Skip to main content

Uncertainty and Robustness in Weather Derivative Models

  • Conference paper
  • First Online:
Book cover Monte Carlo and Quasi-Monte Carlo Methods

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 163))

Abstract

Pricing of weather derivatives often requires a model for the underlying temperature process that can characterize the dynamic behavior of daily average temperatures. The comparison of different stochastic models with a different number of model parameters is not an easy task, especially in the absence of a liquid weather derivatives market. In this study, we consider four widely used temperature models in pricing temperature-based weather derivatives. The price estimates obtained from these four models are relatively similar. However, there are large variations in their estimates with respect to changes in model parameters. To choose the most robust model, i.e., the model with smaller sensitivity with respect to errors or variation in model parameters, the global sensitivity analysis of Sobol’ is employed. An empirical investigation of the robustness of models is given using temperature data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Daily average temperatures are measured by the Earth Satellite Corporation and our dataset is provided by the Chicago Mercantile Exchange (CME).

  2. 2.

    Our historical data starts from 1/1/1997, which corresponds to \(t=1\). The date we price the option, December 31, 2012 corresponds to \(t=5475\).

References

  1. Alaton, P., Djehiche, B., Stillberger, D.: On modelling and pricing weather derivatives. Appl. Math. Financ. 9, 1–20 (2002)

    Article  MATH  Google Scholar 

  2. Alexanderian, A., Winokur, J., Sraj, I., Srinivasan, A., Iskandarani, M., Thacker, W.C., Knio, O.M.: Global sensitivity analysis in an ocean general circulation model: a sparse spectral projection approach. Comput. Geosci. 16, 757–778 (2012)

    Article  Google Scholar 

  3. Benth, F.E., Benth, J.S.: The volatility of temperature and pricing of weather derivatives. Quant. Financ. 7, 553–561 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brody, D.C., Syroka, J., Zervos, M.: Dynamical pricing of weather derivatives. Quant. Financ. 3, 189–198 (2002)

    Article  MathSciNet  Google Scholar 

  5. Campbell, S., Diebold, F.X.: Weather forecasting for weather derivatives. J. Am. Stat. Assoc. 100, 6–16 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cao, M., Wei, J.: Weather derivatives valuation and market price of weather risk. J. Futur. Mark. 24, 1065–1089 (2004)

    Article  Google Scholar 

  7. Engle, R.F.: Autoregressive conditional heteroscedasticity with estimates of variance of united kingdom inflation. Econometrica 50, 987–1008 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  8. Göncü, A.: Pricing temperature-based weather derivatives in China. J. Risk Financ. 13, 32–44 (2011)

    Article  Google Scholar 

  9. Göncü, A.: Comparison of temperature models using heating and cooling degree days futures. J. Risk Financ. 14, 159–178 (2013)

    Article  Google Scholar 

  10. Hanley, M.: Hedging the force of nature. Risk Prof. 1, 21–25 (1999)

    Google Scholar 

  11. Härdle, W.K., Cabrera, B.L.: The Implied Market Price of Weather Risk. Appl. Math. Financ. 19, 59–95 (2012)

    Article  MathSciNet  Google Scholar 

  12. Huang, H.-H., Shiu, Y.-M., Lin, P.-S.: HDD and CDD option pricing with market price of weather risk for Taiwan. J. Futu. Mark. 28, 790–814 (2008)

    Article  Google Scholar 

  13. Jewson, S.: Weather Derivative Valuation: The Meteorological, Statistical, Financial and Mathematical Foundations. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  14. Kucherenko, S., Rodriguez-Fernandez, M., Pantelides, C., Shah, N.: Monte Carlo evaluation of derivative-based global sensitivity measures. Reliab. Eng. Syst. Saf. 94, 1135–1148 (2009)

    Article  Google Scholar 

  15. Kucherenko, S., Feil, B., Shah, N., Mauntz, W.: The identification of model effective dimensions using global sensitivity analysis. Reliab. Eng. Syst. Saf. 96, 440–449 (2011)

    Article  Google Scholar 

  16. Liu, R., Owen, A.: Estimating mean dimensionality of analysis of variance decompositions. J. Am. Stat. Assoc. 101, 712–721 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, Y., Jimenez, E., Hussaini, M.Y., Ökten, G., Goodrick, S.: Parametric uncertainty quantification in the Rothermel model with randomized quasi-Monte Carlo methods. Int. J. Wildland Fire 24, 307–316 (2015)

    Article  Google Scholar 

  18. Oetomo, T., Stevenson, M.: Hot or Cold? a comparison of different approaches to the pricing of weather derivatives. J. Emerg. Mark. Financ. 4, 101–133 (2005)

    Article  Google Scholar 

  19. Ökten, G., Shah, M., Goncharov, Y.: Random and deterministic digit permutations of the Halton sequence. In: Plaskota, L., Woźniakowski, H. (eds.) 9th International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, Warsaw, Poland, August 15–20, pp. 589–602. Springer, Berlin (2012)

    Google Scholar 

  20. Platen, E., West, J.: A fair pricing approach to weather derivatives. Asian-Pac. Financ. Mark. 11, 23–53 (2005)

    Article  MATH  Google Scholar 

  21. Rohmer, J., Foerster, E.: Global sensitivity analysis of large-scale numerical landslide models based on Gaussian-Process meta-modeling. Comput. Geosci. 37, 917–927 (2011)

    Article  Google Scholar 

  22. Saltelli, A., Tarantola, S., Chan, K.P.-S.: A quantitative model-independent method for global sensitivity analysis of model output. Technometrics 41, 39–56 (1999)

    Article  Google Scholar 

  23. Saltelli, A.: Making best use of model evaluations to compute sensitivity indices. Comput. Phys. Commun. 145, 80–297 (2002). doi:10.1016/S0010-4655(02)00280-1

    Article  MATH  Google Scholar 

  24. Saltelli, A.: Global Sensitivity Analysis: The Primer. Wiley, New Jersey (2008)

    MATH  Google Scholar 

  25. Schiller, F., Seidler, G., Wimmer, M.: Temperature models for pricing weather derivatives. Quant. Financ. 12, 489–500 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sobol’, I.M.: Sensitivity estimates for non-linear mathematical models. Math. Model. Comput. Exp. 1, 407–414 (1993)

    MathSciNet  MATH  Google Scholar 

  27. Sobol’, I.M.: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 55, 271–280 (2001). doi:10.1016/S0378-4754(00)00270-6

    Article  MathSciNet  MATH  Google Scholar 

  28. Sobol’, I.M., Kucherenko, S.: Derivative based global sensitivity measures and their link with global sensitivity indices. Math. Comput. Simul. 79, 3009–3017 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giray Ökten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Göncü, A., Liu, Y., Ökten, G., Hussaini, M.Y. (2016). Uncertainty and Robustness in Weather Derivative Models. In: Cools, R., Nuyens, D. (eds) Monte Carlo and Quasi-Monte Carlo Methods. Springer Proceedings in Mathematics & Statistics, vol 163. Springer, Cham. https://doi.org/10.1007/978-3-319-33507-0_17

Download citation

Publish with us

Policies and ethics