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Introduction

Background: Why GENI?

GENI represents the third wave, following the Grid and the Cloud, of the inte-
gration of the network into the computational infrastructure. The first wave, the
Grid, focused on the application of distributed computing resources, typically
supercomputer sites, towards the solution of a single problem. Essentially, it was
an extension of batch processing to multiple sites, to more efficiently use large
computing resources. It emerged in the late 1990s and was rapidly extended from
scientific to business processing. The Cloud is of course quite familiar, and it refers
to two dominant themes. The first is the per-hour rental of virtual machines or other
computing resources; the second is the transfer of traditional desktop and enterprise
applications to a server accessed over the network, with the Google office suite being
perhaps the most prominent example. Of course, new applications are enabled by
the Cloud that were unimaginable for the disconnected desktop. Media sharing is a
prominent example of this class.

GENI differs from the Cloud and the Grid in that it is a platform for distributed
applications. A distributed application differs from a Cloud application in that the
network is central to the distributed application; it literally cannot exist without
the network. While a Cloud application—such as, for example, Google Docs—
logically runs on a single computer which happens to be accessed over the
network, a GENI application or service can only run in a number of computing
environments, geographically dispersed. The most prominent simple examples of
this class of application are Content Distribution Networks, Distributed Storage
Systems, multicast overlays, and wide-area collaborative exploration and creation
systems, and collaborative gaming. The distinctive feature of these systems is that
they require geographic distribution for one or a combination of a number of
reasons. Perhaps the simplest of these reasons is resilience against local failure. In
addition, some applications are inherently distributed, often because of the realities
of geographically distant end users and data. Inherently distributed applications
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viii Introduction

often require geographically distributed computing infrastructure to support high
bandwidth or low latency to end users and data sources.

The central point about GENI is that the network becomes, not just a way for the
user to access an application, but the central component of the application itself. This
doesn’t require just a different sort of computational platform; to be really effective,
the application must have a different kind of network. GENI is the network that
undergirds distributed applications, and it is a characteristic of the next generation
of computational infrastructure.

Today’s network is regarded as a network of simple pipes which carry bits
between users and remote applications. The network for distributed applications is
far richer and more complex; it consists of a large network of computing elements,
and programs move seamlessly between these elements to provide service where
required.

Though this sounds exotic, in fact it is simply a different assemblage and
deployment of current Commercial-Off-The-Shelf (COTS) hardware and software.
To a first approximation, what the developer sees is nothing more exotic than a
collection of Linux VMs and containers, interconnected by a more-or-less standard
network. However, she is able to allocate VMs and containers in specific places,
not simply “somewhere in the Cloud,” and she is able to configure the topology
and priorities of the network between them. Simply put: she is able to design her
own, application-specific, continent- and eventually world-wide network, deploy her
application across it, and do so in a matter of moments.

This is an entirely new idea of computational infrastructure, though it is made
from standard components. Up until now, the network and the computational service
delivered over it were regarded as entirely separate components. The application
writer had little control over the network topology, and could only influence
packet delivery through the choice of transport protocol and some edge tweaking.
Conversely, network engineers regarded the computational devices at the edge as
foreign soil. The apotheosis of this attitude was found in the design of Content-
Centric Networking. At an application level, CCN was easily achieved as an
application-level protocol overlay on Content Distribution Networks. However, the
CCN community spent an enormous amount of effort putting content information
into the packet header, so that the network equipment could process it. It is a
reasonable question on whether the performance penalty for doing content-based
routing at the application level was sufficient to warrant the effort to do the
application at lower levels of the protocol stack. However, the answer to this
question is highly dependent on how tightly interwoven the network and application
layers could be. If an application designer can control where the application points-
of-presence are, and how application packets are routed from the user’s host to the
nearest application POP, the need to drive the application into the network stack is
lessened.

As that example illustrates, there are two brutal realities of the computational
infrastructure: network equipment can’t be programmed, and computers can’t
forward packets quickly, and attempts to do either are deeply unnatural. This
was ultimately why the ActiveNetworks program of the 1990s failed. This has
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led the networking community to ever-more complex control protocols to permit
intelligent packet handling. But the only reason for intelligent packet handling is
the relatively long distances packets must traverse between source and destination;
a distributed cloud radically shortens that distance, and thus the demand for network
equipment to perform functions better performed by a computer. In sum, the
GENI infrastructure with distributed applications leads not only to more effective
applications but also to a simpler network.

This overall design of a network, with ubiquitous standard computational com-
ponents, is seen in many other places. Fifth-generation wireless networks (“5G”) is
an excellent example. The goal of 5G is gigabit bandwidth and millisecond latency
to the wireless device. Of course there is no magic; the physics of wireless devices
are well known and the coding schemes are close to the information limit. The only
way to achieve the orders of magnitude in performance improvement anticipated
in 5G is to radically change the network architecture, and this is exactly what
the proposals in gestation at the various nations do. Specifically, all 5G wireless
architecture proposals combine very small cells (“picocells”) with a computational
point-of-presence at the base station. This is the GENI architecture, again; in this
case, the distributed applications are serving wireless devices.

The Network Function Virtualization movement in the telco industry is a similar
example to the deployment of the GENI architecture. NFV was inspired at least in
part by the deployment of carrier Content Distribution Networks, such as CoBlitz.
The overarching architectural idea is to replace dedicated hardware with software
running in virtual machines. This necessarily means deploying virtual machines
over a distributed network infrastructure.

All of these similar architectural initiatives drive from a secular trend; the
dramatic and continuing decline in the costs of computation against communication.
The chart in Fig. 1, taken from Chap. 20, “The Ignite Distributed Collaborative
Visualization System” shows the ratio of the price of a gigaflop of computation
vs. a megabit/second of bandwidth. As can be seen from the figure, the ratio has
declined from about 10 in 1998 to about 0.1 today, a decline of roughly two orders
of magnitude. The most direct explanation for this trend is given in Chap. 20:
point infrastructures such as computation follow a technology curve, whereas linear
infrastructures follow an adoption curve, and the latter must always trail the former.

Paradoxically, as computation becomes more prolific and widespread, commu-
nication becomes much more of a dominant consideration in system design. This
is because communication becomes the bottleneck in system performance. This is
a secular trend throughout the computing industry, from chip design through, in
our case, redesign of the Internet. In the case of chips, this has seen the rise over
the past decade of multicore architectures and GPU-based vector computation, as
increased parallelism becomes the performance driver rather than increasing clock
rates. In single-server and data center systems, it has led to the redesign of the
server around high-bandwidth memory systems and the data center around highly
parallel massive data set searches and manipulations [1, 2], with an emphasis on
Terasort rather than Linpack as a benchmark. This involved a radical change to
both the memory hierarchy architecture and the design of very high-bandwidth,
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Fig. 1 Ratio of computation to communication cost

low-latency data center networks [3]. In the case of the wide-area network, it is
the architecture described in this book: ubiquitous computational points-of-presence
with a programmable network between them.

This redesign of the Internet architecture largely leaves the data plane untouched,
and in fact radically simplifies the control plane. In fact, the obstacles to its adoption
are largely cultural, social, and political rather than technical. We need to rethink our
ideas about computation, communication, and data and information storage. Right
now, any user of the Internet can tax the communication resources of almost any
enterprise or institution; however, access to those institution’s computing resources
is tightly guarded. There are reasons other than cost, of course, but the dominant
reason for this is because our computing systems grew up in an era of time-
sharing, where computing was expensive and guarded. Access control was built
into the systems from their inception; conversely, communication was unprotected
and clumsy access controls retrofitted after the fact. From a cost perspective, this
dominant theme of protecting computation but leaving communication open is
exactly backwards.

As mentioned, there are other considerations, primarily data security, integrity of
the computing environment, and fears of malicious use. But the Cloud has largely
overcome those objections: an enormous number of enterprises entrust their data
to third-party Cloud storage and do their computing on virtual machines running
on the same hardware as an unknown and untrusted third party. A large number
of enterprises, universities, and governments outsource their basic IT functions to
third-party providers such as Google Apps for Enterprise. It would be an odd CIO
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indeed who worries about what a student might do with a VM, but will happily
offload ERP functions to a cloud provider.

In sum, communication costs a lot more than computing, and we know a lot more
about securing computing than we do about securing communication. It’s time for
GENI’s Distributed Cloud.

How Did GENI Come To Be?

As usual, it started with the hackers. Come, be it admitted: academic computer
scientists don’t do new apps. We do exploit the properties of new technologies
to come up with new infrastructures (see, for example, RAID [4] and NOW [5]).
But by and large, computer scientists take services and applications hacked up in a
hobbyist or commercial setting and build robust, scalable versions of the application
or service.

So in the late 1990s people started to exploit the Internet, and a new breed
of service known as “peer-to-peer” was born. It was initially popularized by the
Napster file-sharing service, but its implications as a communications medium
rapidly became apparent. Only a couple of years after Napster was founded, the
first wide-area scalable indexing and storage system was devised [6]. A host of
implementations followed, along with a large number of distributed applications and
services: wide-area robust storage systems, content distribution networks, overlay
multicast trees, etc.

This led to an immediate problem: how does one deploy such a system, at
scale? In 2001, there was no platform available to deploy these new classes of
systems. Rather, what was happening was that researchers were calling up their
friends at other institutions, getting accounts on machines at their institutions—with
heterogeneous configurations, different software installations, and so on—and then
running an experiment. A system that took a few weeks to write might take months
to deploy and test.

At an underground meeting at NSDI 2002, a group of researchers led by Larry
Peterson of Princeton and David Culler of UC Berkeley devised a new infrastructure
to serve as a community testbed. Each institution would agree to devote 2–3 � 86
servers to a community testbed, which would be centrally managed. To permit
each researcher to create his own environment, nascent virtualization technology—
Linux VServers—was employed to offer very lightweight virtual machines. David
Tennenhouse, then head of Intel research, and Patrick Scaglia, who led the Internet
and Computing Platforms division of HP Labs, agreed to form a consortium to fund
the platform and grow it to several hundred sites worldwide. And the world’s first
Distributed Cloud, PlanetLab, was born.

PlanetLab grew rapidly, eventually reaching its current size of 1350 nodes at over
700 sites worldwide. More impressive was its immediate impact on the systems
community; the vast majority of SOSP 2003 papers cited PlanetLab experiments
just a year after the testbed was first built.
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In early 2001, Jay Lepreau of the University of Utah and his staff and students
devoted a cluster to network experimentation. The problem the Utah group was
addressing was both similar and not to the problem addressed a year later by
PlanetLab: the need to do short-run controlled experiments on new network
protocols and services. Their Emulab platform became the world’s first Cloud.
It differed then and differs now from standard Clouds. Users are able to request
hardware as a service, not simply virtual machines, and are able to finely control
the emulated network between their nodes. As a result, it immediately became the
premier experimental platform for controlled experiments on distributed systems
and network protocols, and remains so today. It is described in detail in Chap. 2.

In September 2003, Dipankar (Ray) Raychaudhuri of Rutgers and his staff began
the ORBIT program, a large-scale open-access wireless networking testbed for
use by the research community working on next-generation protocols, middleware
and applications. The ORBIT project continues to this day and has extensions for
software-defined radio elements. Like Emulab, it is a shared testbed. Users log in to
the ORBIT portal, and then construct an experiment, typically over ORBIT’s 400-
node (20 � 20) indoor radio grid facility. The testbed also includes an outdoor “field
trial system” intended to support real-world evaluation for protocols validated on
the emulator, and for application development involving mobile end users.

In 2005, UC Berkeley and the University of Southern California Information
Sciences Institute collaborated to build a shared state-of-the-art scientific computing
facility for security experimentation, the cyber DEfense Technology Experimental
Research Laboratory (DeterLab). Based originally on the Emulab software stack,
DeterLab has introduced a number of innovations to enhance scalability, repro-
ducibility, and control of user experiments. Of course, since DeterLab is security
focussed, some of its principal innovations are to ensure protection and isolation of
experiments and protection of the world from running experiments. DeterLab offers
security researchers the ability to “observe and interact with real malicious software,
operating in realistic network environments at scales found in the real world.” In
other words, this is a facility where monsters are observed and experimented on;
and so a primary concern, executed with enormous care and great success over more
than a decade, is keeping the monsters safely penned while researchers discover how
to neutralize them.

Shared experimental facilities such as ORBIT, Emulab, and DETER start from
an economic and democratizing rationale—these facilities permit researchers from
any institution to conduct experiments on best-in-world facilities, and it is far more
efficient and effective for a funding organization to build a large shared facility
rather than many small facilities. Not only does this permit researchers to run
much larger-scale tests than would otherwise be possible, there are significant
economies of scale. There have also been two major scientific benefits. The first
is reproducibility. The availability of shared testbeds enables experimenters to
report reproducible results which encourage subsequent validation: the test and
the experimental facility are accessible by everyone. Moreover, for each of these
facilities, simply running the facility and providing new scientific capabilities has
been in and of itself a fecund source of research problems.
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By 2006, the successes of these platforms were clear to the systems community
and the National Science Foundation. Virtually every major experimental and
research system built used one or more of these testbeds. In fact, use of at least two
was the common case, because the platforms had complementary strengths. Emulab
was an ideal system for short-run controlled experiments on new network systems
and protocols in a laboratory setting. DETER, though similar to Emulab, had
added crucial features to permit safe testing of security protocols, particularly under
malware attack. PlanetLab was designed for long-running services and observations
of services in the wide area.

However, Emulab, PlanetLab, and DETER had become victims of their own
successes. By 2006 all three testbeds were under significant strain due to enormous
demand. It wasn’t uncommon for researchers to wait days or weeks to get
free machines on Emulab or DETER, particularly as major conference deadlines
approached. Because PlanetLab offered lightweight virtualization technology, its
oversubscription did not appear as waiting times. But enough slices were active on
the PlanetLab testbed at any time that load averages on PlanetLab machines could
be over 20.

The systems Computer Science community then began to design a successor to
these testbeds. The new system had to meet four major goals:

• Incorporate the controllability and flexibility of Emulab and DETER for short-
run controlled experiments.

• Incorporate the geographic distribution of PlanetLab for long-running services
and applications, particularly end-user-facing applications such as CDNs and
multicast overlays.

• Incorporate the wireless aspects of ORBIT.
• Offer fine-grained control of the network and a principled and architectural

approach to software control of the L2 and L3 networks.

Over the period 2006–2007 a group of 50 leading academic computer scientists
in six working groups designed this system, producing a working prototype design
for the National Science Foundation. In 2008 the NSF issued a call for a GENI
Project Office (GPO) to manage the development of a prototype of the GENI system,
which was won by BBN Technologies. In 2009, BBN led a community effort to
develop this prototype, issuing contracts to universities and research organizations
in the systems community to develop GENI.

Simultaneously with this was a happy Black Swan event—a revolutionary new
technology, Software-Defined Networking. This concept, and its concrete realiza-
tion, OpenFlow, grew from the Ethane project at Stanford University. Its most basic
concept was that a software controller would load the routing tables of a network
of L2 switches, permitting fine-grained software control of packet forwarding and
QoS. This offered the key last piece that had been missing from the precursors of
GENI: integration of the network into the computational infrastructure. OpenFlow
immediately became a key component of the emerging GENI.
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GENI’s Community Development Approach

The entire community recognized GENI as a high-risk endeavor from the outset.
At the time the GPO was initially stood up, it was by no means clear that GENI
was technically feasible (or even well defined). Accordingly, the GPO chose a
spiral-development approach to development, incrementally building, assessing,
and redesigning GENI on a continuing basis, with a nominal spiral duration of one
year, punctuated by three GENI Engineering Conferences (GECs) annually. Open to
the interested public, the GECs provide impetus for community debate, information
exchange, and development deadlines.

The GENI community embraced spiral development as a strategy to continuously
confront the most pressing questions—technical and programmatic risks—of the
day, with successive spirals addressing a sequence of vital questions. The inter-
actions of dozens of development teams and an ongoing design and development
effort driven by thrice-annual community meetings set the stage for rapid, if slightly
raucous, progress. This community approach also gave rise to one of GENI’s
central execution strategies: whenever possible, pursue multiple implementations
simultaneously.

Time period Burning question Key tactics
Spirals 1 and 2 (2008–2010) “Is GENI technically

feasible?”
Control frameworks and
slicing

Spirals 2 and 3 (2009–2011) “Can GENI be built at
adequate scale with
reasonable cost and effort?”

“GENI-enabling” equipment,
federation, and meso-scale
prototype

Spirals 3 and 4 (2010–2012) “Will GENI be useful for
research?”

Research-driven design,
community outreach, and
“GENI-enabling” tools

Spirals 5 and beyond (2012–) “Will GENI transform the
community?”

GENI racks and international
federation

The very first spirals aimed to prove the technical feasibility of core GENI
concepts. One such concept was a control framework that could manage multiple,
heterogeneous suites of infrastructure. The second was an end-to-end “slice”
construct that spanned such heterogeneous suites, interconnecting their diverse
virtualization technologies. The GPO organized community projects into competing
“clusters” (shown in Fig. 2). Projects then integrated within clusters to achieve four
prototype GENI systems by the end of spiral 1. By the middle of Spiral 2, three
of the major GENI systems (PlanetLab, ProtoGENI/Emulab, and OpenFlow) were
capable of interoperation.

As the first technical hurdles were being overcome, the GENI community also
confronted the central programmatic puzzle in GENI—how to afford construction
and operation of a set of infrastructure that can support “at scale” research
experimentation. The GENI meso-scale prototype presented an opportunity to test
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Fig. 2 Early GENI project clusters

Fig. 3 The “GENI-enabled” campus strategy

the strategy of “GENI-enabling” campuses and research networks, as a way to
overcome this challenge.

The strategy began by GENI-enabling existing testbeds, campuses, regional
and backbone networks, cloud computing services, and commercial equipment.
GENI could then incorporate these networks and services by federation, rather than
constructing and operating a separate set of infrastructure for experimental research.
Figure 3 depicts the plan: first GENI-enable commercial equipment, then use this
equipment to create “GENI-enabled” campuses and the national backbones that can
run GENI experiments on the same infrastructure as production networks. Finally,
federate GENI-enabled campuses and networks to create “at scale” GENI.

The key hardware artifact of spirals 2 and 3 was a “meso-scale” version of this
basic approach, spanning 14 campuses and 2 national backbones (Internet2 and
NLR). The meso-scale prototype integrated PlanetLab, ProtoGENI, and OpenFlow,
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with GENI-enabled commercial equipment from HP, Juniper, NEC, and Quanta.
While this prototype was functional, it was also finicky, requiring the GPO to work
closely with researchers to help them conduct experiments on this early GENI
prototype and use their experiences to refine plans for continued GENI development.
Importantly, deployment of this prototype generally included involvement from
the campus CIO or CTO, establishing a precedent of involving both research
faculty and campus IT staff in GENI planning and progress. The meso-scale
GENI prototype was eventually decommissioned as the larger, “at scale” GENI
deployment subsumed its capabilities.

Experience building and using the “meso-scale” GENI provided a strong indica-
tion that an “at scale” implementation would be technically feasible, affordable, and
sustainable. The next key question for the GENI community was how to ensure that
GENI genuinely opens up major new fields of experimental research.

This question could only be addressed through a feedback cycle where GENI is
consistently employed in research experiments and the lessons learned employed
in improving future GENI implementations. Beginning with feedback from exper-
iments begun in Spiral 2, joint researcher-developer sessions became a fixture of
GECs, and research experiments began to drive GENI’s evolving design. Significant
outreach and support effort from the GPO, NSF, and the GENI development
community encouraged GENI’s rapid adoption by researchers in spirals 3 and 4,
leading to strong growth in research use. Figure 4 shows a GEC demo night event,
where developers and experimenters show off their progress.

Fig. 4 Demo night at GEC16, Salt Lake City, 2013
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The “GENI-enabling” approach was also applied to popular research tools.
Researchers are accustomed to working with specific tools, and their introduction to
GENI was greatly eased by making GENI resources available through these familiar
pathways. This approach began with the adoption and interoperation of precursor
testbeds like PlanetLab, ProtoGENI/Emulab, and ORBIT and was extended to tools
like the OMF control infrastructure and the Open Resource Control Architecture
(ORCA) control framework.

As researchers began to experiment with the “meso-scale” GENI, they quickly
became aware of its potential, as well as its limitations. Experimenters found
great value in the key capabilities of the prototype, including slicing and deep
programmability. They wanted a larger-scale deployment, with more programmable
computation and network components throughout the GENI network. They needed
additional automation to support dramatic growth in the number of simultaneous
experiments.

The move to a larger GENI prototype began with basic GENI building blocks.
Beginning in 2012, and continuing to the current GENI, campuses are GENI-
enabled by deploying GENI racks, optional wireless base stations, and software-
defined networks on campus. These resources are connected to a research backbone
network and federated into the emerging nationwide GENI, where they are available
to the entire GENI research community. The principles involved are consistent
with the approach used in the “meso-scale” GENI, but the process is significantly
simplified at each campus by the availability of GENI racks. A GENI rack includes
computation (cluster of processors), storage, and an OpenFlow switch in a single
deployable package, along with its associated control software. The rack provides
the campus an entrée into the GENI federation. Additional campus resources, such
as a science DMZ, may be federated as well, in keeping with the unique research
needs of each campus.

As GENI grew within the USA, similar projects arose around the world. While
each of these future Internet and distributed cloud (FIDC) testbeds has unique
implementation and management aspects, there is strong motivation both to share
ideas and software and to federate infrastructure, and GENI has been a leader in
this area for several years. The globalization of FIDC concepts is an unfinished but
highly promising chapter of the GENI story.

Organization of the Book

The book takes us through the GENI Project in its lifecycle in five parts. Part
I describes the precursors of GENI that led to its development, with detailed
histories of ORBIT, DETER, Emulab, and a discussion of the GENI idea from
then NSF Assistant Director Peter Freeman. Part II describes the architecture of
GENI as a set of control frameworks that interact and present the developer with
a picture of a distributed cloud with a programmable network in between cloud
nodes and describes how the specific precursors of GENI—PlanetLab, Emulab, and
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ORBIT—were adapted into new complementary control frameworks within GENI.
These chapters also discuss how new technologies, specifically emerging Cloud
technologies and the new capabilities of software-defined networking, were adopted
and integrated into the GENI framework and the specific control frameworks which
made it up. Part III discusses the deployment of GENI as a nationwide infrastructure.
Once the control frameworks were in place, GENI had to be made concrete and real.
The control frameworks were integrated and deployed at 50 sites across the United
States, in small, extensible clusters: “GENI Racks.” These were interconnected by a
programmable nationwide layer-2 network, the “Mesoscale Deployment.” Once this
was in place, GENI was ready to host applications and services. Part IV describes the
applications of GENI to our society and profession, and the tools developed to use
this infrastructure. GENI is not alone; it is one of several similar efforts worldwide.
Part V discusses parallel and complementary efforts in Canada, Europe, and Asia,
and the prospects for an international federation.

The story of GENI is far from done. We are now roughly where the NSFNet was
in the late 1980s, with a few tens of sites connected by a nationwide backbone. As
GENI transitions to the next phase of its life, which we believe will be an era of
explosive growth, we recall the words of Vint Cerf as the ARPANET transitioned to
become part of the Internet:

It was the first, and being first, was best,
but now we lay it down to ever rest.
Now pause with me a moment, shed some tears.
For auld lang syne, for love, for years and years
of faithful service, duty done, I weep.
Lay down thy packet, now, O friend, and sleep.

-Vinton Cerf

Washington, DC Rick McGeer
Cambridge, MA Mark Berman
Cambridge, MA Chip Elliott
Salt Lake City, UT Robert Ricci
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