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Abstract We investigate quasi-Monte Carlo (QMC) integration of bivariate periodic
functions with dominating mixed smoothness of order one. While there exist several
QMC constructions which asymptotically yield the optimal rate of convergence of
O(N−1 log(N)

1
2 ), it is yet unknown which point set is optimal in the sense that it is

a global minimizer of the worst case integration error. We will present a computer-
assisted proof by exhaustion that the Fibonacci lattice is the unique minimizer of the
QMC worst case error in periodic H1

mix for small Fibonacci numbers N. Moreover, we
investigate the situation for point sets whose cardinality N is not a Fibonacci number.
It turns out that for N = 1,2,3,5,7,8,12,13 the optimal point sets are integration
lattices.

1 Introduction

Quasi-Monte Carlo (QMC) rules are equal-weight quadrature rules which can be
used to approximate integrals defined on the d-dimensional unit cube [0,1)d

∫
[0,1)d

f (xxx)dxxx≈ 1
N

N

∑
i=1

f (xxxi),

where PN = {xxx1,xxx2, . . . ,xxxN} are deterministically chosen quadrature points in [0,1)d .
The integration error for a specific function f is given as

Aicke Hinrichs
Institut für Analysis, Johannes-Kepler-Universität Linz, Altenberger Straße 69, 4040 Linz, Austria
e-mail: aicke.hinrichs@uni-rostock.de

Jens Oettershagen
Institute for Numerical Simulation, Wegelerstraße 6, 53115 Bonn, Germany
e-mail: oettershagen@ins.uni-bonn.de

1

ar
X

iv
:1

40
9.

58
94

v2
  [

m
at

h.
N

A
] 

 1
0 

D
ec

 2
01

5

aicke.hinrichs@uni-rostock.de
oettershagen@ins.uni-bonn.de


2 Aicke Hinrichs and Jens Oettershagen∣∣∣∣∣
∫
[0,1)d

f (xxx)dxxx− 1
N

N

∑
i=1

f (xxxi)

∣∣∣∣∣ .
To study the behavior of this error as N increases for f from a Banach space (H ,‖·‖)
one considers the worst case error

wce(H ,PN) = sup
f∈H
‖ f‖≤1

∣∣∣∣∣
∫
[0,1)d

f (xxx)dxxx− 1
N

N

∑
i=1

f (xxxi)

∣∣∣∣∣ .
Particularly nice examples of such function spaces are reproducing kernel Hilbert
spaces [1]. Here, we will consider the reproducing kernel Hilbert space H1

mix of
1-periodic functions with mixed smoothness. Details on these spaces are given in
Section 2. The reproducing kernel is a tensor product kernel of the form

Kd,γ(xxx,yyy) =
d

∏
j=1

K1,γ(x j,y j) for xxx = (x1, . . . ,xd),yyy = (y1, . . . ,yd) ∈ [0,1)d

with K1,γ(x,y) = 1+ γk(|x− y|) and k(t) = 1
2 (t

2− t + 1
6 ) and a parameter γ > 0. It

turns out that minimizing the worst case error wce(H1
mix,PN) among all N-point

sets PN = {xxx1, . . . ,xxxN} with respect to the Hilbert space norm corresponding to the
kernel Kd,γ is equivalent to minimizing the double sum

Gγ(xxx1, . . . ,xxxN) =
N

∑
i, j=1

Kd,γ(xxxi,xxx j).

There is a general connection between the discrepancy of a point set and the worst
case error of integration. Details can be found in [11, Chapter 9]. In our case, the
relevant notion is the L2-norm of the periodic discrepancy. We describe the connection
in detail in Section 2.3.

There are many results on the rate of convergence of worst case errors and of
the optimal discrepancies for N → ∞, see e.g. [10, 11], but results on the optimal
point configurations for fixed N and d > 1 are scarce. For discrepancies, we are
only aware of [21], where the point configurations minimizing the standard L∞-star-
discrepancy for d = 2 and N = 1,2, . . . ,6 are determined, [14], where for N = 1 the
point minimizing the standard L∞- and L2-star discrepancy for d ≥ 1 is found, and
[6], where this is extended to N = 2.

It is the aim of this paper to provide a method which for d = 2 and N > 2 yields
the optimal points for the periodic L2-discrepancy and worst case error in H1

mix.
Our approach is based on a decomposition of the global optimization problem into
exponentially many local ones which each possess unique solutions that can be
approximated efficiently by a nonlinear block Gauß-Seidel method. Moreover, we
use the symmetries of the two-dimensional torus to significantly reduce the number
of local problems that have to be considered.
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It turns out that in the case that N is a (small) Fibonacci number, the Fibonacci
lattice yields the optimal point configuration. It is common wisdom, see e.g. [3, 8, 15,
16], that the Fibonacci lattice provides a very good point set for integrating periodic
functions. Now our results support the conjecture that they are actually the best
points.

These results may suggest that the optimal point configurations are integration
lattices or at least lattice point sets. This seems to be true for some numbers N of
points, for example for Fibonacci numbers, but not always. However, it can be shown
that integration lattices are always local minima of wce(H1

mix,PN). Moreover, our
numerical results also suggest that for small γ the optimal points are always close to
a lattice point set, i.e. N-point sets of the form{(

i
N
,

σ(i)
N

)
: i = 0, . . . ,N−1

}
,

where σ is a permutation of {0,1, . . . ,N−1}.
The remainder of this article is organized as follows: In Section 2 we recall Sobolev

spaces with bounded mixed derivatives, the notion of the worst case integration error
in reproducing kernel Hilbert spaces and the connection to periodic discrepancy. In
Section 3 we discuss necessary and sufficient conditions for optimal point sets and
derive lower bounds of the worst case error on certain local patches of the whole
[0,1)2N . In Section 4 we compute candidates for optimal point sets up to machine
precision. Using arbitrary precision rational arithmetic we prove that they are indeed
near the global minimum which also turns out to be unique up to torus-symmetries.
For certain point numbers the global minima are integration lattices as is the case if
N is a Fibonacci number. We close with some remarks in Section 5.

2 Quasi–Monte Carlo Integration in H1
mix(T

2)

2.1 Sobolev Spaces of Periodic Functions

We consider univariate 1-periodic functions f : R→ R which are given by their
values on the torus T= [0,1). For k ∈ Z, the k-th Fourier coefficient of a function
f ∈ L2(T) is given by f̂k =

∫ 1
0 f (x)exp(2πikx) dx. The definition

‖ f‖2
H1,γ = f̂ 2

0 + γ ∑
k∈Z
|2πk|2 f̂ 2

k =

(∫
T

f (x) dx
)2

+ γ

∫
T

f ′(x)2 dx (1)

for a function f in the univariate Sobolev space H1(T) = W 1,2(T) ⊂ L2(T) of
functions with first weak derivatives bounded in L2 gives a Hilbert space norm
‖ f‖H1,γ on H1(T) depending on the parameter γ > 0. The corresponding inner
product is given by
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( f ,g)H1,γ (T) =

(∫ 1

0
f (x) dx

)(∫ 1

0
g(x) dx

)
+ γ

∫ 1

0
f ′(x)g′(x) dx.

We denote the Hilbert space H1(T) equipped with this inner product by H1,γ(T).
Since H1,γ(T) is continuously embedded in C0(T) it is a reproducing kernel

Hilbert space (RKHS), see [1], with a symmetric and positive definite kernel
K1,γ : T×T→ R, given by [20]

K1,γ(x,y) :=1+ γ ∑
k∈Z\{0}

|2πk|−2 exp(2πik(x− y))

=1+ γk(|x− y|),
(2)

where k(t) = 1
2 (t

2− t + 1
6 ) is the Bernoulli polynomial of degree two divided by two.

This kernel has the property that it reproduces point evaluations in H1, i.e.
f (x) = ( f (·),K(·,x))H1,γ for all f ∈H1. The reproducing kernel of the tensor product
space H1,γ

mix(T
2) := H1(T)⊗H1(T)⊂C(T2) is the product of the univariate kernels,

i.e.

K2,γ(xxx,yyy) =K1,γ(x1,y1) ·K1,γ(x2,y2)

=1+ γk(|x1− y1|)+ γk(|x2− y2|)+ γ
2k(|x1− y1|)k(|x2− y2|).

(3)

2.2 Quasi–Monte Carlo Cubature

A linear cubature algorithm QN( f ) := 1
N ∑

N
i=1 f (xxxi) with uniform weights 1

N on a
point set PN = {xxx1, . . . ,xxxN} is called a QMC cubature rule. Well-known examples
for point sets used in such quadrature methods are digital nets, see e.g. [4, 10], and
lattice rules [15]. A two-dimensional integration lattice is a set of N points given as{(

i
N
,

ig
N

mod 1
)

: i = 0, . . . ,N−1
}

for some g ∈ {1, . . . ,N− 1} coprime to N. A special case of such a rank-1 lattice
rule is the so called Fibonacci lattice that only exists for N being a Fibonacci number
Fn and is given by the generating vector (1,g) = (1,Fn−1), where Fn denotes the n-th
Fibonacci number. It is well known that the Fibonacci lattices yield the optimal rate
of convergence in certain spaces of periodic functions.

In the setting of a reproducing kernel Hilbert space with kernel K on a general
domain D, the worst case error of the QMC-rule QN can be computed as

wce(H ,PN)
2 =

∫
D

∫
D

K(xxx,yyy) dxxxdyyy− 2
N

N

∑
i=1

∫
D

K(xxxi,yyy) dy+
1

N2

N

∑
i, j=1

K(xxxi,xxx j),
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which is the norm of the error functional, see e.g. [4, 11]. For the kernel K2,γ we
obtain

wce(H1,γ
mix(T

2),PN)
2 =−1+

1
N2

N

∑
i=1

N

∑
j=1

K2,γ(xxxi,xxx j).

There is a close connection between the worst case error of integration in
wce(H1,γ

mix(T
2),PN) for the case γ = 6 and periodic L2-discrepancy, which we will

describe in the following.

2.3 Periodic Discrepancy

The periodic L2-discrepancy is measured with respect to periodic boxes. In dimension
d = 1, periodic intervals I(x,y) for x,y ∈ [0,1) are given by

I(x,y) = [x,y) if x≤ y and I(x,y) = [x,1)∪ [0,y) if x > y.

In dimension d > 1, the periodic boxes B(xxx,yyy) for xxx = (x1, . . . ,xd) and yyy =
(y1, . . . ,yd) ∈ [0,1)d are products of the one-dimensional intervals, i.e.

B(xxx,yyy) = I(x1,y1)×·· ·× I(xd ,yd).

The discrepancy of a set PN = {xxx1, . . . ,xxxN} ⊂ [0,1)d with respect to such a periodic
box B = B(xxx,yyy) is the deviation of the relative number of points of PN in B from
the volume of B

D(PN ,B) =
#PN ∩B

N
− vol(B).

Finally, the periodic L2-discrepancy of PN is the L2-norm of the discrepancy function
taken over all periodic boxes B = B(xxx,yyy), i.e.

D2(PN) =

(∫
[0,1)d

∫
[0,1)d

D(PN ,B(xxx,yyy))2 dyyydxxx
)1/2

.

It turns out, see [11, page 43] that the periodic L2-discrepancy can be computed as

D2(PN)
2 =−3−d +

1
N2 ∑

xxx,yyy∈PN

K̃d(xxx,yyy)

=3−dwce(H1,6
mix(T

d),PN)
2,

where K̃d is the tensor product of d kernels K̃1(x,y) = |x− y|2− |x− y|+ 1
2 . So

minimizing the periodic L2-discrepancy is equivalent to minimizing the worst case
error in H1,γ

mix for γ = 6. Let us also remark that the periodic L2-discrepancy is (up to
a factor) sometimes also called diaphony. This terminology was introduced in [22].
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3 Optimal Cubature Points

In this section we deal with (local) optimality conditions for a set of two-dimensional
points PN ≡ (xxx,yyy)⊂ T2, where xxx,yyy ∈ TN denote the vectors of the first and second
components of the points, respectively.

3.1 Optimization Problem

We want to minimize the squared worst case error

wce(H1,γ
mix(T

2),PN)
2 =−1+

1
N2

N−1

∑
i, j=0

K1,γ(xi,x j)K1,γ(yi,y j)

=−1+
1

N2

N−1

∑
i, j=0

(
1+ γk(|xi− x j|)+ γk(|yi− y j|)+ γ

2k(|xi− x j|)k(|yi− y j|)
)

=
γ

N2

N−1

∑
i, j=0

(k(|xi− x j|)+ k(|yi− y j|)+ γk(|xi− x j|)k(|yi− y j|))

=
γ(2k(0)+ γk(0)2)

N

+
2γ

N2

N−2

∑
i=0

N−1

∑
j=i+1

(k(|xi− x j|)+ k(|yi− y j|)+ γk(|xi− x j|)k(|yi− y j|))

Thus, minimizing wce(H1,γ
mix(T

2),PN)
2 is equivalent to minimizing either

Fγ(xxx,yyy) :=
N−2

∑
i=0

N−1

∑
j=i+1

(k(|xi− x j|)+ k(|yi− y j|)+ γk(|xi− x j|)k(|yi− y j|)) (4)

or

Gγ(xxx,yyy) :=
N−1

∑
i, j=0

(1+ γk(|xi− x j|))(1+ γk(|yi− y j|)). (5)

For theoretical considerations we will sometimes use Gγ , while for the numerical
implementation we will use Fγ as objective function, since it has less summands.

Let τ,σ ∈ SN be two permutations of {0,1, . . . ,N−1}. Define the sets

Dτ,σ =

{
xxx ∈ [0,1)N ,yyy ∈ [0,1)N :

xτ(0) ≤ xτ(1) ≤ ·· · ≤ xτ(N−1)
yσ(0) ≤ yσ(1) ≤ ·· · ≤ yσ(N−1)

}
(6)

on which all points maintain the same order in both components and hence it holds
|xi− x j|= si, j(xi− x j) for si, j ∈ {−1,1}. It follows that the restriction of Fγ to Dτ,σ ,
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i.e. Fγ(xxx,yyy)|Dτ,σ
, is a polynomial of degree 4 in (xxx,yyy). Moreover, Fγ|Dτ,σ

is convex
for sufficiently small γ .

Proposition 1. Fγ(xxx,yyy)|Dτ,σ
and Gγ(xxx,yyy)|Dτ,σ

are convex if γ ∈ [0,6].

Proof. It is enough to prove the claim for

Gγ(xxx,yyy) =
N−1

∑
i, j=0

(1+ γk(|xi− x j|))(1+ γk(|yi− y j|)).

Since the sum of convex functions is convex and since f (x− y) is convex if f is,
it is enough to show that f (s, t) =

(
1+ γk(s)

)(
1+ γk(t)

)
is convex for s, t ∈ [0,1].

To this end, we show that the Hesse matrix H ( f ) is positive definite if 0≤ γ < 6.
First, fss = γ

(
1+ γk(t)

)
is positive if γ < 24. Hence is is enough to check that the

determinant of H ( f ) is positive, which is equivalent to the inequality

(
1+ γk(s)

)(
1+ γk(t)

)
> γ

2
(

s− 1
2

)2(
t− 1

2

)2

.

So it remains to see that

1+ γk(s) = 1+
γ

2

(
s2− s+

1
6

)
> γ

(
s− 1

2

)2

.

But this is elementary to check for 0 ≤ γ < 6 and s ∈ [0,1]. In the case γ = 6 the
determinant of H ( f ) = 0 and some additional argument is necessary which we omit
here. ut

Since
[0,1)N× [0,1)N =

⋃
(τ,σ)∈SN×SN

Dτ,σ ,

one can obtain the global minimum of Fγ on [0,1)N × [0,1)N by computing
argmin(xxx,yyy)∈Dτ,σ

Fγ(xxx,yyy) for all (τ,σ) ∈ SN ×SN and choose the global minimum as
the smallest of all the local ones.

3.2 Using the Torus Symmetries

We now want to analyze how symmetries of the two dimensional torus T2 allow to
reduce the number of regions Dτ,σ for which the optimization problem has to be
solved.

The symmetries of the torus T2 which do not change the worst case error for the
considered classes of periodic functions are generated by

1. Shifts in the first coordinate x 7→ x+ c mod 1 and shifts in the second coordinate
y 7→ y+ c mod 1.
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2. Reflection of the first coordinate x 7→ 1−x and reflection of the second coordinate
y 7→ 1− y.

3. Interchanging the first coordinate x and the second coordinate y.
4. The points are indistinguishable, hence relabeling the points does not change the

worst case error.

Applying finite compositions of these symmetries to all the points in the point set
PN = {(x0,y0), . . . ,(xN−1,yN−1)} leads to an equivalent point set with the same
worst case integration error. This shows that the group of symmetries G acting on the
pairs (τ,σ) indexing Dτ,σ generated by the following operations

1. replacing τ or σ by a shifted permutation: τ 7→ (τ(0)+k mod N, . . . ,τ(N−1)+k
mod N) or σ 7→ (σ(0)+ k mod N, . . . ,σ(N−1)+ k mod N)

2. replacing τ or σ by its flipped permutation: τ 7→ (τ(N−1),τ(N−2), . . . ,τ(1),τ(0))
or σ 7→ (σ(N−1),σ(N−2), . . . ,σ(1),σ(0))

3. interchanging σ and τ: (τ,σ) 7→ (σ ,τ)
4. applying a permutation π ∈ SN to both τ and σ : (τ,σ) 7→ (πτ,πσ)

lead to equivalent optimization problems. So let us call the pairs (τ,σ) and (τ ′,σ ′)
in SN×SN equivalent if they are in the same orbit with respect to the action of G. In
this case we write (τ,σ)∼ (τ ′,σ ′).

Using the torus symmetries 1. and 4. it can always be arranged that τ = id and
σ(0) = 0, which together with fixing the point (x0,y0) = (0,0) leads to the sets

Dσ =

{
xxx ∈ [0,1)N ,yyy ∈ [0,1)N :

0 = x0 ≤ x1 ≤ . . .≤ xN−1
0 = y0 ≤ yσ(1) ≤ ·· · ≤ yσ(N−1)

}
, (7)

where σ ∈ SN−1 denotes a permutation of {1,2, . . . ,N−1}.
But there are many more symmetries and it would be algorithmically desirable

to cycle through exactly one representative of each equivalence class without ever
touching the other equivalent σ . This seems to be difficult to implement, hence we
settled for a little less which still reduces the amount of permutations to be handled
considerably.

To this end, let us define the symmetrized metric

d(i, j) = min{|i− j|,N−|i− j|} for 0≤ i, j ≤ N−1 (8)

and the following subset of SN .

Definition 1. The set of semi-canonical permutations CN ⊂ SN consists of permuta-
tions σ which fulfill

(i) σ(0) = 0
(ii) d(σ(1),σ(2))≤ d(0,σ(N−1))

(iii) σ(1) = min{d(σ(i),σ(i+1)) | i = 0,1, . . . ,N−1}
(iv) σ is lexicographically smaller than σ−1.

Here we identify σ(N) with 0 = σ(0).
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This means that σ is semi-canonical if the distance between 0 = σ(0) and σ(1) is
minimal among all distances between σ(i) and σ(i+1), which can be arranged by
a shift. Moreover, the distance between σ(1) and σ(2) is at most as large as the
distance between σ(0) and σ(N−1), which can be arranged by a reflection and a
shift if it is not the case. Hence we have obtained the following lemma.

Lemma 1. For any permutation σ ∈ SN with σ(0) = 0 there exists a semi-canonical
σ ′ such that the sets Dσ and Dσ ′ are equivalent up to torus symmetry.

Thus we need to consider only semi-canonical σ which is easy to do algorithmically.

Remark 1. If σ ∈ SN is semi-canonical, it holds σ(1)≤ N/2.

Another main advantage in considering our objective function only in domains Dσ is
that it is not only convex but strictly convex here. This is due to the fact that we fix
(x0,y0) = (0,0).

Proposition 2. Fγ(xxx,yyy)|Dσ
and Gγ(xxx,yyy)|Dσ

are strictly convex if γ ∈ [0,6].

Proof. Again it is enough to prove the claim for

Gγ(xxx,yyy) =
N−1

∑
i, j=0

(1+ γk(|xi− x j|))(1+ γk(|yi− y j|)).

Now we use that the sum of a convex and a strictly convex function is again strictly
convex. Hence it is enough to show that the function

f (x1, . . . ,xN−1,y1, . . . ,yN−1) =
N−1

∑
i=1

(1+ γk(|xi− x0|))(1+ γk(|yi− y0|))

=
N−1

∑
i=1

(1+ γk(xi))(1+ γk(yi))

is strictly convex on [0,1]N−1× [0,1]N−1. In the proof of Proposition 1 it was actually
shown that fi(xi,yi) = (1+ γk(xi))(1+ γk(yi)) is strictly convex for (xi,yi) ∈ [0,1]2

for each fixed i = 1, . . . ,N− 1. Hence the strict convexity of f follows from the
following easily verified lemma. ut

Lemma 2. Let fi : Di→ R, i = 1, . . . ,m be strictly convex functions on the convex
domains Di ∈ Rdi . Then the function

f : D = D1×·· ·×Dm→ R,(z1, . . . ,zm) 7→
m

∑
i=1

fi(zi)

is strictly convex.

Hence we have indeed a unique point in each Dσ where the minimum of Fγ is
attained.
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3.3 Minimizing Fγ on Dσ

Our strategy will be to compute the local minimum of Fγ on each region
Dσ ⊂ [0,1)N × [0,1)N for all semi-canonical permutations σ ∈ CN ⊂ SN and de-
termine the global minimum by choosing the smallest of all the local ones.

This gives for each σ ∈ CN the constrained optimization problem

min
(xxx,yyy)∈Dσ

Fγ(xxx,yyy) subject to vi(xxx)≥ 0 and wi(yyy)≥ 0 for all i = 1, . . . ,N−1, (9)

where the inequality constraints are linear and given by

vi(xxx) = xi− xi−1 and wi(yyy) = yσ(i)− yσ(i−1) for i = 1, . . . ,N−1. (10)

In order to use the necessary (and due to local strict convexity also sufficient)
conditions for local minima

∂

∂xk
Fγ(xxx,yyy) = 0 and

∂

∂yk
Fγ(xxx,yyy) = 0 for k = 1, . . . ,N−1

for (xxx,yyy) ∈ Dσ we need to evaluate the partial derivatives of Fγ .

Proposition 3. For a given permutation σ ∈ CN the partial derivative of Fγ|Dσ
with

respect to the second component yyy is given by

∂

∂yk
Fγ(xxx,yyy)|Dσ

= yk

N−1

∑
i=0
i 6=k

ci,k

−N−1

∑
i=0
i 6=k

ci,kyi +
1
2

(
k−1

∑
i=0

ci,ksi,k−
N−1

∑
j=k+1

ck, jsk, j

)
,

(11)
where si, j = sgn(yi− y j) and ci, j := 1+ γk(|xi− x j|) = c j,i.

Interchanging xxx and yyy the same result holds for the partial derivatives with respect
to xxx with the obvious modification to ci, j and the simplification that si, j =−1.

The second order derivatives with respect to yyy are given by

∂ 2

∂yk∂y j
F(xxx,yyy)|Dσ

=

{
∑

k−1
i=0 ci,k +∑

N−1
i=k+1 ci,k for j = k

−ck, j for j 6= k
, k, j ∈ {1, . . . ,N−1}

(12)
Again, the analogue for ∂ 2

∂xk∂x j
F(xxx,yyy)|Dσ

is obtained with the obvious modification
ci, j = 1+ γk(|yi− y j|).

Proof. We prove the claim for the partial derivative with respect to yyy:
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∂

∂yk
Fγ(xxx,yyy) =

N−2

∑
i=0

N−1

∑
j=i+1

∂

∂yk
k(|yi− y j|)(1+ γk(|xi− x j|))︸ ︷︷ ︸

=:ci, j

+
∂

∂yk
k(|xi− x j|)

=
N−2

∑
i=0

N−1

∑
j=i+1

ci, j
∂

∂yk
k(|yi− y j|)

=
N−2

∑
i=0

N−1

∑
j=i+1

ci, j k′(si, j (yi− y j)) ·


si, j for i = k
−si, j for j = k
0 else

=
N−1

∑
j=k+1

ck, jsk, j

(
sk, j (yk− y j)−

1
2

)
−

k−1

∑
i=0

ci,ksi,k

(
si,k (yi− yk)−

1
2

)

=yk

N−1

∑
i=0
i6=k

ci,k

−N−1

∑
i=0
i6=k

ci,kyi +
1
2

(
k−1

∑
i=0

ci,ksi,k−
N−1

∑
j=k+1

ck, jsk, j

)
.

From this we immediately get the second derivative (12). ut

3.4 Lower Bounds of Fγ on Dσ

Until now we are capable of approximating local minima of Fγ on a given Dσ . If this
is done for all σ ∈ CN we can obtain a candidate for a global minimum, but due to
the finite precision of floating point arithmetic one can never be sure to be close to
the actual global minimum. However, it is also possible to compute a lower bound for
the optimal point set for each Dσ using Wolfe-duality for constrained optimization.
It is known [12] that for a convex problem with linear inequality constraints like (9)
the Lagrangian

LF(xxx,yyy,λλλ ,µµµ) :=F(xxx,yyy)−λλλ
T vvv(xxx)−µµµ

T www(yyy) (13)

=F(xxx,yyy)−
N−1

∑
i=1

(λivi(xxx)+µiwi(yyy)) (14)

gives a lower bound on F , i.e.

min
(xxx,yyy)∈Dσ

F(xxx,yyy)≥LF(x̃xx, ỹyy,λλλ ,µµµ)

for all (x̃xx, ỹyy,λλλ ,µµµ) that fulfill the constraint

∇(xxx,yyy)LF(x̃xx, ỹyy,λλλ ,µµµ) = 0 and λλλ ,µµµ ≥ 0 (component-wise). (15)

Here, ∇(xxx,yyy) = (∇xxx,∇yyy), where ∇xxx denotes the gradient of a function with respect to
the variables in xxx. Hence it is our goal to find for each Dσ such an admissible point
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(x̃xx, ỹyy,λλλ ,µµµ) which yields a lower bound that is larger than some given candidate for
the global minimum. If the relevant computations are carried out in infinite precision
rational number arithmetic these bounds are mathematically reliable.

In order to accomplish this we first have to compute the Lagrangian of (9). To this
end, let Pσ ∈ {−1,0,1}(N−1)×(N−1) denote the permutation matrix corresponding to
σ ∈ SN−1 and

BBB :=


1 −1 0 . . . 0 0
0 1 −1 . . . 0 0
...

. . .
...

0 . . . 0 1 −1
0 . . . 0 1

 ∈ R(N−1)×(N−1). (16)

Then the partial derivatives of LF with respect to xxx and yyy are given by

∇xxxLF(xxx,yyy,λλλ ,µµµ) =∇xxxF(xxx,yyy)−


λ1−λ2

...
λN−2−λN−1

λN−1

= ∇xxxF(xxx,yyy)−BBBλλλ (17)

and

∇yyyLF(xxx,yyy,λλλ ,µµµ) =∇yyyF(xxx,yyy)−


µσ(1)−µσ(2)

...
µσ(N−2)−µσ(N−1)

µσ(N−1)

= ∇yyyF(xxx,yyy)−BBBPσ µµµ.

(18)

This leads to the following theorem.

Theorem 1. For σ ∈ CN and δ > 0 let the point (x̃xxσ , ỹyyσ ) ∈ Dσ fulfill

∂

∂xk
F(x̃xxσ , ỹyyσ ) = δ and

∂

∂yk
F(x̃xxσ , ỹyyσ ) = δ for k = 1, . . . ,N−1. (19)

Then

F(xxx,yyy)≥F(x̃xxσ , ỹyyσ )−δ

N−1

∑
i=1

((N− i) · vi(x̃xxσ )+σ(N− i)wi(ỹyyσ )) (20)

>F(x̃xxσ , ỹyyσ )−δN2 (21)

holds for all (xxx,yyy) ∈ Dσ .

Proof. Choosing

λλλ = BBB−1
∇xxxF(x̃xxσ , ỹyyσ ) and µµµ = P−1

σ BBB−1
∇yyyF(x̃xxσ , ỹyyσ ) (22)

yields
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∇xxxF(x̃xx, ỹyy) = BBBλλλ and ∇yyyF(x̃xx, ỹyy) = BBBPσ µµµ. (23)

A short computation shows that the inverse of BBB from (16) is given by

BBB−1 :=


1 1 . . . 1
0 1 . . . 1
... 0

. . .
...

0 . . . 0 1

 ∈ R(N−1)×(N−1),

which yields yyy,λλλ > 0 and hence by Wolfe duality gives (20). The second inequality
(21) then follows from noting that both |vi(xxx)| and |wi(yyy)| are bounded by 1 and
2∑

N−1
i=1 σ(N− i) = 2∑

N−1
i=1 i = (N−1)(N−2)< N2. ut

Now, suppose we had some candidate (xxx∗,yyy∗) ∈ Dσ∗ for an optimal point set. If we
can find for all other σ ∈ CN points (x̃xxσ , ỹyyσ ) that fulfills (19) and

F(x̃xxσ , ỹyyσ )−δN2 ≥ Fγ(xxx∗,yyy∗)

for some δ > 0, we can be sure that Dσ∗ is (up to torus symmetry) the unique domain
Dσ that contains the globally optimal point set.

4 Numerical Investigation of Optimal point sets

In this section we numerically obtain optimal point sets with respect to the worst
case error in H1

mix. Moreover, we present a proof by exhaustion that these point
sets are indeed approximations to the unique (modulo torus symmetry) minimizers
of Fγ . Since integration lattices are local minima, if the Dσ containing the global
minimizer corresponds to an integration lattice, this integration lattice is the exact
global minimizer.

4.1 Numerical Minimization with Alternating Directions

In order to obtain the global minimum (xxx∗,yyy∗) of Fγ we are going to compute

σ
∗ := argmin

σ∈CN

min
(xxx,yyy)∈Dσ

Fγ(xxx,yyy), (24)

where the inner minimum has a unique solution due to Proposition 2. Moreover, since
Dσ is a convex domain we know that the local minimum of Fγ(xxx,yyy)|Dσ

is not on the
boundary. Hence we can restrict our search for optimal point sets to the interior of
Dσ , where Fγ is differentiable.

Instead of directly employing a local optimization technique, we will make use
of the special structure of Fγ . While Fγ(xxx,yyy)|Dσ

is a polynomial of degree four, the
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Algorithm 1: Alternating minimization algorithm. For off-set δ = 0 it finds
local minima of Fγ . For δ > 0 it obtains feasible points used by Algorithm 2.

Given: Permutation σ ∈ CN , tolerance ε > 0 and off-set δ ≥ 0.
Initialize:

1. xxx(0) := (0, 1
N , . . . , N−1

N ) and yyy(0) = (0, σ(1)
N , . . . , σ(N−1)

N ).
2. k := 0.

repeat

1. compute HHHxxx :=
(

∂xi ∂x j Fγ (xxx(k),yyy(k)
)N

i, j=1
and ∇xxx =

(
∂xi Fγ (xxx(k),yyy(k)

)N

i=1
by (12) and (11).

2. Update xxx(k+1) := HHH−1
xxx (∇xxx +δ1) via Cholesky factorization.

3. compute HHHyyy :=
(

∂yi ∂y j Fγ (xxx(k+1),yyy(k)
)N

i, j=1
and ∇yyy =

(
∂yi Fγ (xxx(k+1),yyy(k)

)N

i=1
.

4. Update yyy(k+1) := HHH−1
yyy (∇yyy +δ1) via Cholesky factorization.

5. k := k+1.

until
√
‖∇xxx‖2 +‖∇yyy‖2 < ε;

Output: point set (xxx,yyy) ∈ Dσ with ∇xxxFγ (xxx,yyy)≈ δ1 and ∇yyyFγ (xxx,yyy)≈ δ1.

functions
xxx 7→ Fγ(xxx,yyy0)|Dσ

and yyy 7→ Fγ(xxx0,yyy)|Dσ
, (25)

where one coordinate direction is fixed, are quadratic polynomials, which have
unique minima in Dσ . We are going to use this property within an alternating
minimization approach. This means, that the objective function F is not minimized
along all coordinate directions simultaneously, but with respect to certain successively
alternating blocks of coordinates. If these blocks have size one this method is usually
referred to as coordinate descent [7] or nonlinear Gauß-Seidel method [5]. It is
successfully employed in various applications, like e.g. expectation maximization or
tensor approximation [9, 19].

In our case we will alternate between minimizing Fγ(xxx,yyy) along the first coordinate
block xxx ∈ (0,1)N−1 and the second one yyy ∈ (0,1)N−1, which can be done exactly
due to the quadratic polynomial property of the partial objectives (25). The method
is outlined in Algorithm 1, which for threshold-parameter δ = 0 approximates the
local minimum of Fγ on Dσ . For δ > 0 it obtains feasible points that fulfill (19),
i.e. ∇(xxx,yyy)Fγ = (δ , . . . ,δ ) = δ1. Linear convergence of the alternating optimization
method for strictly convex functions was for example proven in [13, 2].

4.2 Obtaining Lower Bounds

By now we are able to obtain a point set (xxx∗,yyy∗) ∈ Dσ∗ as a candidate for a global
minimum of Fγ by finding local minima on each Dσ ,σ ∈ CN . On first sight we can
not be sure that we chose the right σ∗, because the value of min(xxx,yyy)∈Dσ

Fγ(xxx,yyy) can
only be computed numerically.
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Algorithm 2: Computation of lower bound on Dσ .
Given: Optimal point candidate PN := (xxx∗,yyy∗) ∈ Dσ with σ ∈ CN , tolerance ε > 0 and
off-set θ ≥ 0.
Initialize:

1. Compute θN := Fγ (xxx∗,yyy∗) (in APR arithmetic) .
2. ΞN := /0.

for all σ ∈ CN do

1. Find (x̃xxσ , ỹyyσ ) ∈ Dσ s.t. ∇(xxx,yyy)Fγ (x̃xxσ , ỹyyσ )≈ δ1 by Algorithm 1.
2. Compute λλλ := BBB−1

∇xxxF(x̃xxσ , ỹyyσ ) and µµµ := P−1
σ BBB−1

∇yyyF(x̃xxσ , ỹyyσ ) (in APR arithmetic) .
3. Verify λλλ ,µµµ > 0.
4. Evaluate βσ := LFγ

(x̃xxσ , ỹyyσ ,λλλ ,µµµ) (in APR arithmetic) .
5. If ( βσ ≤ θN ) ΞN := ΞN ∪σ .

end
Output: Set Ξ of permutations σ in which Dσ contained a lower bound smaller than θN .

On the other hand, Theorem 1 allows to compute lower bounds for all the other
domains Dσ with σ ∈ CN . If we were able to obtain for each σ a point (x̃xxσ , ỹyyσ ), such
that

min
(xxx,yyy)∈Dσ∗

Fγ(xxx,yyy)≈ θN := Fγ(xxx∗,yyy∗)< LF(x̃xxσ , ỹyyσ )−2N2
δ ≤ Fγ(xxx,yyy),

we could be sure that the global optimum is indeed located in Dσ∗ and (xxx∗,yyy∗) is a
good approximation to it. Luckily, this is the case. Of course certain computations
can not be done in standard double floating point arithmetic. Instead we use arbitrary
precision rational number (APR) arithmetic from the GNU Multiprecision library
GMP from http://www.gmplib.org. Compared to standard floating point arithmetic in
double precision this is very expensive, but it has only to be used at certain parts of
the algorithm. The resulting procedure is outlined in Algorithm 2, where we marked
those parts which require APR arithmetic.

4.3 Results

In Figures 1 and 2 the optimal point sets for N = 2, . . . ,16 and both γ = 1 and γ = 6
are plotted. It can be seen that they are close to lattice point sets, which justifies using
them as start points in Algorithm 1. The distance to lattice points seems to be small
if γ is small.

In Table 1 we list the permutations σ for which Dσ contains an optimal set of
cubature points. In the second column the total number of semi-canonical permuta-
tions CN that had to be considered is shown. It grows approximately like 1

2 (N−2)!.
Moreover, we computed the minimal worst case error and periodic L2-discrepancies.

http://www.gmplib.org
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N |CN | wce(H1,1
mix,P

∗
N) D2(P

∗
N) σ∗ Lattice

1 0 0.416667 0.372678 (0) X
2 1 0.214492 0.212459 (0 1) X
3 1 0.146109 0.153826 (0 1 2) X
4 2 0.111307 0.121181 (0 1 3 2)
5 5 0.0892064 0.0980249 (0 2 4 1 3) X
6 13 0.0752924 0.0850795 (0 2 4 1 5 3)
7 57 0.0650941 0.0749072 (0 2 4 6 1 3 5), (0 3 6 2 5 1 4) X
8 282 0.056846 0.0651562 (0 3 6 1 4 7 2 5) X
9 1,862 0.0512711 0.0601654 (0 2 6 3 8 5 1 7 4), (0 2 7 4 1 6 3 8 5)

10 14,076 0.0461857 0.054473 (0 3 7 1 4 9 6 2 8 5)

11 124,995 0.0422449 0.050152 (0 3 8 1 6 10 4 7 2 9 5),
(0 3 9 5 1 7 10 4 8 2 6)

12 1,227,562 0.0370732 0.0456259 (0 5 10 3 8 1 6 11 4 9 2 7) X
13 13,481,042 0.0355885 0.0421763 (0 5 10 2 7 12 4 9 1 6 11 3 8) X

14 160,456,465 0.0333232 0.0400524 (0 5 10 2 8 13 4 11 6 1 9 3 12 7),
(0 5 10 3 12 7 1 9 4 13 6 11 2 8)

15 2,086,626,584 0.0312562 0.0379055

(0 4 9 13 6 1 11 3 8 14 5 10 2 12 7),
(0 5 11 2 7 14 9 3 12 6 1 10 4 13 8),
(0 5 11 2 8 13 4 10 1 6 14 9 3 12 7),
(0 5 11 2 8 13 6 1 10 4 14 7 12 3 9)

16 29,067,602,676 0.0294507 0.0359673 (0 3 11 5 14 9 1 7 12 4 15 10 2 6 13 8),
(0 3 11 6 13 1 9 4 15 7 12 2 10 5 14 8)

Table 1 List of semi-canonical permutations σ , such that Dσ contains an optimal set of cubature
points for N = 1, . . . ,16.

In some cases we found more than one semi-canonical permutation σ for which
Dσ contained a point set which yields the optimal worst case error. Nevertheless, they
represent equivalent permutations. In the following list, the torus symmetries used to
show the equivalency of the permutations are given. All operations are modulo 1.

• N = 7: (x,y) 7→ (1− y,x)
• N = 9: (x,y) 7→ (y−2/9,x−1/9)
• N = 11: (x,y) 7→ (y+5/11,x−4/11)
• N = 14: (x,y) 7→ (x−4/14,y+6/14)
• N = 15: (x,y) 7→ (y+3/15,x+2/15),(y−2/15,12/15−x),(y−6/15,4/15−x)
• N = 16: (x,y) 7→ (1/16− x,3/16− y)

In all the examined cases N ∈ {2, . . . ,16} Algorithm 2 produced sets ΞN which
contained exactly the permutations that were previously obtained by Algorithm 1
and are listed in Table 1. Thus we can be sure, that the respective Dσ contained
minimizers of Fγ , which on each Dσ are unique. Hence we know that our numerical
approximation of the minimum is close to the true global minimum, which (modulo
torus symmetries) is unique. In the cases N = 1,2,3,5,7,8,12,13 the obtained global
minima are integration lattices.
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5 Conclusion

In the present paper we computed optimal point sets for quasi–Monte Carlo cubature
of bivariate periodic functions with mixed smoothness of order one by decomposing
the required global optimization problem into approximately (N−2)!/2 local ones.
Moreover, we computed lower bounds for each local problem using arbitrary preci-
sion rational number arithmetic. Thereby we obtained that our approximation of the
global minimum is in fact close to the real solution.

In the special case of N being a Fibonacci number our approach showed that
for N ∈ {1,2,3,5,8,13} the Fibonacci lattice is the unique global minimizer of the
worst case integration error in H1

mix. We strongly conjecture that this is true for all
Fibonacci numbers. Also in the cases N = 7,12, the global minimizer is the obtained
integration lattice.

In the future we are planning to prove that optimal points are close to lattice
points. Moreover, we will investigate Hr

mix, i.e. Sobolev spaces with dominating
mixed smoothness of order r ≥ 2 and other suitable kernels and discrepancies.
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Fig. 1 Optimal point sets for N = 2, . . . ,16 and γ = 1.
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Fig. 2 Optimal point sets for N = 2, . . . ,16 and γ = 6.
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