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Adaptive Multidimensional Integration Based on
Rank-1 Lattices

Lluı́s Antoni Jiménez Rugama and Fred J. Hickernell

Abstract Quasi-Monte Carlo methods are used for numerically integrating multi-
variate functions. However, the error bounds for these methods typically rely on
a priori knowledge of some semi-norm of the integrand, not onthe sampled func-
tion values. In this article, we propose an error bound basedon the discrete Fourier
coefficients of the integrand. If these Fourier coefficientsdecay more quickly, the in-
tegrand has less fine scale structure, and the accuracy is higher. We focus on rank-1
lattices because they are a commonly used quasi-Monte Carlodesign and because
their algebraic structure facilitates an error analysis based on a Fourier decomposi-
tion of the integrand. This leads to a guaranteed adaptive cubature algorithm with
computational costO(mbm), whereb is some fixed prime number andbm is the
number of data points.

1 Introduction

Quasi-Monte Carlo (QMC) methods use equally weighted sums of integrand values
at carefully chosen nodes to approximate multidimensionalintegrals over the unit
cube,

1
n

n−1

∑
i=0

f (zzzi)≈
∫

[0,1)d
f (xxx)dxxx.

Integrals over more general domains may often be accommodated by a transfor-
mation of the integration variable. QMC methods are widely used because they do
not suffer from acurse of dimensionality. The existence of QMC methods with
dimension-independent error convergence rates is discussed in [11, Ch. 10–12]. See
[3] for a recent review.
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The QMC convergence rate ofO(n−(1−δ )) does not give enough information
about the absolute error to determine how largen must be to satisfy a given error tol-
erance,ε. The objective of this research is to develop a guaranteed, QMC algorithm
based on rank-1 lattices that determinesn adaptively by calculating a data-driven up-
per bound on the absolute error. The Koksma-Hlawka inequality is impractical for
this purpose because it requires the total variation of the integrand. Our data-driven
bound is expressed in terms of the integrand’s discrete Fourier coefficients.

Sections2–4 describe the group structure of rank-1 lattices and how the complex
exponential functions are an appropriate basis for these nodes. For computation pur-
poses, there is also an explanation of how to obtain the discrete Fourier transform
of f with an O(nlog(n)) computational cost. New contributions are described in
Section5 and6. Initially, a mapping fromN0 to the space of wavenumbers,Z

d, is
defined according to constraints given by the structure of our rank-1 lattice node
sets. With this mapping, we define a set of integrands for which our new adaptive
algorithm is designed. This set is defined in terms of cone conditions satisfied by
the (true) Fourier coefficients of the integrands. These conditions make it possible
to derive an upper bound on the rank-1 lattice rule error in terms of the discrete
Fourier coefficients, which can be used to construct an adaptive algorithm. An up-
per bound on the computational cost of this algorithm is derived. Finally, there is
an example of option pricing using the MATLAB implementation of our algorithm,
cubLattice g, which is part of the Guaranteed Automatic Integration Library
[1]. A parallel development for Sobol’ cubature is given in [5].

2 Rank-1 Integration Lattices

Let b be prime number, and letFn := {0, . . . ,n−1} denote the set of the firstn non-
negative integers for anyn ∈ N. The aim is to construct a sequence of embedded
node sets withbm points form∈ N0:

{000}=: P0 ⊂ P1 · · · ⊂ Pm := {zzzi}i∈Fbm ⊂ ·· · ⊂ P∞ := {zzzi}i∈N0.

Specifically, the sequencezzz1,zzzb,zzzb2, . . . ∈ [0,1)d is chosen such that

zzz1 = b−1aaa0, aaa0 ∈ {1, . . . ,b−1}d, (1a)

zzzbm = b−1(zzzbm−1 +aaam) = b−1aaam+ · · ·+b−m−1aaa0, aaam ∈ F
d
b, m∈ N. (1b)

From this definition it follows that for allm∈ N0,

bℓzzzbm mod 1=

{
zzzbm−ℓ , ℓ= 0, . . . ,m

000, ℓ= m+1,m+2, . . ..
(2)

Next, for anyi ∈ N with properb-ary expansioni = i0+ i1b+ i2b2+ · · · , andm=
⌊logb(i)⌋+1 define
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zzzi :=
∞

∑
ℓ=0

iℓzzzbℓ mod 1=
m−1

∑
ℓ=0

iℓzzzbℓ mod 1=
m−1

∑
ℓ=0

iℓb
m−1−ℓzzzbm−1 mod 1

= jzzzbm−1 mod 1, where j =
m−1

∑
ℓ=0

iℓb
m−1−ℓ, (3)

where (2) was used. This means that node setPm defined above may be written as
the integer multiples of the generating vectorzzzbm−1 since

Pm := {zzzi}i∈Fbm =

{
zzzbm−1

m−1

∑
ℓ=0

iℓb
m−1−ℓ mod 1 :i0, . . . , im−1 ∈ Fb

}

= { jzzzbm−1 mod 1} j∈Fbm .

Integration lattices,L , are defined as discrete groups inRd containingZd and
closed under normal addition [13, Sec. 2.7-2.8]. The node set of an integration lattice
is its intersection with the half-open unit cube,P := L ∩ [0,1)d. In this case,P
is also a group, but this time under addition modulo 1, i.e., operator⊕ : [0,1)d ×
[0,1)d → [0,1)d defined byxxx⊕ yyy := (xxx+ yyy) mod 1, and where⊖xxx := 111− xxx.

SetsPm defined above are embedded node sets of integration lattices. The suffi-
ciency of a single generating vector for each of thesePm is the reason thatPm is
called the node set of arank-1lattice. The theoretical properties of good embedded
rank-1 lattices for cubature are discussed in [6].

The set ofd-dimensional integer vectors,Zd, is used to index Fourier series ex-
pressions for the integrands, andZd is also known as the wavenumber space. We
define the bilinear operation〈·, ·〉 : Zd × [0,1)d → [0,1) as the dot product modulo
1:

〈kkk,xxx〉 := kkkTxxx mod 1 ∀kkk∈ Z
d, xxx∈ [0,1)d. (4)

This bilinear operation has the following properties: for all ttt,xxx ∈ [0,1)d, kkk, lll ∈ Z
d,

anda∈ Z, it follows that

〈kkk,000〉 = 〈000,xxx〉 = 0, (5a)

〈kkk,axxx mod 1⊕ ttt〉 = (a〈kkk,xxx〉+ 〈kkk, ttt〉) mod 1 (5b)

〈akkk+ lll ,xxx〉 = (a〈kkk,xxx〉+ 〈lll ,xxx〉) mod 1, (5c)

〈kkk,xxx〉 = 0 ∀kkk∈ Z
d =⇒ xxx= 000. (5d)

An additional constraint placed on the embedded lattices isthat

〈kkk,zzzbm〉 = 0 ∀m∈ N0 =⇒ kkk= 000. (6)

The bilinear operation defined in (4) is also used to define thedual lattice corre-
sponding toPm:

P
⊥
m := {kkk∈ Z

d : 〈kkk,zzzi〉 = 0, i ∈ Fbm}
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= {kkk∈ Z
d : 〈kkk,zzzbm−1〉 = 0} by (3) and (5b). (7)

By this definitionP⊥
0 = Z

d, and the properties (2), (4), and (6), imply also that the
P⊥

m are nested subgroups with

Z
d = P

⊥
0 ⊇ ·· · ⊇ P

⊥
m ⊇ ·· · ⊇ P

⊥
∞ = {000}. (8)

Analogous to thedual lattice definition, forj ∈ Fbm one can define thedual cosets
asP

⊥, j
m := {kkk ∈ Z

d : bm〈kkk,zzzbm−1〉 = j}. Hence, a similar extended property (8)
applies:

P
⊥, j
m =

b−1⋃

a=0

P
⊥, j+abm

m+1 =⇒ P
⊥, j
m ⊇ P

⊥, j+abm

m+1 , a∈ Fb, j ∈ Fbm. (9)

The overalldualcosets structure can be represented as a tree, where{P⊥, j+abm

m+1 }b−1
a=0

are the children ofP⊥, j
m .

Figure1 shows an example of a rank-1 lattice node set with 64 points indimen-
sion 2 and its dual lattice. The parameters defining this nodeset areb= 2, m= 6,
andzzz32= (1,27)/64. It is useful to see howPm=Pm−1∪{Pm−1+ zzz2m−1 mod 1}.
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Fig. 1 Plots of a) the node setP6 depicted as•{zzz0,zzz1}, ×{zzz2,zzz3}, ∗{zzz4, . . . ,zzz7}, H{zzz8, . . .,zzz15},
+{zzz16, . . . ,zzz31}, ⋄{zzz32, . . . ,zzz63}, and b) some of the dual lattice points,P⊥

6 ∩ [−20,20]2.

3 Fourier Series

The integrands considered here are absolutely continuous periodic functions. If the
integrand is not initially periodic, it may be periodized asdiscussed in [4], [12],
or [13, Sec. 2.12]. More general box domains may be considered, also by using
variable transformations, see e.g., [7, 8].
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TheL2([0,1)d) inner product is defined as〈 f ,g〉2 =
∫
[0,1)d f (xxx)g(xxx)dxxx. The com-

plex exponential functions,{e2π
√
−1〈kkk,·〉}kkk∈Zd form a complete orthonormalbasis

for L2([0,1)d). So, any function inL2([0,1)d) may be written as its Fourier series as

f (xxx) = ∑
kkk∈Zd

f̂ (kkk)e2π
√
−1〈kkk,xxx〉 , where f̂ (kkk) =

〈
f ,e2π

√
−1〈kkk,·〉

〉
2
, (10)

and the inner product of two functions inL2([0,1)d) is theℓ2 inner product of their
series coefficients:

〈 f ,g〉2 = ∑
kkk∈Zd

f̂ (kkk)ĝ(kkk) =:
〈(

f̂ (kkk)
)

kkk∈Zd ,
(
ĝ(kkk)

)
kkk∈Zd

〉
2
.

Note that for anyzzz∈ Pm andkkk ∈ P
⊥
m, we have e2π

√
−1〈kkk,zzz〉 = 1. The special

group structure of the lattice node set,Pm, leads to a useful formula for the average
of any Fourier basis function overPm. According to [10, Lemma 5.21],

1
bm

bm−1

∑
i=0

e2π
√
−1〈kkk,zzzi〉 = 1

P⊥
m
(kkk) =

{
1, kkk∈ P⊥

m

0, kkk∈ Z
d \P⊥

m.
(11)

This property of the dual lattice is used below to describe the absolute error of a
shifted rank-1 lattice cubature rule in terms of the Fouriercoefficients for wavenum-
bers in the dual lattice. For fixed∆∆∆ ∈ [0,1)d, the cubature rule is defined as

Îm( f ) :=
1

bm

bm−1

∑
i=0

f (zzzi ⊕∆∆∆), m∈ N0. (12)

Note from this definition that̂Im
(

e2π
√
−1〈kkk,·〉

)
= e2π

√
−1〈kkk,∆∆∆〉

1
P⊥

m
(kkk). The series

decomposition defined in (10) and equation (11) are used in intermediate results
from [10, Theorem 5.23] to show that,

∣∣∣∣
∫

[0,1)d
f (xxx)dxxx− Îm( f )

∣∣∣∣ =
∣∣∣∣∣ ∑
kkk∈P⊥

m\{000}
f̂ (kkk)e2π

√
−1〈kkk,∆∆∆〉

∣∣∣∣∣≤ ∑
kkk∈P⊥

m\{000}

∣∣ f̂ (kkk)
∣∣ . (13)

4 The Fast Fourier Transform for Function Values at Rank-1
Lattice Node Sets

Adaptive Algorithm1 (cubLattice g) constructed in Section6 has an error anal-
ysis based on the above expression. However, the true Fourier coefficients are un-
known and they must be approximated by the discrete coefficients, defined as:

f̃m(kkk) := Îm
(

e−2π
√
−1〈kkk,·〉 f (·)

)
(14a)
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= Îm

(
e−2π

√
−1〈kkk,·〉 ∑

lll∈Zd

f̂ (lll)e2π
√
−1〈lll ,·〉

)

= ∑
lll∈Zd

f̂ (lll)Îm
(

e2π
√
−1〈lll−kkk,·〉

)

= ∑
lll∈Zd

f̂ (lll)e2π
√
−1〈lll−kkk,∆∆∆〉

1
P⊥

m
(lll − kkk)

= ∑
lll∈P⊥

m

f̂ (kkk+ lll)e2π
√
−1〈lll ,∆∆∆〉

= f̂ (kkk)+ ∑
lll∈P⊥

m\{000}
f̂ (kkk+ lll)e2π

√
−1〈lll ,∆∆∆〉 , ∀kkk∈ Z

d. (14b)

Thus, the discrete transform̃fm(kkk) equals the integral transform̂f (kkk), defined in
(10), plusaliasing terms corresponding tôf (kkk+ lll) scaled by the shift,∆∆∆ , where
lll ∈ P⊥

m \ {000}.
To facilitate the calculation of̃fm(kkk), we define the map̃νm : Zd → Fbm as fol-

lows:
ν̃0(kkk) := 0, ν̃m(kkk) := bm〈kkk,zzzbm−1〉 , m∈ N. (15)

A simple but useful remark is thatP
⊥, j
m corresponds to allkkk∈Z

d such that̃νm(kkk) =
j for j ∈ Fbm. The above definition implies that〈kkk,zzzi〉 appearing inf̃m(kkk), may be
written as

〈kkk,zzzi〉 =
〈

kkk,
m−1

∑
ℓ=0

iℓzzzbℓ mod 1

〉
=

m−1

∑
ℓ=0

iℓ 〈kkk,zzzbℓ〉 mod 1

=
m−1

∑
ℓ=0

iℓν̃ℓ+1(kkk)b
−ℓ−1 mod 1. (16)

The mapν̃m depends on the choice of the embedded rank-1 lattice node sets
defined in (1) and (3). We can confirm that the right hand side of this definition lies
in Fbm by appealing to (1) and recalling that theaaaℓ are integer vectors:

bm〈kkk,zzzbm−1〉 = bm[(b−1kkkTaaam−1+ · · ·+b−mkkkTaaa0) mod 1]

= (bm−1kkkTaaam−1+ · · ·+ kkkTaaa0) modbm ∈ Fbm, m∈ N.

Moreover, note that for allm∈ N

ν̃m+1(kkk)− ν̃m(kkk) = bm+1 〈kkk,zzzbm〉 −bm〈kkk,zzzbm−1〉
= bm[b〈kkk,zzzbm〉 − 〈kkk,zzzbm−1〉]
= bm[a+ 〈kkk,bzzzbm mod 1〉 − 〈kkk,zzzbm−1〉], for somea∈ Fb

= bm[a+ 〈kkk,zzzbm−1〉 − 〈kkk,zzzbm−1〉], by (2)

= abm for somea∈ Fb. (17)
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For all ν ∈ N0 with properb-ary expansionν = ν0+ν1b+ · · · ∈ N0, let νm denote
the integer obtained by keeping only the firstm terms of itsb-ary expansion, i.e.,

νm := ν0+ · · ·+νm−1bm−1 = [(b−mν) mod 1]bm ∈ Fbm (18)

The derivation in (17) means that if̃νm(kkk) = ν ∈ Fbm, then

ν̃ℓ(kkk) = ν ℓ, ℓ= 1, . . . ,m. (19)

Lettingyi := f (zzzi ⊕∆∆∆) for i ∈N0 and considering (16), the discrete Fourier trans-
form defined in (14a) can now be written as follows:

f̃m(kkk) := Îm
(

e−2π
√
−1〈kkk,·〉 f (·)

)
=

1
bm

bm−1

∑
i=0

e−2π
√
−1〈kkk,zzzi⊕∆∆∆〉yi

= e−2π
√
−1〈kkk,∆∆∆〉Ym(ν̃m(kkk)), m∈ N0, kkk∈ Z

d, (20)

where for allm,ν ∈ N0,

Ym(ν) :=
1

bm

b−1

∑
im−1=0

· · ·
b−1

∑
i0=0

yi0+···+im−1bm−1 exp

(
−2π

√
−1

m−1

∑
ℓ=0

iℓνℓ+1b−ℓ−1

)

=Ym(νm).

The quantityYm(ν), ν ∈Fbm, which is essentially the discrete Fourier transform, can
be computed efficiently via some intermediate quantities. For p ∈ {0, . . . ,m− 1},
m,ν ∈ N0 defineYm,0(i0, . . . , im−1) := yi0+···+im−1bm−1 and let

Ym,m−p(ν, im−p, . . . , im−1)

:=
1

bm−p

b−1

∑
im−p−1=0

· · ·
b−1

∑
i0=0

yi0+···+im−1bm−1 exp

(
−2π

√
−1

m−p−1

∑
ℓ=0

iℓνℓ+1b−ℓ−1

)
.

Note thatYm,m−p(ν, im−p, . . . , im−1) =Ym,m−p(νm−p, im−p, . . . , im−1), and thus takes
on only bm distinct values. Also note thatYm,m(ν) = Ym(ν). For p = m−1, . . . ,0,
compute

Ym,m−p(ν, im−p, . . . , im−1)

=
1

bm−p

b−1

∑
im−p−1=0

· · ·
b−1

∑
i0=0

yi0+···+im−1bm−1 exp

(
−2π

√
−1

m−p−1

∑
ℓ=0

iℓν ℓ+1b−ℓ−1

)

=
1
b

b−1

∑
im−p−1=0

Ym,m−p−1(ν, im−p−1, . . . , im−1)exp
(
−2π

√
−1im−p−1νm−pb−m+p

)
.

For eachp one must performO(bm) operations, so the total computational cost to
obtainYm(ν) for all ν ∈ Fbm is O(mbm).
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5 Error Estimation

As seen in equation (13), the absolute error is bounded by a sum of the absolute
value of the Fourier coefficients in the dual lattice. Note that increasing the number
of points in our lattice, i.e. increasingm, removes wavenumbers from the set over
which this summation is defined. However, it is not obvious how fast is this error
decreasing with respect tom. Rather than deal with a sum over the vector wavenum-
bers, it is more convenient to sum over scalar non-negative integers. Thus, we define
another mapping̃kkk : N0 → Z

d.

Definition 1. Given a sequence of points in embedded lattices,P∞ = {zzzi}∞
i=0 define

k̃kk : N0 → Z
d one-to-oneandontorecursively as follows:

Setk̃kk(0) = 000
Form∈ N0

Forκ ∈ Fbm ,
Let a∈ Fb be such that̃νm+1(k̃kk(κ)) = ν̃m(k̃kk(κ))+abm.
i) If a 6= 0, choosẽkkk(κ +abm) ∈ {kkk∈ Z

d : ν̃m+1(kkk) = ν̃m(k̃kk(κ))}.
ii) Choosek̃kk(κ +a′bm) ∈ {kkk∈ Z

d : ν̃m+1(kkk) = ν̃m(k̃kk(κ))+a′bm},
for a′ ∈ {1, . . . ,b−1} \ {a}.

Definition 1 is intended to reflect the embedding of thedual cosets described in
(8) and (9). For clarity, consider̃νm(k̃kk(κ)) = j. In i), if k̃kk(κ)∈P

⊥, j+abm

m+1 with a> 0,

we choosẽkkk(κ +abm) ∈ P
⊥, j
m+1. Otherwise by ii), we simply choosẽkkk(κ +a′bm) ∈

P
⊥, j+a′bm

m+1 . Condition i) forces us to pick wavenumbers inP
⊥, j
m+1.

This mapping is not uniquely defined and one has the flexibility to choose part
of it. For example, defining a norm such as in [13, Chap. 4] one can assign smaller
values ofκ to smaller wavenumberskkk. In the end, our goal is to define this mapping
such thatf̂ (k̃kk(κ))→ 0 asκ → ∞. In addition, it is one-to-one since at each step the
new values̃kkk(κ + abm) or k̃kk(κ + a′bm) are chosen from sets of wavenumbers that
exclude those wavenumbers already assigned tok̃kk(κ). The mapping can be made
onto by choosing the “smallest” wavenumber in some sense.

It remains to be shown that for anyκ ∈ Fbm, {kkk ∈ Z
d : ν̃m+1(kkk) = ν̃m(k̃kk(κ))+

a′bm} is nonempty for alla′ ∈ Fb with a′ 6= a. Chooselll such that〈lll ,zzz1〉 = b−1. This
is possible becausezzz1 = b−1aaa0 6= 000. For anym∈ N0, κ ∈ Fbm, anda′′ ∈ Fb, note
that

〈
k̃kk(κ)+a′′bmlll ,zzzbm

〉
=
〈
k̃kk(κ),zzzbm

〉
+a′′bm〈lll ,zzzbm〉 mod 1 by (5c)

= [b−m−1ν̃m+1(k̃kk(κ))+a′′ 〈lll ,bmzzzbm mod 1〉] mod 1

by (5b) and (15)

= [b−m−1ν̃m(k̃kk(κ))+ab−1+a′′ 〈lll ,zzz1〉] mod 1 by (2)

= [b−m−1ν̃m(k̃kk(κ))+ (a+a′′)b−1] mod 1,

Then it follows that
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ν̃m+1(k̃kk(κ)+a′′bmlll) = ν̃m(k̃kk(κ))+ (a+a′′ modb)bm by (15).

By choosinga′′ such thata′ = (a+a′′ modb), we have shown that the setκ ∈ Fbm,
{kkk∈ Z

d : ν̃m+1(kkk) = ν̃m(k̃kk(κ))+a′bm} is nonempty.
To illustrate the initial steps of a possible mapping, consider the lattice in Figure1

and Table1. Form= 0,κ ∈ {0} anda= 0. This skips i) and implies̃kkk(1)∈ {kkk∈Z
d :

ν̃1(kkk) = 2〈kkk,(1,27)/2〉 = 1}, so one may choosẽkkk(1) := (−1,0). After that,m= 1
andκ ∈ {0,1}. Starting withκ = 0, againa= 0 and we jump to ii) where we require
k̃kk(2)∈ {kkk∈Z

d : ν̃2(kkk) = 4〈kkk,(1,27)/4〉= 2} and thus, we can takẽkkk(2) := (−1,1).
Whenκ = 1, we note that̃ν2(k̃kk(1)) = ν̃((−1,0)) = 3. Herea= 1 leading to i) and
k̃kk(3) ∈ {kkk∈ Z

d : ν̃2(kkk) = 1}, so we may choosẽkkk(3) := (1,0). Continuing, we may
takek̃kk(4) := (−1,−1), k̃kk(5) := (0,1), k̃kk(6) := (1,−1) andk̃kk(7) := (0,−1).

k̃kk(κ) κ ν̃1(k̃kk(κ)) =
2
〈
k̃kk(κ), (1,27)/2

〉 ν̃2(k̃kk(κ)) =
4
〈
k̃kk(κ), (1,27)/4

〉 ν̃3(k̃kk(κ)) =
8
〈
k̃kk(κ), (1,27)/8

〉

(0,0) 0 0 0 0
(−1,−1) 4 0 0 4
(−1,1) 2 0 2 2
(1,−1) 6 0 2 6
(−1,0) 1 1 3 7
(1,0) 3 1 1 1
(0,−1) 7 1 1 5
(0,1) 5 1 3 3
(1,1) · · · 0 0 4

Table 1 Values ν̃1, ν̃2 and ν̃3 for some wavenumbers and a possible assignment ofk̃kk(κ). The
reader should notice that̃νm+1(k̃kk(κ))− ν̃m(k̃kk(κ)) is either 0 or 2m.

Lemma 1. The map in Definition1 has the property that for m∈N0 andκ ∈ Fbm,

{k̃kk(κ +λbm)}∞
λ=0 = {lll ∈ Z

d : k̃kk(κ)− lll ∈ P
⊥
m}.

Proof. This statement holds trivially form= 0 andκ = 0. Form∈N it is noted that

kkk− lll ∈ P
⊥
m ⇐⇒ 〈kkk− lll ,zzzbm−1〉 = 0 by (7)

⇐⇒ 〈kkk,zzzbm−1〉 = 〈lll ,zzzbm−1〉 by (5c)

⇐⇒ b−mν̃m(kkk) = b−mν̃m(lll) by (15)

⇐⇒ ν̃m(kkk) = ν̃m(lll). (21)

This implies that for allm∈ N andκ ∈ Fbm,

{lll ∈ Z
d : ν̃m(lll) = ν̃m(k̃kk(κ))}= {lll ∈ Z

d : k̃kk(κ)− lll ∈ P
⊥
m}. (22)

By Definition1 it follows that form∈ N andκ ∈ Fbm,

{k̃kk(κ +λbm)}b−1
λ=0 ⊆ {kkk∈ Z

d : ν̃m+1(kkk) = ν̃m(k̃kk(κ))+abm, a∈ Fb}
= {kkk∈ Z

d : ν̃m(kkk) = ν̃m(k̃kk(κ))}.
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Applying property (19) on the right side,

{k̃kk(κ +λbm)}b−1
λ=0 ⊆ {kkk∈ Z

d : ν̃ℓ(kkk) = ν̃ℓ(k̃kk(κℓ))}, ∀ℓ= 1, . . . ,m.

Because one can say the above equation holds∀ℓ = 1, . . . ,n< m, the left hand side
can be extended,

{k̃kk(κ +λbm)}∞
λ=0 ⊆ {kkk∈ Z

d : ν̃m(kkk) = ν̃m(k̃kk(κ))}. (23)

Now suppose thatlll is any element of{kkk ∈ Z
d : ν̃m(kkk) = ν̃m(k̃kk(κ))}. Since the

mapk̃kk is onto, there exists someκ ′ ∈ N0 such thatlll = k̃kk(κ ′). Chooseλ ′ such that
κ ′ = κ ′

m+λ ′bm, where the overbar notation was defined in (18). According to (23)
it follows that ν̃m(k̃kk(κ ′

m)) = ν̃m(k̃kk(κ ′
m+ λ ′bm)) = ν̃m(lll) = ν̃m(k̃kk(κ)). Sinceκ ′

m

andκ are both inFbm, this implies thatκ ′
m= κ , and solll ∈ {k̃kk(κ +λbm)}∞

λ=0. Thus,
{k̃kk(κ +λbm)}∞

λ=0 ⊇ {kkk∈ Z
d : ν̃m(kkk) = ν̃m(k̃kk(κ))}, and the lemma is proved. ⊓⊔

For convenience we adopt the notationf̂κ := f̂ (k̃kk(κ)) and f̃m,κ := f̃m(k̃kk(κ)).
Then, by Lemma1 the error bound in (13) may be written as

∣∣∣∣
∫

[0,1)d
f (xxx)dxxx− Îm( f )

∣∣∣∣≤
∞

∑
λ=1

∣∣ f̂λ bm

∣∣ , (24)

and the aliasing relationship in (14b) becomes

f̃m,κ = f̂κ +
∞

∑
λ=1

f̂κ+λ bme2π
√
−1〈k̃kk(κ+λ bm)−k̃kk(κ),∆∆∆〉 . (25)

Given an integrand with absolutely summable Fourier coefficients, consider the
following sums defined forℓ,m∈ N0, ℓ≤ m:

Sm( f ) =
bm−1

∑
κ=⌊bm−1⌋

∣∣ f̂κ
∣∣, Ŝℓ,m( f ) =

bℓ−1

∑
κ=⌊bℓ−1⌋

∞

∑
λ=1

∣∣ f̂κ+λ bm

∣∣,

qSm( f ) = Ŝ0,m( f )+ · · ·+ Ŝm,m( f ) =
∞

∑
κ=bm

∣∣ f̂κ
∣∣, S̃ℓ,m( f ) =

bℓ−1

∑
κ=⌊bℓ−1⌋

∣∣ f̃m,κ
∣∣.

Note thatS̃ℓ,m( f ) is the only one that can be observed from data because it involves
the discrete transform coefficients. In fact, from (20) one can identify

∣∣ f̃m,κ
∣∣ =∣∣Ym(ν̃m(k̃kk(κ)))

∣∣ and our adaptive algorithm will be based on this sum bounding

the other three,Sm( f ), Ŝℓ,m( f ), andqSm( f ), which cannot be readily observed.
Let ℓ∗ ∈ N be some fixed integer and̂ω andω̊ be some bounded non-negative

valued functions. We define acone, C , of absolutely continuous functions whose
Fourier coefficients decay according to certain inequalities:
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C := { f ∈ AC([0,1)d) : Ŝℓ,m( f )≤ ω̂(m− ℓ)qSm( f ), ℓ≤ m,

qSm( f ) ≤ ω̊(m− ℓ)Sℓ( f ), ℓ∗ ≤ ℓ≤ m}. (26)

We also require the existence ofr such that̂ω(r)ω̊(r)< 1 and that limm→∞ ω̊(m)= 0.
This set is a cone, i.e.f ∈ C =⇒ a f ∈ C ∀a ∈ R, but it is not convex. A wider
discussion on the advantages and disadvantages of designing numerical algorithms
for cones of functions can be found in [2].

Functions inC have Fourier coefficients that do not oscillate wildly. According
to (24), the error of our integration is bounded byŜ0,m( f ). Nevertheless, for prac-
tical purposes we will useSℓ( f ) as an indicator for the error. Intuitively, the cone
conditions enforce these two sums to follow a similar trend.Thus, one can expect
that small values ofSℓ( f ) imply small values of̂S0,m( f ).

The first inequality controls how an infinite sum ofsomeof the larger wavenum-
ber coefficients are bounded above by a sum of all the surrounding coefficients. The
second inequality controls how the sum of these surroundingcoefficients is bounded
above by afinite sum of some smaller wavenumber Fourier coefficients. In Figure
2 we can see howS8( f ) can be used to boundqS12( f ) andqS12( f ) to boundŜ0,12( f ).
The former sum also corresponds to the error bound in (24).

For smallℓ the sumSℓ( f ) includes only a few summands. Therefore, it could acci-
dentally happen thatSℓ( f ) is too small compared toqSm( f ). To avoid this possibility,
the cone definition includes the constraint thatℓ is greater than some minimumℓ∗.

10
0
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1

10
2

10
3

10
4

10
−5

10
0

κ

|f̂
κ
|

error ≤ Ŝ0,12(f )
Š12(f )
S8(f )

Fig. 2 The magnitudes of true Fourier coefficients for some integrand.

Because we do not assume the knowledge of the true Fourier coefficients, for
functions inC we need bounds onSℓ( f ) in terms of the sum of the discrete co-
efficientsS̃ℓ,m( f ). This is done by applying (25), and the definition of the cone in
(26):
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Sℓ( f ) =
bℓ−1

∑
κ=⌊bℓ−1⌋

∣∣ f̂κ
∣∣=

bℓ−1

∑
κ=⌊bℓ−1⌋

∣∣∣∣∣ f̃m,κ −
∞

∑
λ=1

f̂κ+λ bme2π
√
−1〈k̃kk(κ+λ bm)−k̃kk(κ),∆∆∆〉

∣∣∣∣∣

≤
bℓ−1

∑
κ=⌊bℓ−1⌋

∣∣ f̃m,κ
∣∣+

bℓ−1

∑
κ=⌊bℓ−1⌋

∞

∑
λ=1

∣∣ f̂κ+λ bm

∣∣= S̃ℓ,m( f )+ Ŝℓ,m( f )

≤ S̃ℓ,m( f )+ ω̂(m− ℓ)ω̊(m− ℓ)Sℓ( f ) (27)

and provided that̂ω(m− ℓ)ω̊(m− ℓ)< 1,

Sℓ( f ) ≤ S̃ℓ,m( f )

1− ω̂(m− ℓ)ω̊(m− ℓ)
. (28)

By (24) and the cone conditions, (28) implies a data-based error bound:
∣∣∣∣
∫

[0,1)d
f (xxx)dxxx− Îm( f )

∣∣∣∣≤
∞

∑
λ=1

∣∣ f̂λ bm

∣∣= Ŝ0,m( f ) ≤ ω̂(m)qSm( f )

≤ ω̂(m)ω̊(m− ℓ)Sℓ( f )

≤ ω̂(m)ω̊(m− ℓ)

1− ω̂(m− ℓ)ω̊(m− ℓ)
S̃ℓ,m( f ). (29)

In Section6 we construct an adaptive algorithm based on this conservative bound.

6 An Adaptive Algorithm Based for Cones of Integrads

Inequality (29) suggests the following algorithm. First, chooseℓ∗ and fix r := m−
ℓ ∈ N such thatω̂(r)ω̊(r)< 1 for ℓ≥ ℓ∗. Then, define

C(m) :=
ω̂(m)ω̊(r)

1− ω̂(r)ω̊(r)
.

The choice of the parameterr is important. Largerr means a smallerC(m), but it
also makes the error bound more dependent on smaller indexedFourier coefficients.

Algorithm 1 (Adaptive Rank-1 Lattice Cubature, cubLattice g). Fix r and
ℓ∗, ω̂ andω̊ describingC in (26). Given a tolerance,ε, initialize m= ℓ∗+ r and do:

Step 1. According to Section4, computẽSm−r,m( f ).
Step 2. Check whetherC(m)S̃m−r,m( f ) ≤ ε. If true, returnÎm( f ) defined in (12).

If not, incrementm by one, and go to Step 1.

Theorem 1.For m= min{m′ ≥ ℓ∗+ r : C(m′)S̃m′−r,m′( f ) ≤ ε}, Algorithm1 is suc-
cessful whenever f∈ C ,
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∣∣∣∣
∫

[0,1)d
f (xxx)dxxx− Îm( f )

∣∣∣∣ ≤ ε.

Thus, the number of function data needed is bm. Defining m∗ = min{m′ ≥ ℓ∗+ r :
C(m′)[1+ ω̂(r)ω̊(r)]Sm′−r( f ) ≤ ε}, we also have bm ≤ bm∗

. This means that the
computational cost can be bounded,

cost
(

Îm, f ,ε
)
≤ $( f )bm∗

+ cm∗bm∗

where$( f ) is the cost of evaluating f at one data point.

Proof. By construction, the algorithm must be successful. Recall that the inequality
used for building the algorithm is (29).

To find the upper bound on the computational cost, a similar result to (27) pro-
vides

S̃ℓ,m( f ) =
bℓ−1

∑
κ=bℓ−1

∣∣ f̃m,κ
∣∣=

bℓ−1

∑
κ=bℓ−1

∣∣∣∣ f̂κ +
∞

∑
λ=1

f̂κ+λ bme2π
√
−1〈k̃kk(κ+λ bm)−k̃kk(κ),∆∆∆〉

∣∣∣∣

≤
bℓ−1

∑
κ=bℓ−1

∣∣ f̂κ
∣∣+

bℓ−1

∑
κ=bℓ−1

∞

∑
λ=1

∣∣ f̂κ+λ bm

∣∣= Sℓ( f )+ Ŝℓ,m( f )

≤ [1+ ω̂(m− ℓ)ω̊(m− ℓ)]Sℓ( f ).

Replacing̃Sℓ,m( f ) in the error bound in (29) by the right hand side above proves that
the choice ofmneeded to satisfy the tolerance is no greater thanm∗ defined above.

In Section4, the computation of̃Sm−r,m( f ) is described in terms ofO(mbm) op-
erations. Thus, the total cost of Algorithm1 is,

cost
(

Îm, f ,ε
)
≤ $( f )bm∗

+ cm∗bm∗

⊓⊔

7 Numerical Example

Algorithm 1 has been coded in MATLAB ascubLattice g in base 2, and is
part of GAIL, [1]. To test it, we priced an Asian call with geometric Brownian
motion,S0 = K = 100,T = 1 andr = 3%. The test is performed on 500 samples
whose dimensions are chosen IID uniformly among 1,2,4,8,16,32, and 64, and the
volatility also IID uniformly from 10% to 70%. Results, in Figure3, show 97% of
success meeting the error tolerance.

The algorithm cone parametrization wasℓ∗ = 6, r = 4 andC(m) = 5×2−m. In
addition, each replication used a shifted lattice with∆∆∆ ∼U(0,1). However, results
are strongly dependent on the generating vector that was used for creating the rank-1
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lattice embedded node sets. The vector applied to this example was found with the
latbuilder software from Pierre L’Ecuyer and David Munger [9], obtained for
226 points,d = 250 and coordinate weightsγ j = j−2, optimizing theP2 criterion.

For this particular example, the choice ofC(m) does not have a noticeable impact
on the success rate or execution time. In other cases such as discontinuous functions,
it is more sensitive. Being an adaptive algorithm, if the Fourier coefficients decrease
quickly, cone conditions have a weaker effect. One can see that the number of sum-
mands involving̃Sm−r,m( f ) is 2m−r−1 for a fixedr. Thus, in order to give a uniform
weight to each wavenumber, we choseC(m) proportional to 2−m.
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Fig. 3 Empirical distribution functions obtained from 500 samples, for the error (continuous line)
and time (slashed-doted line). Quantiles are specified on the right and top axes respectively. The
tolerance of 0.02 (vertical dashed line) is an input of the algorithm and will be a guaranteed bound
on the error if the function lies inside the cone.

8 Discussion and Future Work

Quasi-Monte Carlo methods rarely provide guaranteed adaptive algorithms. This
new methodology that bounds the absolute error via the discrete Fourier coefficients
allows us to build an adaptive automatic algorithm guaranteed for cones of inte-
grands. The non-convexity of the cone allows our adaptive, nonlinear algorithm to
be advantageous in comparison with non-adaptive, linear algorithms.

Unfortunately, the definition of the cone does contain parameters,ω̂ and ω̊,
whose optimal values may be hard to determine. Moreover, thedefinition of the cone
does not yet correspond to traditional sets of integrands, such as Korobov spaces.
These topics deserve further research.
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Concerning the generating vector used in Section7, some further research should
be carried out to specify the connection between dimension weights and cone param-
eters. This might lead to the existence of optimal weights and generating vector.

Our algorithm provides an upper bound on the complexity of the problem, but
we have not yet obtained a lower bound. We are also interestedin extending our
algorithm to accommodate a relative error tolerance. We would like to understand
how the cone parameters might depend on the dimension of the problem, and we
would like to extend our adaptive algorithm to infinite dimensional problems via
multi-level or multivariate decomposition methods.

Acknowledgements The authors thank Ronald Cools and Dirk Nuyens for organizing MCQMC
2014 and greatly appreciate the suggestions made by Sou-Cheng Choi, Frances Kuo, Lan Jiang,
Dirk Nuyens and Yizhi Zhang to improve this manuscript. In addition, the first author also thanks
Art B. Owen for partially funding traveling expenses to MCQMC 2014 through the US National
Science Foundation (NSF). This work was partially supported by NSF grants DMS-1115392,
DMS-1357690, and DMS-1522687.

References

1. Choi, S.C.T., Ding, Y., Hickernell, F.J., Jiang, L., Jim´enez Rugama, Ll.A., Tong, X., Zhang,
Y., Zhou, X.: GAIL: Guaranteed Automatic Integration Library (versions 1.0–2.1). MATLAB
software (2013–2015). URLhttps://github.com/GailGithub/GAILDev.

2. Clancy, N., Ding, Y., Hamilton, C., Hickernell, F.J., Zhang, Y.: The cost of deterministic, adap-
tive, automatic algorithms: Cones, not balls. Journal of Complexity 30(1), 21 – 45 (2014).

3. Dick, J., Kuo, F., Sloan, I.H.: High dimensional integration — the Quasi-Monte Carlo way.
Acta Numerica22, 133–288 (2013).

4. Hickernell, F.J.: ObtainingO(N−2+ε) convergence for lattice quadrature rules. In: K.T. Fang,
F.J. Hickernell, H. Niederreiter (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2000, pp.
274–289. Springer-Verlag, Berlin (2002).
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