−1.
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Fig. 8 s = 12. The integrand is the discontin-
uous function f7(xxx) = ∏i C(xi) where C(x) =
(−1)b3xc.

6.3 Discussion

The first experiment shows that W works as a useful bound on E for functions
tested above. The other experiment shows that point sets with low W values are
easy enough to find and perform better for smooth test functions, while these point
sets work as bad as Niederreiter-Xing sequence for non-smooth or discontinuous
functions.
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