
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

'The Tinker' for Rodin
Citation for published version:
Liang, Y, Lin, Y & Grov, G 2016, 'The Tinker' for Rodin. in Abstract State Machines, Alloy, B, TLA, VDM,
and Z - 5th International Conference, ABZ 2016, Linz, Austria, May 23-27, 2016, Proceedings. Lecture
Notes in Computer Science, vol. 9675, Springer, Cham, pp. 262-268, Abstract State Machines, Alloy, B,
TLA, VDM, and Z - 5th International Conference, Linz, Austria, 23/05/16. https://doi.org/10.1007/978-3-319-
33600-8_19

Digital Object Identifier (DOI):
10.1007/978-3-319-33600-8_19

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Abstract State Machines, Alloy, B, TLA, VDM, and Z - 5th International Conference, ABZ 2016, Linz, Austria,
May 23-27, 2016, Proceedings

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 26. Apr. 2024

https://doi.org/10.1007/978-3-319-33600-8_19
https://doi.org/10.1007/978-3-319-33600-8_19
https://doi.org/10.1007/978-3-319-33600-8_19
https://www.research.ed.ac.uk/en/publications/2589c163-e780-4fa8-8f51-3caeb3b2b59c


‘The Tinker’ for Rodin?

Yibo Liang1, Yuhui Lin1 and Gudmund Grov1

Heriot-Watt University, Edinburgh, UK {yl9, Y.Lin, G.Grov}@hw.ac.uk

Abstract. PSGraph [3] is a graphical proof strategy language, which
uses the formalisation of labelled hierarchical graphs to provide support
for the development and maintenance of large and complex proof tactics.
PSGraph has been implemented as the Tinker system, which previously
supported the Isabelle and ProofPower theorem provers [4]. In this paper
we present a Rodin version of Tinker, which allows Rodin users to encode,
analyse and debug their proof strategies in Tinker.

1 PSGraph & Tinker

PSGraph [3] is a graphical proof strategy language, where proof tactics are repre-
sented as directed hierarchical graphs, which provides an intuitive representation
to understand and work with proof strategies. The nodes in PSGraph contain
tactics, provided by the underlying theorem prover, or nested graphs, and are
composed by labelled wires. The labels are called goal types which are predicates
describing expected properties of sub-goals. Each sub-goal is a special goal node
on the graph, which “lives” on a wire. Evaluation is handled by applying a tactic
to a goal node that is on one of its input wires. The resulting sub-goals are sent
to the out wires of the tactic node. To add a goal node to a wire, the goal-type
must be satisfied. This mechanism is used to ensure that goals are sent to the
right place.
2 Tinker, tailor, solver, proof

ripple

a

induct

b
ripple

induct
d

c d

ripple

induct

e c

d

ripple

induct

e

c f

induct

d

ripple

bbb

c

Figure 1: Some goal-nodes (depicted as circles) making their way through a PSGraph

you can only connect the same types of pipes together. The same is true for tactics: they only work for
certain goals (although for some tactics this range of goals is rather wide). For example, an ‘assumption’
tactic expects a hypothesis to be unifiable with the goal, and ‘8-intro’ expects the goal to start with a 8
quantifier.

inductable

step

induct
base

To effectively decide where to send goals, we label edges with goal-types,
which encode certain properties about a goal which dictate how it should then be
handled. We then only allow goals to be output on edges with a matching goal-
type. For example, the ‘induct’ tactic might have two output edges: one with type
step, which matches goals of the form ‘?P =) ?Q’ where ?P embeds in ?Q, and
the other with type base, which matches everything else. This output types then
direct the flow of goals out of the induction tactic in a bigger PSGraph (Figure 2 (left)).

One evaluation step works by applying a single tactic node on a single goal. Here, the goal is
consumed from the input edge, the tactic in the tactic node is applied to the goal, and the resulting sub-
goals (if any) are sent down the output edges where they match. When all the goal nodes are on output
edges of the graph, then it has successfully evaluated. If no output type matches a goal, then evaluation
fails. For evaluation this improves robustness of the tactic in two ways: (1) since composition is over the
type of goals, we avoid the brittleness arising from defining composition in terms of the number of sub-
goals or order of sub-goals, and (2) if an unexpected sub-goal arises then evaluation will fail at the actual
point of failure as it will not match any of the output types. In general, we allow this evaluation procedure
to be non-deterministic by introducing branching whenever a tactic behaves non-deterministically, or a
sub-goal produced by a tactic matches more than one output edge. However, with appropriate choice of
goal types and evaluation strategy, this branching can be minimised.

Figure 2 (left) highlights an example of a proof strategy employing tactics which rely on specific
properties of a goal. For example, rippling [2] is a heuristic rewriting technique most commonly used
on step cases of inductive proofs, ensuring that each ‘ripple’ step moves the goal towards the induction
hypothesis (IH). This step is repeated until the IH can be applied to simplify or fully discharge the
goal – a process called ‘fertilisation’. The advantage of rippling is that it is guaranteed to terminate,
whilst allowing rewriting behaviour that would not otherwise terminate (e.g. allowing a rewrite rule to
be applied in both directions). Termination is ensured by checking that a certain embedding property
holds for the goal being rippled, while a measure is reduced from a previous goal. Collectively, these
properties are captured by a goal type, in this cased called ‘can-ripple’. When a goal is fully ‘rippled’,
then ‘fertilisation’ is applied.

Proof strategies can easily become very large and complex. In PSGraph, we can reduce this complex-
ity and size by hiding parts of a graph, which is achieved by boxing a sub-graph up into a single vertex.
We do this by introducing graph hierarchies. A simple example of a hierarchy is shown in Figure 2.

inductable

base step
can-ripple

rippled

Fig. 1. An example of using PSGraph [3]

In Fig. 1 we show an example adapted from [3]. This is a proof strategy called
rippling, which has also been used to automate invariant proofs in Event-B [5].

? This work has been supported by EPSRC grants EP/J001058, EP/K503915,
EP/M018407 and EP/N014758.



Here, there are two tactics nodes, induct and ripple, connected by edges with
suitable goal types to guide the sub-goals to the correct target. In this example,
a goal node, labelled by a is the input of the first tactic node (induct). Applying
the induct tactic to a generates three new sub-goals, where a and b are base
cases, while d is a step case. The step cases will be sent to the ripple tactics.
Over two iterations, the ripple tactic will generate two new sub-goals, f and
d, which will be sent to the output of the graph. Major features of PSGraph
is: this ability to control the goal flow with goal types; step through evaluation
during debugging as Fig. 1 illustrates and abstraction of the order and number
of sub-goals (e.g. both b and c were sent to the same edge).

PSGraph is formalised using string diagrams [1], which supports dangling
edges (i.e. an edge without a source/target): an edge without a source becomes
the input; and an edge without a target becomes an output. By exploiting the
goal types, string diagrams support a novel type-correct composition of tactics1.
For example, we can only connect the (output) base edge of Fig. 1 with a graph
that has an input base goal type.

PSGraph has been implemented in the Tinker tool [4,7], which also provide
support for developing, debugging and maintaining proof strategies. We will
illustrate this in the tool in §2.

Previously Tinker only supported Isabelle and ProofPower. In this paper, we
present a Rodin version of Tinker, which consists of the Tinker tool and a ‘Tinker
for Rodin’ plugin. This will enable Rodin users to encode their proof strategies
in Tinker with the following features: (1) users can draw proof strategies as flow
graphs; (2) users can reuse and modify existing proof strategies by drawing; (3)
users can step through how sub-goals flow through the graph during a proof,
including debugging features such as breakpoints and the ability to modify the
proof strategy. In §2 we will show how Tinker can be used to support developing
and debugging proof strategies with a case study. This is followed by a discussion
of the architecture and implementation details in §3. We conclude and briefly
discuss further work in §4.

2 Developing and debugging proof strategies in Rodin

To illustrate usage of the tool, consider proof obligations (POs) X act/inv19 (1)
and X act/inv21 (2) taken from an encoding of a landing gear case study [8].

partition(EV, {prsev}, {dprev}, {opnev}, {clsev}, {extev}, {rtrev}, {noev}), . . .
` N(ext 7→ which ev) ∈ {prs ev, opn ecv} ∧ ext = FALSE

⇒ X(rtr ev = TRUE)

(1)

partition(EV, {prsev}, {dprev}, {opnev}, {clsev}, {extev}, {rtrev}, {noev}), . . .
`N(ext 7→ which ev) ∈ {rtr ev, ext ecv} ⇒ X(opn ev = TRUE)

(2)

Both of these require interactive proofs. The proof strategy for X act/inv19

is as follows:

1 Composition of two graphs is formalised as a categorical push-out [1].



Fig. 2. The Tinker plug-in and Tinker GUI

– Eliminate the implication (⇒) in the goal;
– Unfold the definitions of partition (partition);
– Rewrite hypotheses with the set equality hypothesis unfolded from partition;
– Unfold the definitions of membership (∈);
– Apply a case split on any disjunctive hypothesis;
– Simplify hypotheses with the default rewrite rules of Rodin;
– Simplify hypotheses by rewriting with equational hypotheses;
– Apply the auto prover on the remaining sub-goals.

To develop this proof strategy, users can open the Tinker tool (as seen in Fig. 2)
and draw it in a click and drag style. The PSGraph we have developed is shown
in Fig. 3 (left), where each green box is a proof tactic provided by Rodin:

on goal means that the given rewrite rule(s) should be applied to the goal, e.g.
on goal(impI) eliminates the implication (⇒) in the goal.

on hyp means that the given rewrite rule(s) should be applied to the hypothe-
ses, e.g. on hyp(remove membership) rewrites any hypotheses of the shape

x ∈ {S1, . . . , Sn}

to
x = S1 ∨ · · · ∨ x = Sn

auto tactic to apply the automatic tactic specified by the argument, e.g.
auto tactic(newPP AL) calls the interface of Rodin’s newPP ALL.

A key feature of Tinker is that the edges of the graph are labeled by goal types,
which are predicates that are used to guide sub-goals to the correct target. This
is also used to pinpoint where a proof fails during debugging. Here, we illustrate
some of the goal types that we have developed for Rodin proofs:

any is the default goal-type which allows any goal to proceed.
(has/no) hyp with topsymbol succeeds if there is (or is not) a hypothesis

in which the top level symbol is the operation specified by the argument.



on_goal("impI")

any 

on_hyp("partition_rewrite")

on_hyp("eh_SETDEF")

any 

any 

has_hyp_with_topsymbol(in) 

no_hyp_with_topsymbol(in) 

auto_tactic("newPP_AL")

on_hyp("simp_rewrite")

on_hyp("simple_split_case")

on_hyp("equal_hyp_rewrite")
any 

any 

has_hyp_with_topsymbol(or) 
any 

has_simplifable_hyps() 

no_simplifable_hyps() 

on_hyp("remove_MEMBERSHIP")
any 

on_goal("impI")

any 

on_hyp("partition_rewrite")

on_hyp("eh_SETDEF")

any 

any 

has_hyp_with_topsymbol(in) 

no_hyp_with_topsymbol(in) 

auto_tactic("newPP_AL")

on_hyp("simp_rewrite")

on_hyp("simple_split_case")

on_hyp("equal_hyp_rewrite")
any 

any 

has_hyp_with_topsymbol(or) 
any 

has_simplifable_hyps() 

no_simplifable_hyps() 

on_hyp("remove_MEMBERSHIP")
any 

on_goal("do_case", "ext=TRUE")

no_def_of(ext)

has_def_of(ext)
any 

Fig. 3. Proof strategy of X act/inv19 (left) and X act/inv21 (right)

(has/no) simplifable hyps succeeds if there exists (or not exists) any equa-
tional hypothesis to rewrite the hypotheses.

The available tactics and goal-types are hard-coded in the current implementa-
tion, meaning users cannot define new ones. We discuss this limitation further
in §4.

Tinker allows users to save the existing proof strategies into a library and
import those from the library to develop new ones. To illustrate, the proof of
X act/inv21 only differs from X act/inv19, in that a case split on ext=TRUE is
required before applying case split on the disjunctive hypothesis. Fig. 3 (right)
shows the proof strategy which is developed based on the X act/inv19 one, with
the changes highlighted. Tinker could then have been used to help generalising
these strategies into a single more high-level strategy.

To apply a proof strategy to a PO, users can open the PO in Rodin and then

click the button from the prove control view in Rodin. After selecting the proof
strategy to be applied, Tinker will be launched to allow users to step through
proofs with the features, such as interactive controlled inspection, debugging
using breakpoints and a logging mechanism [7]. A screenshot is shown in Fig. 2.
The demo of applying the proof strategies to the two POs are available in [9].

3 Implementation

JSON

Tinker GUI

Scala

Tinker core

Poly/ML

JSON

Rodin_Tinker
Rodin Plugin

Scala /Java
Rodin 

Fig. 4. Architecture



The Rodin version of Tinker consists of three parts: the GUI, CORE and
the Rodin plug-in. Each is shaded in a separated grey box, and the new parts,
which are contributions of this paper, are highlighted with dotted lines in Fig. 4.
The GUI is implemented in Scala and provides a graphical way of developing,
and debugging proof strategies. The core is implemented in Poly/ML, and holds
the key functionalities such as goal-type checking and evaluation. The core is
theorem prover independent, as most functionality is implemented using ML
functors. Each theorem prover, i.e. Isabelle, ProofPower and Rodin, has a prover
configuration structure that implements a provided signature, as indicated
by Rodin Tinker for Rodin in Fig. 4.

Isabelle and ProofPower are both encoded in Poly/ML which made it easy
to integrate with the core. For Rodin, we had to develop a JSON-based com-
munication protocol between the actual Rodin plug-in and the Tinker core. The
Rodin plug-in therefore acts as the communication agent between the Rodin
Proof Obligation Manager (POM) and the core. It is responsible for calling the
correct tactic in the POM and send the updated proof status back to the core.
To illustrate, the tactic application

on goal(impI)

is translated to a JSON message containing the command

APPLY TACTIC

and the parameters ON GOAL and impI. This is sent to the Rodin plug-in, which
will interpret the message to call the following interface in Rodin to eliminate
the implication in the goal:

Tactics.impI().apply(pnode, pm)

where pnode is the proof tree node at which this tactic should be applied and
pm is the proof monitor in Rodin.

4 Conclusion & future work

We have presented a Rodin version of the Tinker tool. This is the first Tinker
supported theorem prover that does not strictly follow the LCF approach [2] and
that required an additional communication protocol. The plug-in allows Rodin
user to develop and debug tactics as graphs, and the approach has been shown
to scale to an industrial setting [6].

We believe that the integration of Rodin and Tinker has great potential. To
illustrate, a tactic node in a PSGraph can be used to select relevant hypothesis,
which are then used as parameters for subsequent tactic node.s For example, we
can apply a tactic

bind hyp with topsymbol (in, ?x)



which selects all the hypotheses satisfying that the top symbol is ∈, and then
bind the list of the hypotheses to an environment variable ?x. We can then apply
a tactic with the variable, e.g.

on hyp (remove MEMBERSHIP, ?x)

which will apply the tactic to eliminate ∈ for the list hypotheses bound in ?x.
This feature, which seems very useful for Rodin which can have a large number
of hypothesis, is supported in the Isabelle and ProofPower version, and we need
to update the Rodin prover configuration structure to support it. We also
would like to support configurable tactic and goal type features that will allow
users to define new tactics and goal types in a easy manner without resorting
to the source code. We would also like to investigate richer proof strategies in
Rodin. For example, the second author’s PhD thesis used rippling (in Isabelle)
to automate Rodin POs [5]. We have previously developed a simplified version of
rippling in Tinker [4] which we would like to incorporate with the Rodin version.

References

1. Lucas Dixon and Aleks Kissinger. Open graphs and monoidal theories. CoRR,
abs/1011.4114, 2010.

2. M.J. Gordon. Edinburgh LCF: a mechanised logic of computation. 1979.
3. G. Grov, A. Kissinger, and Y. Lin. A graphical language for proof strategies. In

LPAR, pages 324–339. Springer, 2013.
4. G. Grov, A. Kissinger, and Y. Lin. Tinker, tailor, solver, proof. In UITP 2014,

volume 167 of ENTCS, pages 23–34. Open Publishing Association, 2014.
5. Y. Lin. The Use of Rippling to Automate Event-B Invariant Preservation Proofs.

PhD thesis, 2015.
6. Y. Lin, O’Halloran C. Grov, G. and, and P. G. A super industrial application of

PSGraph. In ABZ 2016, to appear.
7. Y. Lin, P. Le Bras, and G. Grov. Developing & debugging proof strategies by

tinkering. In TACAS 2016, to appear.
8. W. Su and JR Abrial. Aircraft landing gear system: approaches with Event-B to

the modeling of an industrial system. In ABZ 2014.
9. Y.Liang Y. Lin and G. Grov. Tinker - ABZ 16 paper ressources. http://ggrov.

github.io/tinker/abz2016/. Accessed: 2016-2-3.

http://ggrov.github.io/tinker/abz2016/
http://ggrov.github.io/tinker/abz2016/

	`The Tinker' for Rodin

