Edge Detection Based on Riesz Transform
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Abstract. In this paper, we present a new way of 2D feature extrac-
tion. We start by showing the direct link that exist between the Riesz
Transform (RT) and the gradient and Laplacian operators. This formu-
lation allows us to interpret the RT as a gradient of a smoothed image.
Thus, by analogy with the classical models, the maximum gradient and
the zero crossings of the divergence of the TR, provide information about
the position of contours. The interest of the RT is its representation that
naturally sweeps the whole area of the image and allows a correct descrip-
tion of structures. Using different filters, our models have been tested and
compared with classical models and some recent ones. The results show
that our detection technique is more efficient and more accurate.

Keywords: Riesz transform - Edge detection - Laplacian zero cross-
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1 Introduction

The derivative of intensity method has been widely used in various fields of
image processing for detecting the change of intensity as contours. Indeed, the
maximum of the first derivative (or the zero crossing of the second derivative)
is used to locate the changes and discontinuities of intensity in the form of
stair [4,9,10]. These changes and discontinuities are generally associated with
contours of objects present in the image. Although very significant progress
has been made in the area of edge detection, the empirical estimation of the
gradient techniques proposed in the 70s to 80s are often still used in competition
with more modern techniques. Indeed, the gradient operator used for the edge
detection is formal, but sterile unfortunately.

In the last few years, some authors have shown that local phase informa-
tion of image is more robust than the intensity gradient [3]. Measuring the local
phase in several scales, otherwise the phase congruency, is a way of charac-
terising the differences of intensities in terms of shape of intensity. Local phase
information is estimated practically using quadrature filters kernel [2] and can be
easily extended to higher dimensions using the representation of the monogenic
signal [6].
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The monogenic signal is considered as a natural extension of 2D analytic
signal. In fact, this signal is derived from the generalisation of the Hilbert trans-
form known as the Riesz transform. The appearance of this generalisation has
opened up new perspectives in image processing. We cite in a non-exhaustive
manner, the works on the optical flow of Zang et al. [16], wavelets of Unser
et al. [15] and a recent work on segmentation by Belaid et al. [3].

It is in this double context of edge detection and the Riesz transform that
our contribution lies. We will proceed by recalling the link that connects the
Riesz transform and the gradient and Laplacian operators. Specifically, we will
find the equivalent of the Canny detector and the Laplacian zero crossings in
monogenic field. This view allows us to highlight new perspectives on the edge
detection models.

This article is organised as follows: first, a simple background note is desirable
to understand the proposed approach, and subsequently, we will develop the
details associated with it. Finally, some preliminary comparison results and a
conclusion will be presented.

2 DMonogenic Signal and Riesz Transform

From the Hilbert transform concept, it is possible to introduce the analytic signal
fa(z) corresponding to the original 1D signal f(z). This concept is a widely used
tool in signal processing and it is given by:

fa(e) = f(z) +ifn(z). (1)

Applying this signal to the image processing requires the generalisation of the
Hilbert transform to the multidimensional signals. A direct generalisation thereof
in higher dimensions is not obvious. Indeed, the concept of positive and nega-
tive frequencies is not clear in this case. Several attempts of 1D analytic signal
generalisation can be found in the literature. However, the monogenic signal,
introduced by Felsberg and Sommer [6], is considered as a natural 2D extension
of the analytic signal. It is derived from the generalisation of Hilbert transform
known as the Riesz transform.

It should be noted that this nD generalisation approach is based on the
conservation of the 1D local phase information by adding the information of the
local orientation. Both features are integrated into a larger space. Thus, for a
real signal nD, the extension is represented by an analytic signal of dimension
(n 4+ 1). The combination of the pair of the Riesz transform and the original
signal forms the new generalised nD analytic signal [6]. The Riesz transform in
the spatial domain is given by:

X . 27‘rn7+1
fr(x) = A * f(x) = (hx* f)(x), with 4,41 = @ (2)
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For the particular case of a two-dimensional signal (n = 2) the generalised
Hilbert transform is written as:

h(x) = (ha; hy) (%) = (277(332 —ty2)3/2’ o (x2 _|y_y2)3/2>' (3)

X
- 2mx[3

Once the nD generalisation of the Hilbert transform is defined, it is then easy
to introduce the generalisation of the analytic signal. The new signal fjs(x) :
R™ — R™*! called the monogenic signal, is defined in a space of dimension n+1
with sufficient degrees of freedom to represent the local characteristics of a signal
in nD:

fu(x) = (fr, (%) (4)

The Riesz transform preserves the most interesting properties of the 1D Hilbert
transform.

3 Link Between the Differential Operators and the Riesz
Transform

Felsberg and Sommer [7] and Unster et al. [15] in their very recent works have
shown the existence of a direct link between the Riesz transform fr(x) and the
complez gradient (also called Wirtinger operator):

Fr(x) = — (;x T (fy) (27;' " f(X)>7 (5)

which means that:
v(ﬂx)*%g'x')'. ©)

This formulation allows us to interpret the Riesz transform as the gradient of
a smoothed image. Thus, two models can be derived from this interpretation;
the maximum of fz which is similar to the Canny edge detector, and the zero
crossing of the derivative of fg which is analogous to the Laplacian model.

The first method based on the maximum of the Riesz transform, denoted
Max_TR, consists in applying a convolution between the image f and the band-
stop filter kernel 9 (see Fig.1):

Ifr (x)| =

[V (1s), (7)

with ¢s = hxcs, h = 7#&\ and ¢, a low-pass filter at a given scale s > 0. Thus

the equivalent of function h in the Fourier domain is given by H(u) = —|u|.
This new detector expresses that an image contour is obtained by

filtering the image by the first derivative of a band-stop filter (see

Fig. 1), and then detecting the maximum of the function obtained thereby.
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(a) (b) (c) (d)
Fig. 1. Shape of the used filters. From left to right, the filters ¢s (a), ¥s (b), Vs (¢)
and A, (d) in the Fourier domain at a given scale s > 0.

Based on the same interpretation, the second method denoted PZ_DTR
consists in following the same development as the one used by the Haralick-
Canny detector of the Laplacian zero crossings [4,9].

In order to achieve this, we associate to f an image of the directions' of the
Riesz-transform:

-1
= (8)

A contour point is then defined as the place of the standard maximum of the
Riesz transform in the direction specified by r = (¢1/|q|, ¢2/|q|). Thus, a contour
point satisfies:

I|fr (x)] |fr (x)|
T = 0, and T < 0. (9)
The development of this property leads to
Olfr(x)| _ q'
—_— = Vit =—V 10
o /3 2 91912 +92924
= it 8756 /qi - q% = it qiqi ‘E‘qzqz
1 g V& T @ 1 a
— it (QIm q21> i — I‘tHI‘,
lal \q1y 924/ |d]
where H = <Zu gzz) represents a symmetric matrix similar to the Hessian
1y Y2y

matrix. The symmetry is due to certain properties of the Riesz transform (see [7],

! For some formulations, we prefer the simplified vector notation q which represents
the Riesz transform.
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Eq. (9)). In addition, if we assume that the image f is locally coherent, that
means it has a one-dimensional structure along the direction of r, then the
matrix H is of rank 1, and r'Hr = trace(H) = qiz + gay-

Finally, we obtain the following equation:

|fr (x)|
“or Q= + qoy (11)

= D (frhare)t o

3y(f*hy*cs)
=0.

Equation (11) shows that the points which maximise |fz (x)| are those represent-
ing the zero crossing of the divergence of the Riesz transform div(q). Thus, by
analogy with the Marr detector [10], the zero crossing of the divergence of the
Riesz transform (DTR) provides information about the position of the contour.

Using the convolution product properties, Eq. (11) can be rewritten as fol-

lows:
9? 0?
e (g ) (20 e) )

the symbolic writing of our detector will be given by:
Image contours = Zero crossings (f * Aws). (13)

This shows that a contour image is obtained by filtering the image by the second
derivative of a band-stop filter (see Fig. 1), and then detecting the zeros of the
function thus obtained. Figure 1 shows the shape of ¢, filter and the band-stop
filter kernel v, and its Laplacian used for edge detection.

4 Results and Discussion

To evaluate the performance of the proposed approach, we made comparisons
between manual delineation of Berkeley Segmentation Database [1] and the auto-
matic results. One filter has been chosen for these tests, namely the a-scale-space
filter [5]. This filter was chosen for its parametric nature of o €]0, 1] which makes
it possible to find the classic filters like the Gaussian filters (o« = 1) and the Pois-
son filter (o = 0.5).

The evaluation of these methods is carried out by Precision-Recall curves
which are obtained by varying the detection threshold. For this purpose, three
performance measures were selected, the best score over the image dataset
ODS (Optimal Dataset Scale), the best score per image OIS (Optimal Image
Scale), as well as the area below the precision-recall curve AR (Average Preci-
sion). There is however, an interesting point on the curves defined by the mea-
sure [ = g lrecision-Recall "y the Jocation of the maximum of this measure

Precision+Recall * . X
along the curve defines the optimum threshold and provides a summary score.
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Table 1. Summary of comparison results. Represented on the table, the F measure
(ODS) of the best score over the entire image database, the OIS measure of the best
score by image and the AR measure representing the area below the Precision-Recall
curve.

Detector ODS | OIS | AR
Manual 0.80 | 0.80 |-

Max_TR 0.62 | 0.64|0.54
PZ_DTR 0.57 10.59]0.50
Felzenszwalb and Huttenlocher [8] | 0.61 |0.64 | 0.65
Arbelaez et al. [1] 0.60 |0.64|0.58
Sharon et al. [13] 0.56 | 0.59]0.54
Canny [4] 0.60 |0.630.58
Marr and Hildreth [10] 0.57 [0.59|0.21
Prewitt [11] 0.51 | 0.54 0.38
Sobel and Feldman [14] 0.51 |0.53|0.38
Roberts [12] 0.50 |0.53 | 0.73

Table 1 reports a summary of results obtained on the database of 500 images of
Berkeley. It should be noted that the most interesting measure is the F measure
(ODS), the other ones are involved only to bring more precision.

Table 1 summarises the comparison results between the proposed methods
-Max_TR and PZ_DTR- and the classical models as well as some newer and
more sophisticated models [1,8,13]. An overview of these results is illustrated
in Fig.2. It is easy to see that the Max_TR approach significantly exceeds, in
terms of performance, the remaining methods, irrespective of the selected filter
(Gaussian or Poisson). However, the PZ_DTR approach is less efficient in com-
parison to other more recent approaches. Indeed, the last ones use in practice a
fairly elaborate techniques, that motivate us to improve this detector involving
for example the principle of multiscale.

Experimental tests have shown that the Poisson filter gives better results than
the Gaussian one. Moreover, the best result is obtained for o« = 0.27. Thus, we
can recognise that the Gaussian filter often used is probably not the best choice.
Indeed, since the recent appearance of the « scale-space theory [5], other kernel
filters having the same properties as the Gaussian filter are put forward [2,7].

Before the emergence of the Riesz transform, a combination of different direc-
tions was necessary to describe correctly a structure. Using six directions was a
good compromise for edge detection applications. Using henceforth the mono-
genic signal, the filter is composed of three components which can be seen as
three directions. These three directions: a pair of even component and two odd
components are enough to naturally and correctly sweep the whole area of the
image. Indeed, the odd part of the filter is treated as a natural extension of the
two-dimensional representation of the anisotropic filter. After development, this
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Fig. 2. Edge detection results on the BSDS500 benchmark. From top to bottom: orig-
inal images, corresponding manual segmentations, results obtained by the methods
Max_ TR, PZ_.DTR.

part is reduced to a single component capable of detecting structures of stair
type. Therefore, compared to the case of steerable filters, there is a reduction in
the number of the directions used. All these reasons justify the performance of
suggested approach compared with the gradient based approaches.

It is natural to think tackle the proposed approach with more recent and effi-
cient ones, such as the model called GPB-owt-ucm of [1]. However, such methods
are in a quite developed and sophisticated level, and take into account the tex-
ture, the multi-scale framework and the presence of noise in images. To be at the
same level and get better detection, it is interesting to develop our approach to
multiscale framework and include a component for treating texture. We can note
also that according to the experiments carried out on the Berkeley database, the
measure F depends on the size and type of the selected images sample. Thus,
we plan to experiment our approach by other publicly available datasets.
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5 Conclusion

We proposed in this paper a new edge detection technique that has led to two
methods called Max_TR and PZ_DTR. These are based on the Riesz transform
and are inspired by the model of maximum gradient and Laplacian zero cross-
ings. Indeed, the recent generalisation of the analytic signal, based on the Riesz
transform allowed us to build analogues to the classical models in the monogenic
domain. Using different filters, we tested and compared our approach with con-
ventional models and some newer models. It appears that the method Max_TR
based on the maximum of the Riesz transform is significantly more accurate
and more efficient. Although these results are introductory, they seem to be
promising. Indeed, these methods, simple to implement and easily expandable
to higher dimensions, opens up new perspectives. A multi-scale representation
will significantly increase the detection quality.
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