
25 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

On Type Checking Delta-Oriented Product Lines

Publisher:

Published version:

DOI:10.1007/978-3-319-33693-0_4

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

Springer International Publishing

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1583089 since 2017-10-01T15:52:05Z

This full text was downloaded from iris - AperTO: https://iris.unito.it/

iris - AperTO

University of Turin’s Institutional Research Information System and Open Access Institutional Repository

This is the author's final version of the contribution published as:

Damiani, Ferruccio; Lienhardt, Michael. On Type Checking Delta-Oriented
Product Lines, in: Integrated Formal Methods, Springer International
Publishing, 2016, 978-3-319-33692-3, pp: 47-62.

The publisher's version is available at:
http://link.springer.com/content/pdf/10.1007/978-3-319-33693-0_4

When citing, please refer to the published version.

Link to this full text:
http://hdl.handle.net/2318/1583089

On Type Checking Delta-Oriented Product Lines?

Ferruccio Damiani and Michael Lienhardt

University of Torino, Italy
{ferruccio.damiani, michael.lienhardt}@unito.it

Abstract. A Software Product Line (SPL) is a set of similar programs
generated from a common code base. Delta Oriented Programming (DOP)
is a flexible approach to implement SPLs. Efficiently type checking an
SPL (i.e., checking that all its programs are well-typed) is challenging.
This paper proposes a novel type checking approach for DOP. Intrinsic
complexity of SPL type checking is addressed by providing early detec-
tion of type errors and by reducing type checking to satisfiability of a
propositional formula. The approach is tunable to exploit automatically
checkable DOP guidelines for making an SPL more comprehensible and
type checking more efficient. The approach and guidelines are formalized
by means of a core calculus for DOP of product lines of Java programs.

1 Introduction

A Software Product Line (SPL) is a set of similar programs, called variants,
with a common code base and well documented variability [6]. Delta-Oriented
Programming (DOP) [18, 19, 5] is a flexible transformational approach to im-
plement SPLs. A DOP product line is described by a Feature Model (FM), a
Configuration Knowledge (CK), and an Artifact Base (AB). The FM provides
an abstract description of variants in terms of features: each feature represents
an abstract description of functionality and each variant is identified by a set of
features, called a product. The AB provides language dependent code artifacts
that are used to build the variants: it consists of a base program (that might
be empty or incomplete) and of a set of delta modules, which are containers of
modifications to a program (e.g., for Java programs, a delta module can add,
remove or modify classes and interfaces). The CK connects the code artifacts
in the AB with the features in the FM (thus defining a mapping from products
to variants): it associates to each delta module an activation condition over the
features and specifies an application ordering between delta modules [19]. DOP
supports the automatic generation of variants based on a selection of features:

? The authors of this paper are listed in alphabetical order. This work has been par-
tially supported by: project HyVar (www.hyvar-project.eu), which has received fund-
ing from the European Union’s Horizon 2020 research and innovation programme
under grant agreement No. 644298; by ICT COST Action IC1402 ARVI (www.cost-
arvi.eu); and by Ateneo/CSP D16D15000360005 project RunVar.

once a user selects a product, the corresponding variant is derived by apply-
ing the delta modules with a satisfied activation condition to the base program
according to the application ordering.

DOP is a generalization of Feature-Oriented Programming (FOP) [4, 22, 9]:
the artifact base of a FOP product line consists of a set of feature modules which
are delta modules that correspond one-to-one to features and do not contain
remove operations. Hence FOP product line development always start from base
feature modules corresponding to mandatory features. Instead, DOP allows to
use arbitrary code as a base program. For example, the base program can be
empty and different variants can be used as base delta modules with pairwise
disjoint activation conditions [20]. Therefore, DOP supports both proactive SPL
development (i.e., planning all products/variants in advance) and extractive SPL
development [15] (i.e., starting from existing programs). Moreover (see, e.g., [5]),
the decoupling between features and delta modules allows to counter the optional
feature problem [13], where additional glue code is needed in order to make op-
tional features to cooperate properly. Due to the additional flexibility, in DOP
it is more challenging than in FOP to efficiently type check a product line [5].
Type checking approaches for DOP have already been studied [8, 5], and imple-
mented [1] for the ABS modeling language [12]. Although these approaches do
not require to generate any variant, they involve an explicit iteration over the
set of products, which becomes an issue when the number of products is large
(a product line with n features can have up to 2n products).

In this paper we propose a novel type checking approach for DOP by build-
ing on ideas proposed for FOP [22, 9]. Our approach represents an achievement
over previous type checking approaches for DOP [5, 8] since it provides earlier
detection of some type errors and does not require to iterate over the set of prod-
ucts. Like the techniques in [22, 9], our approach requires to check the validity
of a propositional formula (which is a co-NP-complete problem) and can take
advantages of the many heuristics implemented in SAT solvers (a SAT solver can
be used to check whether a propositional formula is valid by checking whether
its negation is unsatisfiable)—[22, 9] report that the performance of using SAT
solvers to verify the propositional formulas for four non-trivial product lines
was encouraging and that, for the largest product line, applying the approach
was even faster than generating and compiling a single product. Moreover, our
approach is designed to be tunable to take advantage of automatically check-
able DOP guidelines that make a product line more comprehensible and type
checking more efficient. We formalize the approach and guidelines by means of
Imperative Featherweight Delta Java (IF∆J) [5], a core calculus for DOP
product lines where variants are written in an imperative version of Feather-
weight Java (FJ) [11].

Section 2 introduces an example that will be used through the paper and
recalls IF∆J. Section 3 introduces two DOP guidelines (no-useless-operations
and type-uniformity). Section 4 gives a version of the approach tuned to exploit
type-uniformity. Section 5 outlines a version that exploits no guidelines. Section 6
proposes other guidelines. Section 7 discusses related work. Section 8 concludes

2

the paper by outlining planned future work. Proofs of the main results and a
prototypical implementation are available in [2] (currently only the version of
the approach in Section 4 is supported).

2 Model

In this section we introduce the running example of this paper and briefly recall
the IF∆J [5] core calculus. A product line L consist of a feature model, a con-
figuration knowledge, and an artifact base. In IF∆J there is no concrete syntax
for the feature model and the configuration knowledge. We use the following
notations: L.features is the set of features; L.products specifies the products
(i.e., a subset of the power set 2L.features); L.activation maps each delta mod-
ule name d to its activation condition; and L.order (or <L, for short) is the
application ordering between the delta modules. Both the set of valid products
and the activation condition of the delta modules are expressed as propositional
logic formulas Φ where propositional variables are feature names ϕ (see [3] for a
discussion on other possible representations):

Φ ::= true | ϕ | Φ⇒ Φ | ¬Φ | Φ ∧ Φ | Φ ∨ Φ.

As usual, we say that a propositional formula Φ is valid if it is true for all values
of its propositional variables. To avoid over-specification, the order <L can be
partial. We assume unambiguity of the product line, i.e., for each product, any
total ordering of the activated delta modules that respects <L generates the
same variant. We refer to [16, 5] for a discussion on an effective means to ensure
unambiguity.

The running example of this paper is a version of the Expression Product
Line (EPL) benchmark [17] (see also [5]) defined by the following grammar
which describes a language of numerical expressions:

Exp ::= Lit | Add Lit ::= <non−negative−integers> Add ::= Exp ”+” Exp

Each variant of the EPL contains a class Exp that represents an expression
equipped with a subset of the following operations: toInt, which returns the
value of the expression as an integer (an object of class Int); toString, which
returns the expression as a String; and eval, which in some variants returns the
value of the expression as a Lit (the subclass of Exp representing literals) and
in the other variants returns it as an Int. The EPL has 6 products, described by
two feature sets: one concerned with data—fLit, fAdd—and one concerned with
operations —fToInt, fToString, fEval1, fEval2. Features fLit and fToInt are manda-
tory. The other features are optional with the two following constraints: exactly
one between fEval1 and fEval2 must be selected; and fEval1 requires fToString.
The EPL is illustrated in Figure 1. The partial order L.order is expressed as a
total order on a partition of the set of delta modules. To make the example more
readable, in the artifact base we use the Java syntax for operations on strings
and sequential composition—encoding in IF∆J syntax is straightforward (see [5]
for examples). Note that, in the method Test.test (in the base program), the

3

EPL.features = {fLit, fAdd, fToInt, fToString, fEval1, fEval2}
EPL.products = fLit ∧ fToInt ∧ (fEval1 ⇒ fToString) ∧ (fEval1 ∨ fEval2) ∧ ¬(fEval1 ∧ fEval2)

EPL.order = {dAdd} <L {d notTostr, dAdd notTostr} <L {dEval1, dEval2}
EPL.activation = dAdd 7→ fAdd,

d notTostr 7→ (¬fToString), dAdd notTostr 7→ (fAdd ∧ ¬fToString),
dEval1 7→ fEval1, dEval2 7→ fEval1

// Base program
class Exp extends Object { // To be used only as a type (i.e., not to be instantiated)
Int toInt() { return new Int(); }
String toString() { return ””; }

}
class Lit extends Exp {
Int val;
Lit setLit(Int x) { this.val=x; return this; }
Int toInt() { return this.val; }
String toString() { return this.val.toString(); }

}
class Test extends Object {
String test(Exp x) { return x.eval().toString(); }

}
// Delta Modules
delta dAdd {

adds class Add extends Exp {
Exp a; Exp b;
Int toInt() { return this.a.toInt().add(this.b.toInt()); }
String toString() { return this.a.toString() + ”+” + this.b.toString(); }

}
}
delta d notTostr {

modifies class Exp { removes toString; }
modifies class Lit { removes toString; }

}
delta dAdd notTostr { modifies class Add { removes toString; } }
delta dEval1 { modifies class Exp { adds Lit eval() {return (new Lit()).setLit(this.toInt());} } }
delta dEval2 { modifies class Exp { adds Int eval() {return this.toInt();} } }

Fig. 1. Expression Product Line: FM (top), CK (middle), AB (bottom)

expression x.eval() has type Lit if feature fEval1 is selected (for this reason
feature fEval1 requires feature fToString) and type Int otherwise.

In the following, we first introduce the IFJ calculus, which is an imperative
version of FJ [11], and then we introduce the constructs for variability on top of
it. The abstract syntax of IFJ is presented in Figure 2 (top). Following [11], we
use the overline notation for (possibly empty) sequences of elements: for instance
e stands for a sequence of expressions. Variables x include the special variable
this (implicitly bound in any method declaration MD), which may not be used
as the name of a method’s formal parameter. A program P is a sequence of
class declarations CD. A class declaration class C extends C′ { AD } comprises
the name C of the class, the name C′ of the superclass (which must always be
specified, even if it is the built-in class Object), and a list of field and method
declarations AD. All fields and methods are public, there is no field shadowing,
there is no method overloading, and each class is assumed to have an implicit
constructor that initializes all fields to null. The subtyping relation <: on classes,
which is the reflexive and transitive closure of the immediate subclass relation

4

P ::= CD Program

CD ::= class C extends C { AD } Class
AD ::= FD | MD Attribute (Field or Method)
FD ::= C f Field
MD ::= C m(C x) {return e; } Method
e ::= x | e.f | e.m(e) | new C() | (C)e | e.f = e | null Expression

L ::= FM CK AB Product Line

AB ::= P ∆ Artifact Base

∆ ::= delta d { CO } Delta Module

CO ::= adds CD | removes C | modifies C [extends C′] { AO } Class Operation
AO ::= adds AD | removes a | modifies MD Attribute Operation

Fig. 2. Syntax of IFJ (top) and of IF∆J (bottom)

(given by the extends clauses in class declarations), is assumed to be acyclic.
Type system, operational semantics, and type soundness for IFJ are given in [5].

The abstract syntax of the language IF∆J is given in Figure 2 (bottom). An
IF∆J program L comprises: a feature model FM, a configuration knowledge CK,
and an artifact base AB. Recall that we do not consider a concrete syntax for
FM and CK and use the notations L.features, L.products, L.activation, and
L.order (<L for short) introduced above. The artifact base comprises a possibly
empty or incomplete IFJ program P, and a set of delta modules ∆.

A delta module declaration ∆ comprises the name d of the delta module
and class operations CO representing the transformations performed when the
delta module is applied to an IFJ program. A class operation can add, remove, or
modify a class. A class can be modified by (possibly) changing its super class and
performing attribute operations AO on its body. An attribute name a is either
a field name f or a method name m. An attribute operation can add or remove
fields and methods, and modify the implementation of a method by replacing its
body. The new body may call the special method original, which is implicitly
bound to the previous implementation of the method and may not be used as the
name of a method. The class operations in a delta module must act on distinct
classes, and the attribute operations in a class operation must act on distinct
attributes. The operational semantics of IF∆J variant generation is given in [5].

We conclude this section with some notations and definitions. First, in the
rest of the document, we will use the term module to refer to the base program
or a delta module: we denote with p the name of the base program, and extend
L.activation by convention, stating that L.activation(p) = true. Second,
the projection of a product line on a subset S of its products is the product line
obtained by restricting the L.products formula to describe only the products in
S and by ignoring delta modules that are never activated. Third, the following
definitions introduce auxiliary structures and getters that are useful to type
check an IF∆J product line.

5

Definition 1 (FCST). A Class Signature (CS) is a class declaration deprived
of the bodies of its methods, it comprises the name of the class and of its super-
class, and a mapping from attribute names to types. A Family Class Signature
(FCS) is a more liberal version of class signature that may extend multiple classes
and associate more than one type to each attribute name. A Family Class Sig-
nature table (FCST) is a mapping that associates to each class name C an FCS
for C. The subtyping relation <: described by an FCST can be cyclic. A Class
Signature Table (CST) is a FCST that contains only class signatures and has
an acyclic subtyping relation.

To simplify the notation, except when stated otherwise, we always assume in
the following a fixed product line L = FM CK AB. The FCST of L, denoted
by L.FCST, contains for each class C declared in AB all superclasses of C and all
types of all attributes of C. Note that the FCST of L is defined only in terms of
AB and it can be computed by a straightforward inspection of it. The FCST of
a set of IFJ programs (or of a subset of AB) is defined similarly.

Definition 2 (Getters on AB). add(C) is the set of modules that add the
class C; remove(C) is the set of modules that remove the class C; modifyWEC(C)
is the set of modules that modify the class C without changing its extends clause;
modifyAEC(C) is the set of modules that modify the class C also by changing its
extends clause; modify(C) is modifyWEC(C)∪modifyAEC(C); add(C.a) is the set of
modules that add the attribute C.a; remove(C.a) is the set of modules that remove
the attribute C.a; modify(C.a) is the set of modules that modify the attribute
C.a; replace(C.m) is the set of modules that modify the method C.m without using
calls to original (i.e., replace its body); and wrap(C.m) is the set of modules
that modify the method C.m by also using calls to original (i.e., wrap its body).

Definition 3 (Getter on FM and CK). Let Φ be extended to include module
names d as propositional variables. The formula L.FMandCK , L.products ∧∧

d(d ⇔ L.activation(d)) specifies the products and binds each variable d to the
activation condition of module d (i.e., it specifies which modules are activated
for each product).1

3 Two Delta-Oriented Programming Guidelines

The first guideline is to avoid useless operations, i.e., declarations in P and adds
or modifies in ∆ that introduce code that is never present in any of the variants.

G1 Ensure that the product line does not contain useless operations.

For instance, in the product line obtained by projecting the EPL on the the
products described by ¬fToString, the declarations of the methods with name
toString in the base program and in the adds class operation in the delta module
dAdd are useless. The notion of useless operation is formalized as follows (thus
making Guideline G1 automatically checkable).

1 The last occurrence of d in L.FMandCK is not used as a variable: it is used as argument
of the map L.activation to obtain the activation condition of module d.

6

Definition 4 (Useless operation and module). The declaration, addition
or modification of an attribute C.a in a module d is useless iff the formula
(L.FMandCK∧d)⇒

∨
d′ d

′ (with d′ ∈ remove(C.a)∪remove(C)∪replace(C.a) and (d <L

d′)) is valid. An extends clause introduced in a class C by a module d is useless iff
the formula (L.FMandCK∧d)⇒

∨
d′ d

′ (with d′ ∈ remove(C)∪modifyAEC(C) and (d <L

d′)) is valid. A module d is useless iff L.products ⇒ ¬L.activation(d) is valid.

The second guideline is to have consistent declarations over the whole SPL
(the FOP case-studies presented in [22] adhere to this guideline). For IF∆J
(since IFJ has no method overloading and field shadowing), this means that two
declarations of the same attribute (of the same class) in two different modules
must have the same type.2 We call this property type-uniformity. It can be
straightforwardly formalized by exploiting the family class signature table of the
product line.

Definition 5 (Type-uniformity). A FCST FCST is type-uniform iff:

– ∀C ∈ dom(FCST), ∀a ∈ dom(FCST(C)) the set FCST(C.a) is a singleton; and
– ∀C1, C2, C3 ∈ dom(FCST) such that C1 <: C2 and C1 <: C3, we have:

∀a ∈ dom(FCST(C2)) ∩ dom(FCST(C3)), FCST(C2.a) = FCST(C3.a)

An IF∆J product line (or a subset of its artifact base, or a set of IFJ programs)
is type-uniform iff its FCST is type-uniform.

Our second guideline is thus stated as follows (and it can automatically be
checked by a straightforward inspection of the FCST).

G2 Ensure that the product line is type-uniform.

The EPL is not type-uniform, because of the method eval of class Exp, that
is added with two different types by delta modules dEval1 and dEval2, respec-
tively. Instead, both its two projections respectively described by the mutually
exclusive features fEval1 and fEval2 are type-uniform.

We say that an IF∆J product line is variant-type-uniform to mean that: (i)
its variants can be generated; and (ii) the FCST of the set of its variants is
type-uniform. The following proposition illustrate how type-uniformity relates
to variant-type-uniformity.

Proposition 1. Let L be an IF∆J product line such that its variants can be
generated. If L is type-uniform, then it is variant-type-uniform. If L satisfies
Guideline G1 and is variant-type-uniform, then it is type-uniform.

4 Type Checking for Type-Uniform IF∆J

This section presents a version of the type checking approach tuned to ex-
ploit Guideline G2 and states its correctness and completeness. Type-uniformity
makes type checking more efficient. The approach is modularized in three inde-
pendent parts: partial typing, applicability, and dependency. All the parts rely
on the FCST of the product line (see Definition 1).

2 Note that, since the type system of IFJ is nominal, a class may have different sets
of attributes in different variants.

7

Product Line Partial Typing Partial typing checks that all fields, methods
and classes in AB type-check with respect to the product line FCST (i.e., with
respect to declarations made in AB). Partial typing does not use any knowledge
about valid feature combinations (it does not use FM and CK), so it does not
guarantee that variants are well-typed, as delta modules may be activated or not.
However, it guarantees that variants that have their inner dependencies satisfied
(i.e., all used classes, methods and fields are declared) are well-typed.

The IF∆J partial-type-system is a straightforward extension of the (stan-
dard) IFJ type system [5] that: (i) includes rules for the new syntactic constructs
of IF∆J; (ii) checks well-typedness with respect to the product line FCST (in-
stead of the program CST); and (iii) allows to introduce a same class or attribute
in different modules of AB (e.g., a class of name C may be added by different
delta modules).

The projection of the EPL described by feature fEval1 is type-uniform. Its
artifact base (which is obtained from the EPL artifact base in Fig. 1 by dropping
the delta module dEval2) is accepted by partial typing, even if the method Exp.eval

might not be available in some variant (in principle the delta module dEval1

might not be selected). This is because the way the method Exp.eval is used in
the method Test.test in the base program is correct with respect to its definition
in the delta module dEval1 (it takes no parameters and returns a Lit object).

Product Line Applicability Applicability ensures that variants can actually
be generated (variant generation fails if, e.g., a delta module that adds a class
C is applied to an intermediate variant that already contains a class named C).
It is formalized by a constraint ensuring that, during variant generation, each
delta operation is applied to an intermediate variant on which that operation is
defined. For instance, for adding a class C, this class must not be present in the
intermediate variant (either it never was added, or it was removed at some point).
The applicability constraint comprises three validation parts: element addition
(either a class or an attribute), element removal, and element modification.

In the following we use ρ to denote either a class name C or a fully qualified
attribute name C.a. The constraint for checking that an element ρ can be added
is as follows:

appADD(ρ) ,
∧
d6=d′

d ∧ d
′ ⇒

∨
d′′

d
′′ with

{
d, d′ ∈ add(ρ), d′′ ∈ remove(ρ)
and d <L d′′ <L d′

It ensures that all adds operations are performed on a partial variant that does
not contain the added element: basically, it requires that if two delta modules
d and d′ add the same element, then there must be another delta module d′′ in
between that removes it.

The constraint for removal of an element ρ is slightly more complex:

appRM(ρ) ,
∧
d

d⇒ (
∨
d1

d1∧
∧
d′

(d′ ⇒
∨
d2

d2)) with

{
d, d′ ∈ remove(ρ), d1, d2 ∈ add(ρ)
d1 <L d <L d2 <L d′

In comprises two parts: the first part (d ⇒
∨

d1
) ensures that the element ρ is

added to the partial variant (by some d1) before it is removed (by d); the second

8

part ensures that if two delta modules d and d′ remove ρ, then there is another
delta module d2 in between that adds it.

The constraint for modification of an element ρ simply ensures that ρ is
present for the modification:

appMOD(ρ) ,
∧
d

d⇒ (
∨
d′

d
′ ∧
∧
d′′

¬d′′) with

{
d ∈ modify(ρ), d′′ ∈ remove(ρ)
d′ ∈ add(ρ), d′ <L d′′ <L d

Basically, it checks that there is a delta module d′ that adds the element before
it is modified by d, and that there is no delta module d′′ in between that removes
it.

The formula app(L) ,
∧
ρ∈add(L) appADD(ρ)∧appRM(ρ)∧appMOD(ρ) combines the

constraints described above, and the formula ac(L) , L.FMandCK ⇒ app(L) asso-
ciates to each product of L its applicability constraints. Applicability-consistency
(i.e., the fact that variants of L can be generated) is therefore formalized as fol-
lows.

Definition 6 (Applicability-consistency). A product line L is applicability-
consistent iff the formula ac(L) is valid.

Product Line Dependency Dependency ensures that no generated variant
has a missing dependency, which can be straightforwardly expressed by means
of constraints on attributes and classes. For instance, the dependencies induced
by “class C extends class C′” could be encoded with the constraint decl(C) ⇒
(decl(C′) ∧ ¬sub(C′, C)), as the declaration of C requires that the declaration of
C′ is present and that C′ is not a subtype of C (to ensure that the inheritance
graph has no loops). In DOP, since each declaration is made in a module that
can be activated or not, dependency constraints must be lifted at the module
level. For instance, if the fact that C extends C′ is declared in the module d,
then the previous constraint becomes: d ⇒ ¬rm(d, C) ⇒ ¬modifyEC(d, C) ⇒
(decl(C′)∧¬sub(C′, C)), basically stating that if the module d is activated and no
other module that removes C or changes its extends clause is activated afterward,
then the class C′ must be present in the generated variant and must not be a
subtype of C.

The product line dependency constraint is generated by exploiting the rules
in Figures 3 and 4, which infer a dependency constraint for each expression and
declaration, respectively. It is based on the following atomic constraints: rm(d, C)
(resp. rm(d, C.a)) ensures that the class C (resp. attribute C.a) added by the delta
module d will be removed afterward; modifyEC(d, C) ensures that the class C

added or modified by the delta module d will have its extends clause modified
by another delta module afterward; replace(d, C.m) ensures that the method
C.m added or modified by the delta module d will be replaced by another delta
module afterward; sub(T, C′) ensures that T (either a class or null) is a subtype
of C′; decl(C) (resp. decl(C.a)) ensures that the class C (resp. the attribute a)
is present in the generated variant (resp. is an attribute of the class C, possibly
through inheritance).

Dependency generation rules for expressions perform a type analysis to know
what is the type of each expression, which is used to compute the appropriate

9

E:Var

Γ (x) = C

Γ ` x : C | true

E:Field

Γ ` e : C | Φ FCST(C.f) = C
′

Γ ` e.f : C
′ | Φ ∧ decl(C.f)

E:Null

Γ ` null : ⊥ | true

E:Meth

Γ ` e : C | Φ FCST(C.m) = C
′
(C1, . . . , Cn)

Γ ` ei : Ti | Φi Φ
′
i = sub(Ti, Ci)

Γ ` e.m(e1, . . . , en) : C
′ |

∧
i

(Φi ∧ Φ′
i) ∧ Φ ∧ decl(C.m)

D:New

Γ ` new C() : C | decl(C)

E:Cast

Γ ` e : T | Φ
Γ ` (C)e : C | Φ ∧ (sub(T, C) ∨ sub(C, T))

E:Assign

Γ ` e.f : C | Φ1 Γ ` e
′
: T | Φ2

Γ ` e.f = e
′
: C | Φ1 ∧ Φ2 ∧ sub(T, C)

Fig. 3. Dependency Generation for Expressions

D:field

d, C ` C
′
f : ¬rm(d, C.f) ⇒ decl(C

′
)

D:Meth

this : C; xi : Ci ` e : C
′ | Φ

d, C ` C0 m(C1 x1, . . . , Cn xn) {return e}
: ¬(rm(d, C.m) ∨ replace(d, C.m)) ⇒ (

∧
i
decl(Ci) ∧ Φ ∧ sub(C

′
, C0))

D:Class

d, C ` ADi : Φi

d ` class C extends C
′ {AD1 . . .FDn}

: ¬rm(d, C) ⇒
∧
i

Φi ∧ (¬modifyEC(d, C) ⇒ decl(C
′
) ∧ ¬sub(C′, C))

D:ModMD

d, C ` MD : Φ

d, C ` modifies MD : Φ

D:AddAtt

d, C ` AD : Φ

d, C ` adds AD : Φ

D:RmAtt

d, C ` removes a : true
D:RmClass

d ` removes C : true

D:AddClass

d ` CD : Φ

d ` adds CD : Φ

D:ModClass1

d, C ` AOi : Φi

d ` modifies C {AO1 . . .AOn}
: ¬rm(d, C) ⇒

∧
i
Φi

D:ModClass2

d, C ` AOi : Φi

d ` modifies C extends C
′{AO1 . . .AOn}

: ¬rm(d, C) ⇒
∧

i
Φi ∧ (¬modifyEC(d, C) ⇒ decl(C

′
) ∧ ¬sub(C′, C))

D:Delta

d ` COi : Φi

` delta d {CO1 . . .COn} : d ⇒
∧
i

Φi

D:P

true ` CDi : Φi ` ∆j : Φ
′
j

` Φ ∆1 . . . ∆n CD1 . . .CDm :
∧
i

Φi ∧
∧
j

Φ
′
j

Fig. 4. Dependency Generation for Declarations

dependency. They have judgments of the form Γ ` e : T | Φ, where: Γ is an
environment giving the type of each variable; e is the parsed expression; T is its
type; and Φ is the generated dependency constraint. The rules for expressions are
quite direct: accessing a variable (rule (E:Var)) does not raise any dependency,
while accessing a field requires for this field to be accessible (rule (E:Field));
method calls (rule (E:Meth)) require that the method is accessible and that
the parameters have a type consistent with the method’s declaration; object
creation requires for the class of the object to be defined (rule (E:New)); and null
does not raise any dependency (rule (E:Null)), while casting and assignment
generate constraints ensuring that the right inheritance relation holds (rules
(E:Cast) and (E:Assign)).

Dependency generation rules for declarations have judgments of the form
Ω ` A : Φ where Ω can either be empty, d (meaning that we are parsing the
content of the module d), or d, C (meaning that we are parsing the content of
the class C inside d); A is the parsed declaration (e.g., an attribute, a class

10

operation); and Φ is the generated constraint. Rules (D:Field) for field and
(D:Meth) for method declarations are quite direct: if the attribute is not re-
moved afterward, the dependencies it generates must be validated. The rule
(D:Class) for class declaration is similar (if the class is not removed, its in-
ner dependencies must be validated), with an additional clause for the extends
clauses (as previously discussed). Rules (D:ModMD) for modifying methods
and (D:AddAtt) and (D:AddClass) for adding attributes and classes simply
forward the constraints generated from the inner declaration, while removing an
attribute or a class (rules (D:RmAtt) and (D:RmClass)) does not generate
any dependency. The rules (D:AddClass1) and (D:AddClass2) for modify-
ing a class are simple variations on the rule for class declaration. Finally, the
dependencies of a delta module body are activated only if the delta module is
activated (rule (D:Delta)), and the dependencies of a whole program is the
conjunction of the dependencies of all its parts (rule (D:P)). The resulting con-
straint thus has the form

∧
i di ⇒ Φi, giving for all module di its dependencies

Φi. Let then dep(L) be the constraint generated for the product line L. The
formula dc(L) , L.FMandCK ⇒ dep(L) associates to each product of L its de-
pendency constraints. Dependency-consistency (i.e., variants of L have all their
dependencies fulfilled) is therefore formalized as follows.

Definition 7 (Dependency-consistency). A product line L is dependency-
consistent iff the formula dc(L) is valid.

Correctness and Completeness of the Approach The following theorem
states that, if the product line follows Guideline G2, then the presented IF∆J
product line type checking approach is correct with respect to generating variants
and checking them using the IFJ type system. The approach is complete (i.e.,
if the check performed by the approach fails then at least one variant is not a
well-typed IFJ program) if also Guideline G1 is followed.

Theorem 1. Let L be a type-uniform product line. Consider the properties:

i. L is well partially-typed, applicability- and dependency-consistent.
ii. Variants of L can be generated and are well-typed IFJ programs.

Then: (i) implies (ii); and if L has no useless operations then (ii) implies (i).

5 Type Checking for IF∆J without Guidelines

In this section we outline how the type checking approach presented in Sec-
tion 4 can be tuned to non type-uniform product lines (i.e., not to exploit any
guidelines). This modification is quite straightforward, although it involves many
technical details. Partial typing must be adapted since the product line FCST
maps attribute names to sets of types with possibly more than one element, and
expressions can have more than one type. E.g., a method call expression e.m(e′)
can use any declaration of the method C.m (considering that e is typed C) whose
type accepts a combination of types of the call’s arguments. So partial typing
may carry a combinatorial explosion.

11

Applicability does not need any modification to analyze non-uniform pro-
grams. This is due to the fact that the applicability criteria focuses on the
interplay between delta operations and do not consider attribute types.

Dependency is the part that changes more: it now has to be type-aware, and
thus subsumes partial typing. We illustrate it on the rule that generates the
dependency for field usage (second rule in Fig. 3). This rule must be extended
in two ways to manage non-uniform programs: (i) e can have more than one
type; (ii) the field type lookup FCST(C.f) can return different possible types for
C.f, depending on which modules are activated. Consequently, the dependency
generation judgment for expressions now has the form Γ ` e : [Φi 7→ Ti]i∈I
where Ti are the possible types of e, and Φi is the condition (i.e. which module
must or must not be activated) for e to have the type Ti in the final product.

Γ ` e : [Φi 7→ Ci]i ∪ [Φi′ 7→ ⊥]i′ FCST(Ci.f) = [Φi,j 7→ Ci,j]j

Γ ` e.f : [Φi ∧ Φi,j 7→ Ci,j]i,j

Hence, the rule becomes
as displayed on the right,
where Φi,j is the formula that enforces that the field f accessible from the class
Ci has the type Ci,j in the final product.

Correctness and completeness are stated as in Theorem 1 by dropping the
assumption that the product line is type-uniform.

6 Three other Guidelines

Our type-checking approach is modularized in three parts: i) partial typing per-
forms a preliminary type analysis that can be exploited by an IDE for prompt
notification of type-errors and auto-completing code; ii) applicability ensures
that variants can be generated; and iii) dependency completes the analysis done
by the partial typing. The approach is tunable to exploit DOP guidelines that en-
force structural regularities in product line implementation. In Section 4 we have
presented a version tuned to exploit type-uniformity. In this section we briefly
discuss three other automatically checkable guidelines (other useful guidelines
could be devised).

First, whenever it is possible to enforce the following guideline (satisfied by
the EPL), the dependency analysis can be simplified, as it is no longer needed to
check the absence of inheritance loop in the generated variant (cf. dependency
generation for class declaration and modification in Figure 4).

G3 Ensure that the product line FCST subtyping relation is acyclic.

If a product line cannot be made variant-type-uniform, then guideline G2
cannot be enforced (see Proposition 1), and understanding the structure of the
SPL may become an issue. The following guideline (satisfied by the EPL) aims at
helping the understanding of an SPL implementation by decoupling the sources
of non type-uniformity.

G4 Ensure that, for all distinct modules d1 and d2, if the set comprising d1
and d2 is not type-uniform then their activation conditions are mutually
exclusive.

12

Consider for instance a module d that declares an attribute C.a with a type t.
Then, if the SPL follows G3, we are sure that each variant using d in its con-
struction will have C.a typed t when it contains this attribute.

We introduce our final guideline with the following consideration: imple-
menting or modifying a product line involves editions of the feature model, the
configuration knowledge and the artifact base that may affect only a subset of
the products. For example, adding, removing or modifying a delta module d and
its activation condition will affect only the products that activate d. Therefore,
only the projection of the product line on the affected products needs to be
re-analyzed. If such a projection is type-uniform, then the more efficient type
checking technique of Section 4 can be used (even if the whole product line is
not type-uniform). The following guideline naturally arises.

G5 i) Ensure that the set of products is partitioned in such a way that: each
part S is type-uniform (i.e., the projection of the SPL on S is type uniform),
and the union of any two distinct parts is not type-uniform.
ii) If the number of parts of such a partition is “too big”, then merge some
of them to obtain a “small enough” partition where only one part is not
type-uniform.

The goal of this guideline is to allow to use as much as possible the version of
the approach presented in Section 4. For the EPL the partition that satisfies
Guideline G5.i is unique: the two products with feature fEval1 and the four
products with feature fEval2. However, in general, such a partition may be not
unique and tool support for identifying a partition that satisfies G5.i and further
conditions (e.g., having a minimal number of parts) or G5.ii and other conditions
(e.g., the number of products in the non type-uniform part is as small as possible)
would be valuable.

7 Related Work

Product line analysis approaches can be classified into three main categories [23]:
Product-based analyses operate only on generated variants (or models of vari-
ants); Family-based analyses operate only on the AB by exploiting the FM and
the CK to obtain results about all variants; Feature-based analyses operate on
the building blocks of the different variants (feature modules in FOP and delta
modules in DOP) in isolation (without using the FM and the CK) to derive re-
sults on all variants. We refer to [23] for a survey on product line type checking.
Here we discuss previous type checking approaches for DOP [5, 8] and the two
approaches for FOP that are closets to our proposal [9, 22].

The type checking approach for DOP in [5] comprises: a feature-based analy-
sis that uses a constraint-based type system for IFJ to infer a type abstraction for
each delta module; and a product-based step that uses these type abstractions
to generate, for each product of the SPL, a type abstraction (of the associated
variant) that is checked to establish whether the associated variant type checks.
The approach of [5] is enhanced in [8] by introducing a family-based step that

13

builds a product family generation tree which is then traversed in order to per-
form optimized generation and check of type abstractions of all variants. The
approach proposed in this paper, which is feature-family-based, represents an
achievement over [5, 8] since it does not require to iterate over the set of prod-
ucts (cf. Section 1) and supports earlier detection of errors via partial typing.

The paper [22] informally illustrates the implementation of a family-based ap-
proach for the AHEAD system [4]. The approach comprises: i) a family-feature-
based step that computes for each class a stub (all stubs can be understood as
a type-uniform FCST for the product line) and compiles each feature module
in the context of all stubs (thus performing checks corresponding to our type-
uniformity and partial-typing); and ii) a family-based step that infers a set of
constraints that are combined with the FM to generate a formula (correspond-
ing to our type-uniform applicability and dependency) whose satisfiability should
imply that all variants successfully compile.

The paper [9] formalizes a feature-family-based approach for the Lightweight
Feature Java (LFJ) calculus, which models FOP for the Lightweight Java
(LJ) [21] calculus. The approach comprises: i) a feature-based step that uses a
constraint-based type system for LFJ to analyze each feature module in isolation
and infer a set of constraints for each feature module; and ii) a family-based step
where the FM and the previously inferred constraints are used to generate a for-
mula whose satisfiability implies that all variants type check. The applicability
and dependency analyses presented in Section 5 provide an extension to DOP of
these two steps. Moreover, our approach provides partial typing for early error
detection and is tunable to exploit different programming guidelines.

8 Conclusions and Future Work

We have proposed a modular and tunable approach for type checking DOP
product lines. A prototypical implementation is available [2] (currently only the
version of the approach exploiting type-uniformity is supported).

In future work we plan to: implement our approach for both DeltaJ 1.5 [14] (a
prototypical implementation of DOP that supports full Java 1.5) and ABS [12]
(this would allow experimental comparison with the approaches of [5, 8], which
have been implemented for ABS [1]); to develop case studies to evaluate the ef-
fectiveness of the approach and of the proposed guidelines; to investigate further
DOP guidelines; and to develop tool support to allow the programmer to choose
the guidelines to be automatically enforced. We also plan to investigate whether
the proposed DOP guidelines (or other guidelines) could be useful for other kind
of product line analyses. In particular, we would like to consider formal verifica-
tion (proof systems for the verification of DOP product lines of Java programs
have been recently proposed [10, 7]).

Acknowledgements We are grateful to Don Batory for clarifications about
previous work on type checking FOP, and to Ina Schaefer and Thomas Thüm for
discussions about how to classify SPL type checking approaches. We also thank
the iFM 2016 anonymous reviewers for insightful comments and suggestions.

14

References

1. https://github.com/abstools/abstools/tree/master/frontend/src/abs/frontend/delta.
2. https://github.com/gzoumix/IFDJTS.
3. D. Batory. Feature Models, Grammars, and Propositional Formulas. In Proc. of

SPLC 2005, volume 3714 of LNCS, pages 7–20. Springer, 2005.
4. D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling step-wise refinement. In

Proc. of ICSE 2003, pages 187–197. IEEE, 2003.
5. L. Bettini, F. Damiani, and I. Schaefer. Compositional type checking of delta-

oriented software product lines. Acta Informatica, 50(2):77–122, 2013.
6. P. Clements and L. Northrop. Software Product Lines: Practices and Patterns.

Addison Wesley Longman, 2001.
7. F. Damiani, O. Owe, J. Dovland, I. Schaefer, E. B. Johnsen, and I. C. Yu. A

transformational proof system for delta-oriented programming. In Proc. of SPLC
2012 - Volume 2, pages 53–60. ACM, 2012.

8. F. Damiani and I. Schaefer. Family-based analysis of type safety for delta-oriented
software product lines. In Proc. of ISoLA, volume 7609 of LNCS. Springer, 2012.

9. B. Delaware, W. R. Cook, and D. Batory. Fitting the pieces together: A machine-
checked model of safe composition. In Proc. of ESEC/FSE 2009. ACM, 2009.

10. R. Hähnle and I. Schaefer. A Liskov Principle for Delta-Oriented Programming.
In Proc. of ISoLA, volume 7609 of LNCS, pages 32–46. Springer, 2012.

11. A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A minimal core calculus
for Java and GJ. ACM TOPLAS, 23(3):396–450, 2001.

12. E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, and M. Steffen. ABS: A core
language for abstract behavioral specification. In Formal Methods for Components
and Objects, volume 6957 of LNCS, pages 142–164. Springer, 2012.

13. C. Kästner, S. Apel, S. S. ur Rahman, M. Rosenmüller, D. Batory, and G. Saake.
On the impact of the optional feature problem: analysis and case studies. In Proc.
of SPLC 2009, pages 181–190, 2009.

14. J. Koscielny, S. Holthusen, I. Schaefer, S. Schulze, L. Bettini, and F. Damiani.
Deltaj 1.5: Delta-oriented programming for java 1.5. In Proc. of PPPJ 2014, pages
63–74. ACM, 2014.

15. C. Krueger. Eliminating the Adoption Barrier. IEEE Software, 19(4):29–31, 2002.
16. M. Lienhardt and D. Clarke. Conflict detection in delta-oriented programming. In

ISoLA, pages 178–192, 2012.
17. R. E. Lopez-Herrejon, D. S. Batory, and W. R. Cook. Evaluating Support for

Features in Advanced Modularization Technologies. In Proc. of ECOOP 2005,
volume 3586 of LNCS, pages 169–194. Springer, 2005.

18. I. Schaefer. Proc. of VaMoS ’10. In Intl. Workshop on Variability Modelling of
Software-intensive Systems, 2010.

19. I. Schaefer, L. Bettini, V. Bono, F. Damiani, and N. Tanzarella. Delta-oriented
Programming of Software Product Lines. In Proc. of SPLC 2010, volume 6287 of
LNCS, pages 77–91. Springer, 2010.

20. I. Schaefer and F. Damiani. Pure Delta-oriented Programming. In Proc. of FOSD
2010, pages 49–56. ACM, 2010.

21. R. Strnǐsa, P. Sewell, and M. Parkinson. The Java module system: core design and
semantic definition. In Proc. of OOPSLA 2007, pages 499–514. ACM, 2007.

22. S. Thaker, D. Batory, D. Kitchin, and W. Cook. Safe composition of product lines.
In Proc. of GPCE ’07, pages 95–104. ACM, 2007.

23. T. Thüm, S. Apel, C. Kästner, I. Schaefer, and G. Saake. A classification and
survey of analysis strategies for software product lines. ACM Comput. Surv., 2014.

15

