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Discrepancy Estimates for Acceptance-Rejection
Samplers Using Stratified Inputs

Houying Zhu and Josef Dick

Abstract In this paper we propose an acceptance-rejection sampiey sisatified
inputs as diver sequence. We estimate the discrepancy gioihés generated by
this algorithm. First we show an upper bound on the star emamcy of order
N~—Y/2-1/(29_ Further we prove an upper bound on ttth moment of thelq-
discrepancy(E[NILg y])*/® for 2 < q < o, which is of ordemN~%/9(1-1/9) we
also present an improved convergence rate for a determiaisteptance-rejection
algorithm using't,m, s)—nets as driver sequence.

1 Introduction

Markov chain Monte Carlo (MCMC) sampling is a classical noetividely used in
simulation. Using a deterministic sequence as driver secpin the MCMC proce-
dure, known as Markov chain quasi-Monte Carlo (MCQMC) aildpon, shows po-
tential to improve the convergence rate. Tribble and Ov2&hgdroved a consistency
result for MCMC estimation for finite state spaces. A conginon of weakly com-
pletely uniformly distributed sequences is also propoésd sequel to the work of
Tribble, Chen 4] and Chen, Dick and Owerb] demonstrated that MCQMC algo-
rithms using a completely uniformly distributed sequense&ldver sequence give
a consistent result under certain assumptions on the upalatdon and Markov
chain. Further, Cherd] also showed that MCQMC can achieve a convergence rate
of O(N~1+9) for any & > 0 under certain stronger assumptions, but he only showed
the existence of a driver sequence.

In a different direction, L'Ecuyer, Lecot and Tuffi@]] proposed a randomized
quasi-Monte Carlo method which simulates multiple Markbgias in parallel and
randomly permutes the driver sequence in order to redudangw. Garber and
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2 Houying Zhu and Josef Dick

Choppin in L2] adapted low discrepancy point sets instead of random ntsribe
sequential Monte Carlo (SMC). They proposed a new algotittamed sequential
quasi-Monte Carlo (SQMC), through the use of a Hilbert sgdlieg curve. They
constructed consistency and stochastic bounds basedaomiaed QMC point sets
for this algorithm. More literature review about applyiny\@Q to MCMC problems
can be found in%, Section 1] and the references therein.

In [10], jointly done with Rudolf, we prove upper bounds on the tipancy
for uniformly ergodic Markov chains driven by a determifdsgequence rather than
independent random variables. We show that there existseandiaistic driver se-
quence such that the discrepancy of the Markov chain frontatget distribution
with respect to certain test sets converges with almost sh@liMonte Carlo rate
of N~%/2, In the sequential workd] done by Dick and Rudolf, they consider up
per bounds on the discrepancy under the assumption thatahleoMchain is vari-
ance bounding and the driver sequence is deterministiaiticplar, they proved a
better existence result, showing a discrepancy bound bavirate of convergence
of almostN~! under a stronger assumption on the update function, the |k ca
anywhere-to-anywhere condition.

The acceptance-rejection algorithm is one of the widelylusehniques for sam-
pling from a distribution when direct simulation is not piiss or expensive. The
idea of this method is to determine a good choice of proposiasitly (also known
as hat function), then sample from the proposal density l@ithcost. In particu-
lar, Devroye ] gave a construction method of a proposal density for logeeve
densities and Hormani 7] proposed a rejection procedure, called transformed den-
sity rejection, to construct a proposal density. Detail@thsharies of this technique
and some extensions can be found in the monogragjlamf [18]. For many target
densities, finding a good proposal density is difficult. Alrealative approach to im-
prove efficiency is to determine a better choice of sequehaeisg the designated
proposal density.

The deterministic acceptance-rejection algorithm has bessussed by Moskowitz
and Caflisch 20}, Wang [30, 31] and Nguyen andkten 2], where empirical ev-
idence or a consistency result were given. Two measurerm@itsled therein are
the empirical root mean square error (RMSE) and the empsteadard deviation.
However, the discrepancy of samples is not directly ingeséid. Motivated by those
papers, in32] we investigated the discrepancy properties of points pced by a to-
tally deterministic acceptance-rejection method. We pdathat the discrepancy of
samples generated by a QMC acceptance-rejection sampleuisled from above
by N~1/5. A lower bound shows that for any given driver sequence etladways
exists a target density such that the star discrepancy igstim2/(St1),

In this work we first present an acceptance-rejection dlgariusing stratified
inputs as driver sequence. Stratified sampling is one ofdhiance reduction meth-
ods used in Monte Carlo sampling. More precisely, grid-tageatified sampling
improves the RMSE t&N~Y/2-1/s for Monte Carlo, see for instanc&§, Chapter
10]. In this paper, we are interested in the discrepancyagtis of points produced
by the acceptance-rejection method with stratified inpstsl@er sequence. We
obtain a convergence rate of the star-discrepancy of dd&r /(25 Also an es-
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Discrepancy Estimates for Acceptance-Rejection Samplsirsg Stratified Inputs 3

timation of theLq4-discrepancy is considered for this setting. One would ei{et
the convergence rate which can be achieved using detetimisésnpling methods
also depends on properties of the target density functioe. €ich property is the
number of elementary intervals (for a precise definitionBeénition 3 below) of

a certain size needed to cover the graph of the density. We #fat if the graph
can be covered by a small number of elementary intervals,ahémproved rate of
convergence can be achieved usfhgn, s)-nets as driver sequence. In general, this
strategy does not work with stratified sampling, unless amans the elementary
intervals explicitly.

The paper is organized as follows. In Sectbwe provide the needed notation
and background. Sectiodiintroduces the proposed acceptance-rejection sampler
using stratified inputs, where an existence upper bound®asttr-discrepancy and
an estimation of theq-discrepancy are given. Sectidnllustrates an improved rate
of convergence when usir{g m, s)-nets as driver sequences.

2 Preliminaries

We are interested in the discrepancy properties of samplesrgted by the acceptance-
rejection sampler. We consider thg-discrepancy and the star-discrepancy.

Definition 1 (Lq-discrepancy).Let 1 < q < o be a real number. For a point g&{
in [0,1]%, theLq-discrepancy is defined by

L= ([ |$Nz: oy (%) A (10.0)|‘et)

[0.1)°

1 if X, € [0,t),
where Jop)(%n) = {O, otherwise
measure, with the obvious modification f@r= . The L, n-discrepancy is called
the star-discrepancy which is also denotedtjy(Py).

. [0,t) = [15-1[0,tj) and A is the Lebesgue

The acceptance-rejection algorithm accepts all points/b#ie graph of the den-
sity function. In order to prove bounds on the discrepan@/assume that the set
below the graph of the density function admits a so-calledkdwski content. We
introduce the Minkowski content in the following. For a getve denote the bound-
ary of Aby dA.

Definition 2 (Minkowski content). For a setA C [0,1]5, let

(0m) = tim 29Pe),
e-0  2€
where (dA)s = {x € R¥|||x—Y|| < e fory € dA} and|| - || denotes the Euclidean
norm. If .# (0A) (abbreviated as# without causing confusion) exists and is finite,
thendAis said to admit aris— 1) —dimensional Minkowski content.
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4 Houying Zhu and Josef Dick

3 Acceptance-Rejection Sampler Using Stratified Inputs

We now present the acceptance-rejection algorithm usragjfsd inputs.

Algorithm 1 Let the target density : [0,1]5 — R, where s> 2, be given. As-
sume that there exists a constankleo such thaty(z) < L for all z< [0,1]52.
Let A={z< [0,1)°: Y(z,...,zs-1) > Lz} and assume thad A admits an(s—
1)—dimensional Minkowski content.

i) Let M e N and let{Qq,...,Qu-1} be a disjoint covering with o, 1]° with Q

of the form[]5_, {%, Cw'l—f/i) with 0 < ¢j < [MY$] — 1. ThenA (Q) = 1/M for
all 0 <i <M -1 Generate a point setyP= {Xop,...,Xw_1} such that there is
exactly one point of P uniformly distributed in each sub-cubg.Q

i) Use the acceptance-rejection method for the points ynvidth respect to the
densityy, i.e. we accept the poingxf X, € A, otherwise reject. Let,&]S =AnN

Pu ={2,...,2y_1} be the sample set we accept.

iii)Project the points we accepteq{ﬁbonto the firs{s— 1) coordinates. Let,Y’fl) =
{Yo,---,¥n_1} be the projections of the pointﬁ?’: {20,...,2y-1}.

iv) Return the point setN(\?fl).

3.1 Existence Result of Sampleswith Small Star Discrepancy

Here we present some results that we will use to prove an upperd for the star
discrepancy with respect to points generated by the aacueptajection sampler
using stratified inputs. For any<0 < 1, a set” of anchored boxef,x] C [0,1]°
is called ad-cover of the set of anchored boxfst] C [0,1]° if for every point
t € [0,1]5, there exis{0,x],[0,y] € I such tha{0,x] C [0,t] C [0,y] andA ([0,y] \
[0,x]) < &. The following result on the size of th&cover is obtained from1[3,
Theorem 1.15].

Lemma 1.For any s andd there exists ad-cover of the set of anchored boxes
[0,t] C [0,1]® which has cardinality at mog2e)S(d ! + 1)S.

By a simple generalization, the following result holds for setting.

Lemma2.Let ¢ : [0,1]5 1 — R, where s> 2, be a function. Assume that there
exists a constant k oo such thaty(z) <L forallz< [0,1]5 L. Let A= {z€ [0,1]:
Y(z,...,zs1) > Lz} and F = ([0,t) x [0,1]) NA. Let(A, Z#(A),A) be a probabil-
ity space whereZ(A) is the Borelo-algebra of A. Define the se’ C Z#(A) of test
sets by

o ={F :te[0,151}.

Then for anyd > 0 there exists a-coverls of o7 with

Ml < (2 13+ +1)° %
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Proof. Let
s :={([0,x] x[0,1])NA[0,X] € T},

where ™ is a 6-cover of the set of anchored box@t] C [0,1]5 with || <
(2e)51(51+1)s1. By Lemmal such ad-coverl” exists. For any sek’ € <7,
there exis{[0,X] x [0,1]) N A, ([0,y] x [0,1]) N A € 5 such that

([0.X x [0,1])NAC I C ([0,y] x [0,1]) NA,
and

A(((10.91  0.1) N AN\ ([0, x [0,1)NA) ) < A([0.Y]\[0.X)) < &.

Hencel 5 forms ad-cover ofe and|l5| = |I|.

Lemma 3. Let the unnormalized density functign: [0,1]5! — R, , with s> 2,
be given. Assume that there exists a constaat & such thaty(z) < L for all
zc 0,15
e LetMe Nand letthe disjoint subsetsQ. ., Qu-1 be of the fornf]7_; [%, a—f/i)
where0 < ¢j < [MY/S] — 1. These sets form a disjoint covering@f1]° and each
set Q satisfiesA (Q;) = 1/M.
o Let
A={ze[0,1°: Y(z,...,2s 1) > Lz}
Assume thad A admits an(s— 1) —dimensional Minkowski conten#a.
e LetJ = ([0,t) x [0,1])NA, wherett= (ty,...,ts 1) € [0,1]5L.

Then there exists an v N such that J at most intersects witBs'/2. ZyM1~1/s
subcubes for all M > Mg.

The result can be obtained utilizing a similar proof asli4 [Theorem 4.3]. For the
sake of completeness, we repeat the proof here.

Proof. SincedA admits an's— 1)—dimensional Minkowski content, it follows that

L A((0A))
A= lm = <

Thus by the definition of the limit, for any fixefi > 2, there existgg such that
A((0A)g) < den whenevek < &.

Based on the form of the subcube given[ipy. {#, Clv‘l—f/i) the largest diago-
nal length is,/SM~1/S. We can assume thit > (1/5/&)S, then,/SM~YS =: ¢ < g

andUic; Qi € (dA)e, wherel is the index set for the se@ which satisfyQiNA#£ 0.

Therefore
A((OA)e) _ IeMln

AQ) — M1

Without loss of generality, we can s&t= 3, which completes the proof.

19 < = /39 .MM/,
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Remark 1 Ambrosio et al 1] found that for a closed sétc RS, if Ahas a Lipschitz
boundary, the@A admits an(s— 1)-dimensional Minkowski content. In particular,
a convex sef C [0,1]° has an(s— 1)-dimensional Minkowski content. Note that
the surface area of a convex sef@1]® is bounded by the surface area of the unit
cube|0, 1], which is Zand it was also shown by Niederreiter and Wik§]that 25

is best possible. It follows that the Minkowski contesfy < 2swhenA is a convex
setin[0,1].

Lemma 4. Suppose that all the assumptions of Len$aae satisfied. Let N be the
number of points accepted by AlgoritimThen we have

M(A(A) — 38/2.4M /%) < N < M(A(A) +3552.2,M /9.

Proof. The number of points we accept in Algorithiris a random number since
the driver sequence given by stratified inputs is randomEl(Kf) be the expectation
of N. The number of); which have non-empty intersection withis bounded by

| = 3sY/2_#,M*~1/S from Lemma3. Thus

E[N] -1 <N <E[N]+1. (1)
Further we have -
BN = )‘E\Q(‘igi)’*) — MA(A). @)

Combining () and @) and substituting = 3s/2.#,M1~1/S, one obtains the desired
result.

Before we start to prove the upper bound on the star-disnpaur method
requires the well-known Bernstein-Chernoff inequality.

Lemma5.[2, Lemma 2] Letng,...,n_1 be independent random variables with
E(ni)=0and|ni| <1forall 0<i<I|-1 Denote byrri2 the variance ofy;, i.e.
o? = E(n?). SetB = (51-3 6?)¥/2. Then for anyy > 0 we have

11 2eV/A ify> B2
P rl Z y S - ) ) el 9
(||;> | ) {Ze V/4B? i y < B2.

Theorem 1.Let an unnormalized density functign: [0,1]5* — R, with s> 2,
be given. Assume that there exists a constart ¢ such thaty(z) < L for all
zc[0,15 L LetC= Jio.ys1 Y(2)dz and let the graph undep be defined as

A={ze 0,1 ¢(z,...,z51) > Lz}

Assume thafA admits an(s— 1)—dimensional Minkowski conten#a. Then for
all large enough N, with positive probability, Algorithhyields a point set,&sfl> C
[0,1]51 such that
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s%\/GQ///A IogN n §

* (s-1)
D Y, .
A (2L)»-3C3~% N33 LN

A

Proof. LetJ" = ([0,t) x [0,1]) VA, wheret = (t1,...,ts_1). Using the notation from
Algorithm 1, lety,, be the firsts— 1 coordinates o#, € A. Forn=0,...,N—1, we
have

M-1 N—-1
1y (Xpn) = Loty (Yn)-
n;) % (Xn) n; o) (Yn)

Therefore

1 N-1 1 1 M_1
’N n; Liot)(Yn) — ¢ Joy L,U(z)dz‘ = ’N n; 1y (¥n) — —A)‘ ).

It is noted that

M-1

N .
R

M-1
< 3 100 MG+ P M- 55)

IN

M-1
; 13 (%) — MA (F)| + [MA (A) - N]

M-1 M-1
< n; Ly (Xn) = MA ()| + [MA (A) — n; 1A(xn)\

M-1
<2 sup 13 (Xn) = MA(J)
te[0,1s' n=

- 4)
Let us associate with ea€)), random pointx; € Q; with probability distribution
P(xi €V)=—==MA(V),

for all measurable seis C Q.

It follows from Lemma3 thatJ; at most intersedt:= 3s/2. 7M1~ /s setsQ;.
Therefore J;" is representable as the disjoint union of $gtsentirely contained in
J and the union of at mostpieces which are intersections of some €@tandJ;,

i.e.
Y =UauJ@n),
icl ied
where the index-sethas cardinality at mogBs'/2.Z,M*~1/5]. Since for every;,

A(Qi) = 1/M andQ; contains exactly one element {#;,...,2y}, the discrepancy
of Ui¢) Qi is zero. Therefore, it remains to investigate the discrepan| J;;(Qi N

J)-
SinceA (A) = C/L andN > M(C/L — 3s¥2.#,M~1/%) by Lemma4, we have
M < 2LN/C for all M > (6LsY/2.#x/C)S. Consequently,
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| = 32 MY VS < 38 /2(2L) 1Y/ LNy S = ONEYS,

whereQ = 331/2(2|_)171/Scl/sfl M.
Let us define the random varialgtefor 0 <i <|—1 as follows

{ ,iFzeQnd,
0,ifz ZQiNJ.
By definition,
M-1 -1
15 (Xn) — MY A(GQ 5
3 L) 3@ (5)
Because oP(xi =1) = A(QiNJ)/A(Qi) = MA(QiNng), we have
Exi =MA(QNJ), (6)
whereE(-) denotes the expected value. By é&nd 6),
ANz, 2n) = ‘ ZO 13 (%) — MA (& —Exi) ‘ (7)

Since the random variablgg for 0 <i < | — 1 are independent of each other, in
order to estimate the suE{;cl)(Xi —[Exi) we are able to apply the classical Bernstein-
Chernoff inequality of large deviation type. Lef = E(xi — Exj)? and setB =
(1107)"2. Let

y = 61"2(logN)"/?,

where@ is a constant depending only on the dimensavhich will be fixed later.
Without loss of generality, assume thsat> 3.

Case L:If y < B2, sinceB? <1 < QN3 by Lemma5 we obtain
P(ANUﬁzL“wz@;zeﬂﬂaogNﬂﬂ)

—]P’(|Zl —Ex) >y) < 2eV/(4B?) < N—0%/4, (8)

Though the class of axis-parallel boxes is uncountableffices to consider a small
subclass. Based on the argument in Lenn#here is a IM-cover of cardinal-
ity (26)S"1(M +1)571 < (2€)5"1(2LN/C+1)S" for M > Mg such that there exist
Ry, Rz € I1m having the propertieR, C 7 C R; andA (R2\Ry) <1/M. From this
it follows that

AN(Y 5z, .., 2N )STE XA(R;2,...,2v) + 1,
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see, for instance1fl, Lemma 3.1] and16, Section 2.1]. This means that we can
restrict ourselves to the elementsigfy.
In view of (8)

2 2
P(AR:21 . 2) > Y) < [ywl2N % <2N-F (20 22

+ 1)571 <1,
for 6 = 2v2sandN > £ 4 2.
Case 2:0n the other hand, i¥ > 32, then by Lemm& we obtain

P(A(Jt*;zl,...,zN) > 9I1/2(IogN)1/2)

011/2(10gN) /2

:P(‘ iIZ\(Xi ~Exi)| = V) <2 . ©)

Similarly, using the IM-cover technique above, fé = 2v/2s and sufficiently
largeN we have

_ 01%/200gn)1/2
P(A(R;z1,...,2n) > y) < [[yyml2e

011/2(10gN) /2

<2 4 (2e)5*1(%

s—1
c +1)7 " <1,

where the last equation is satisfied for all large endNgh
By (3) and @), we obtain that, with positive probability, Algorithrhyields a
point sety,* Y such that

1

Dy (W) < V25QY2N 3 % (logN) 2+ 1/M,

By Lemmal, we have ¥M < 2C/(LN) for sufficiently largeN. Thus the proof
of Theoreml is complete.

3.2 Upper Bound on the Lq-discrepancy

In this section we prove an upper bound on the expected véathe by-discrepancy
for2<q< .

Theorem 2.Let the unnormalized density functign: [0,1]"! — R, satisfy all

the assumptions stated in Theoréml_et Y,\(,Sfl) be the samples generated by the
acceptance-rejection sampler using stratified inputs.riflue have foR < q < o,

(BINILE (% D)) Y9 < (3s1/2.00) 1 VA(2LC 1) (- 190 1/aIN-1/9)1-1/0)

where ./ is the (s— 1)—dimensional Minkowski content and the expectation is
taken with respect to the stratified inputs.
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10 Houying Zhu and Josef Dick
Proof. Let J = ([0,t) x [0,1]) NA, wheret = (t3,...,ts 1) € [0,1]5 L. Let
&i(t) = longy (%) = A(QiNg)/A(Qi),

whereQ; for 0 <i <M — 1 is the covering of0,1)° with A(Q;) = 1/M. Then
E(&i(t)) = 0 since we hav&[lg g (X)] = MA(QiNJ). Hence

E[&2(1)] = E[(1gny (%) —MA(QNJ))
]—

= E[lgny (%)] — 2MA(QiNJ)E[lgny (%)] +M?A%(Q N )
=MA(QNE)(1— M/\(QIM))
<MAQNY) <

If Q CJ orif @ nJ =0, we havedj(t) = 0. We order the set®; such that

Q0,Q1, ..., Qj, satisfyQiNJ* # 0 andQ; € J* (i.e. Q; intersects the boundary df)
and the remaining se@; either satisfyQiNJ" =0 orQ; C J'. Due to the fact that
the density curvey at most intersects with:= 3s%2.# (dA)M1-1/s setsQ;, if A
admits an(s— 1)—dimensional Minkowski content, it follows that, far= 2,

T
= (B ; ()"
- (/[0,1]5-;E[Ei (t)z]dt) <1%2,

Sincel&i(t)| < 1, forq= o, we have

sup [NDR(Y V) = sup  sup y%a = sup  sup Zf‘
PvC[0,1]8 PMcolstEOlSl i PvC[0,1]5te[0,1)51

< sup sup Z}\a

Pve[0,1]Ste[0,1)5-1i

Therefore, for 2< q < oo,
—1)\ 1\ 1 _
(E[Nng,N(Yrss ))]) /a <t 1/q7

which is a consequence of the log-convexity.gfnorms, i.¢g| f||p, < || f H M Py’
where ¥Ypg = (1—6)/po+ 6/p1. In our casepy = 2 andp; = .

Additionally, following from Lemma4, we haveM < 2LN/C wheneverM >
(6LsY/2./C)3. Hence we obtain the desired result by substitutia@s'/ 2. #ZaM*~1/s
and replacingM in terms ofN.
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Remark 21t would also be interesting to obtain an upper bound fer 4 < 2. See
Heinrich [L5] for a possible proof technique. We leave it as an open proble

4 Improved Rate of Convergence for Deterministic
Acceptance-Rejection Sampler

In this section, we prove a convergence rate of oief for 1/s< a < 1, where

o depends on the target densily See Corollaryl below for details. For this result
we use(t,m,s)-nets (see Definitiod below) as inputs instead of stratified samples.
The value ofa here depends on how well the graphyotan be covered by certain
rectangles (see Equatioh@)). In practice this covering rate of ordbr? is hard

to determine precisely, whem can range anywhere from/dto < 1, wherea
arbitrarily close to 1 can be achievedyf is constant. We also provide a simple
example in dimensios = 2 for which a can take on the values = 1— ¢~ for

¢ e N, /> 2. See Examplé for details.

We first establish some notation and some useful definitindgteen obtain the-
oretical results. First we introduce the definition(tfm, s)-nets in basé (see B])
which we use as the driver sequence. The following fundaaheefinitions of ele-
mentary interval and fair sets are used to defifem, s)-net in basé.

Definition 3. [b-adic elementary interval] Lét> 2 be an integer. As-dimensional
b-adic elementary interval is an interval of the form

S
a a+1
ﬂ {W bd )
with integers O< g < b% andd, >0 forall 1<i<s. If di,...,ds are such that

di +---+ds =k, then we say that the elementary interval is of older

Definition 4 (fair sets). For a given sePy = {Xo,X1,...,Xn_1} consisting ofN
points in[0,1)%, we say for a subsetof [0, 1)" to be fair with respect t8, if

1 N—-1
— 13(%) =A(J),
N 2,

where }(xy) is the indicator function of the sét

Definition 5 ((t,m,s)-nets in base b)For a given dimensios > 1, an integer base
b > 2, a positive integem and an integer with 0 <t < m, a point seQms of b™
points in[0,1) is called a(t,m,s)-nets in basé if the point setQms is fair with
respect to all b-adic s-dimensional elementary intervatsder at mosm—t.

We present the acceptance-rejection algorithm uging, s)-nets as driver se-
quence.
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12 Houying Zhu and Josef Dick

Algorithm 2 Let the target density : [0,1]5"* — R, where s> 2, be given. As-
sume that there exists a constantleo such thaty(x) < L for all x € [0,1]5L. Let
A={ze[0,1°: Y(z,...,zs-1) > LXs}. Suppose we aim to obtain approximately
N samples fromyp.

i) Let M=bm> [N/(f[o’l]yl w(x)/de)W, where me N is the smallest integer

satisfying this inequality. Generate (&, m,s)-net Qns = {Xo,X1,...,Xgm_1} in
base b.
i) Use the acceptance-rejection method for the points @ith respect to the den-

sity i, i.e. we accept the poimxiif X, € A, otherwise reject. Let,Ei9 =ANQms=
{2y,...,2y_1} be the sample set we accept.

iif)Project the points éf) onto the firs{s— 1) coordinates. Let,?il) ={Yo,---»¥n_1} C
[0,1]51 be the projections of the pointéflb.

iv) Return the point setN(\?*l).
In the following we show that an improvement of the discregyamound for the

deterministic acceptance-rejection sampler is posdiletean unnormalized density
functiony : [0,1)5 — R, with s> 2, be given. Let again

A={z=(z,....z) € [0,1*: Y(z,..., 25 1) > Lz}

andJ; = ([0,t) x [0,1]) NA. LetdJ denote the boundary df andd|[0, 1)° denotes
the boundary of0, 1]3. Fork € N we define the covering number

Vv
N(@) = sup min{v:3Us,...,Uy € &: (0%\ 9[0,1]°) C [ JU;,
teo.1s e

UnNUpy=0fori<i<i’ <v}, (10)

wheredy is the family of elementary intervals of ordier

Lemma 6. Let  : [0,1]5"* — [0,1] be an unnormalized target density and let the
covering numbefm_t () be given by(10). Then the discrepancy of the point set

Y,ﬂsfl) ={¥Yo0,¥1,---,Yn_1} € [0,1]5 generated by Algorithi using a(t, m, s)-net
in base b, for large enough N, satisfies

Di.y (M) < 4C 0t M (W)NL,
where C= [ ;-1 (2)dz.
Proof. Lett € [0, 1]° be given. Lev= m_¢() andUy, ...,Uy be elementary inter-
vals of ordem—t such thatl; UU,U---UUy 2 (83 \ 9]0, 1]%) andU; NU;; = 0 for

1<i<i’'<v. LetVy,.... Vo€ &ny WithVi CE,VinVy =0forall 1<i<i'<z
andVi NU; = 0 such thatJ?_; Vi UU_, Ui D J". We define

z \
W={JViuJU
i=1 i=1
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and i
WO = | JVi.
i=1

ThenW andWP? are fair with respect to th@, m,s)-net, W° C Jy CW and
Vv Vv
AW A \W?) <A(W\WP) = Zl)\ (Vi) = Zlb’m“ =b ™ (@),
i= =

The proof of the result now follows by the same arguments atbofs in B2
Lemma 1&Theorem 1].

From Lemma3 we have that ifdA admits an(s— 1)—dimensional Minkowski
content, then
[—k(w) < Csb(lfl/s)k.

This yields a convergence rate of ordér/s in Lemma6. Another known example
is the following. Assume thap is constant. Since the graphgfcan be covered by
just one elementary interval of order—t, this is the simplest possible case. The
results from 4, Section 3] (see als@| p. 184—190] for an exposition in dimensions
s= 1,2 3) imply thatl (@) < CkS* for some constar@s which depends only on
s. This yields the convergence rate of ordergN)S"*N~! in Lemma6. Thus, in
general, there are constautg, andCs g depending only o andy such that

Coyk® L < M) < CsybT-2/9K (11)

whenever the s&A admits ans— 1)—dimensional Minkowski content. This yields
a convergence rate in LemrBaof orderN~ with 1/s< a < 1, where the precise
value ofa depends ony. We obtain the following corollary.

Corollary 1. Let ¢ : [0,1]51 — [0,1] be an unnormalized target density and let
I«(y) be given by(10). Assume that there is a consta@t> 0 such that

N(w) < Ob=B  forallk e N,

for somel/s< a < 1andf > 0. Then there is a constadts; , > 0 which de-
pends only on $ and ¢, such that the discrepancy of the point séfj@ =
{Yo,¥1,---,Yn_1} C [0,1]51 generated by AlgorithrR using a(t,m,s)-net in base
b, for large enough N, satisfies

D*N,w(Yy\(ﬁl)) < Ast yN~%(logN)P.

Example 1To illustrate the bound in Corollary, we consider now an example for
which we can obtain an explicit bound ép(y) of orderb¥1-%) for 1/2 < a < 1.
For simplicity lets= 2 anda = 1— ¢/~ for some/ € N with ¢ > 2. We define now a
functiony, : [0,1] — [0, 1] in the following way: lex € [0, 1) haveb-adic expansion
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& & &3
whereé; € {0,1,...,b—1} and assume that infinitely many of t§eare different
fromb— 1. Then set

&1 $2 ¢3
Y=gt o tEin T

Lett € [0,1). In the following we define elementary intervals of oréter N which
coverdJ \ [0, 1)2. Assume first thak is a multiple of¢, then letg = k/¢. Then we
define the following elementary intervals of ordes g¢:

a g1 g ag-1  ag+1
[E-F"'-FW'FE,E‘F"'-FW o X
L 8g-1 & & ag-1 ag+1
[bfl et e T p1 T e oD T )0 (2
whereay,...,aq € {0,1,...,b— 1} run through all possible choices such that
a ag 1 ag+1
F + e + m bg S t

The number of these choices far, . . ., ag is bounded by?. Let

t t t
t:_1+...+_g+il

b b "ot T

Forintegers K u < g(¢ — 1) and 0< ¢, < tg,y, we define the intervals

t1 tgru-1 TR (] tgru1 , Cut1l
|:B+"'+bg+u1+bg+u,B+"'+bg+u1+bg+u X
dy dg(r—1)—u 0y dg(r-1)—u 1

whered; = 0if £1i, di =t;, if ¢]i and we set’b—l+---+% =0ifu=g(/—1).
Further we define the interval

11 tge ta tye 1
[B+"'+W’B+"'+W+W % [0,1). (14)

The intervals defined inl@), (13) and (L4) coverdJ \ 4[0,1)2. Thus we have
Toe(Wr) <b9+bg(l — 1)+ 1< ¢bo.

For arbitraryk € N we can use elementary intervals of orélevhich cover the same
area as the intervald ), (13) and (14). Thus we have at most—* times as many
intervals and we therefore obtain
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rk(wf) < ébk/€+€71.

Thus we obtain

sup < As,t,wN*(lf%).

te[0,1]

1N71 1 rt
N 2 Toobm g [ wradz

n

Remark 3In order to obtain similar results as in this section for tified inputs
rather thar(t, m,s)—nets, one would have to use the elementary intetvals. .Uy
of orderk which yield a covering oBJ* \ 9]0, 1J® for all t € [0,1]%"1. From this
covering one would then have to construct a coveringAf, (0, 1]° and use this
covering to obtain stratified inputs. Since such a coversngpt easily available in
general, we did not pursue this approach further.
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