Modeling with UML

Bernhard Rumpe

Modeling with UML

Language, Concepts, Methods

@ Springer

Bernhard Rumpe
Software Engineering
RWTH Aachen University
Aachen

Germany

ISBN 978-3-319-33932-0 ISBN 978-3-319-33933-7 (eBook)
DOI 10.1007/978-3-319-33933-7

Library of Congress Control Number: 2016940125

Translation from the German language edition: Modellierung mit UML — Sprache, Konzepte und Methodik
by B. Rumpe, © Springer-Verlag Berlin Heidelberg 2004, 2011. All Rights Reserved.

© Springer International Publishing Switzerland 2016

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Foreword'

Designing large software systems is one of the big technical challenges of our time.
The scope and complexity of software have now reached dimensions that push all
established approaches and methods for its development to its limits.

In this situation, software developers have increasingly discovered the estab-
lished concept of model creation in the engineering sciences. In the past, a large
number of different approaches have worked out under the concept model-based
software development, which aims at extensive model creation to support devel-
opment of software systems. Model creation enables specific representations of
important properties and aspects of a software system to be analyzed or designed.
One objective is an appropriate abstraction leading to decreased complexity and
improved controllability of software systems. Despite all the progress made in this
field and its clear practical maturity, there are still many questions that need to be
answered by research.

The additional development effort required is certainly a critical factor in model
creation. The question here is how much effort should be invested in model creation
and how model-based procedures, which are often heavyweight, can be made
flexible enough to better consider the profiles of the development projects.

Besides model orientation, use of so-called agile methods has become another
trend in software engineering in recent years, especially around the concept of
“Extreme Programming”. This term encompasses lightweight process models for
software development that secure a reduction of software bureaucracy and support a
much greater flexibility in software development. For projects with a certain profile,
agile methods can facilitate a considerably more effective process. However, pre-
conditions for this are sufficiently competent developers as well as a clearly limited
project size. Thus, such agile methods can only be used successfully in small
projects with a handful of developers over a manageable period of time so that
feedback can actually work to achieve faster communication within the project.

Translated from the Foreword of the German Edition.

vi Foreword

At first sight, it seems that model-based approaches, with their strong system-
atics and their modeling techniques explicitly detached from the actual coding, are
not compatible with agile methods, which are usually code-centered. This book
impressively shows that it is still possible to combine model-based approaches with
agile methods by using well-known modeling languages such as UML. However,
one must then carefully consider which UML constructs can be used as modeling,
testing, and implementation description tools and what the methodical procedure
should look like.

This book provides an answer to this question, aiming to use relevant practical
approaches such as the agile approach and the widespread language UML without
leaving out a proper scientific foundation and well-documented process. In par-
ticular, it is clearly shown which UML constructs are suitable for, e.g., rigorously
developing test cases or launching an evolution by applying perfect transformation
rules.

The book demonstrates how the quite different paradigms of agile methods and
model orientation correspond to and supplement each other. The result is an
approach that equally satisfies the requirements for a practically relevant,
well-usable procedure as well as the demand of a precise scientific foundation.

This text reads very well without giving up the claim of providing a solid content
and technical representation. Bernhard Rumpe has successfully tested the process
suggested in this book in a number of smaller projects.

Thus, this work represents a valuable contribution, providing useful guidance for
practitioners and additional information on how to combine current trends in
software engineering—such as agile procedures and model-based development—
successfully and with reasonable additions. Students will receive a comprehensive
introduction to the topic, and the book serves as a sound foundation.

This, as well as the consecutive book “Agile Modeling with UML” are equally
well suited for practitioners interested in such an approach for their development
projects as well as for lectures dealing with practical questions while not neglecting
a fundamental scientific foundation.

Garching, Germany Manfred Broy
February 2004

Preface to the Second Edition>

Ten years ago, it could be foreseen that agile methods would prevail, at least for a
substantial subdomain of software development, even though they were smiled at
by many developers at that time. Today, agile methods have become an established
part of the software engineering portfolio. In many places, they have been extended
and adjusted to specific domains.

At the same time, the Unified Modeling Language started its triumph and has
since practically absorbed or eliminated all other wider used modeling languages,
with the exception of Matlab/Simulink, which we do not see as a proper modeling
language but as a graphical programming language. UML is quite large and still
suffers from the multiple options and interpretation possibilities that, due to its
various fields of application, cannot be clarified that easily. Instead, it might be
better to create a more explicit variability model for syntactical, methodical, and
semantic differences and to configure UML for single projects by suitable selection
[Gro10].

The programming language Java has prevailed even more successfully as the
primary web and business system language, as well as a teaching language for
computer science students.

Therefore, in this as well as the second book “Agile Modeling with UML” UML
and Java are consolidated, moderately supplemented and enhanced to allow smooth
and integrated use. UML is available in version 2.3 and Java in version 6. UML/P
introduced in this book represents a relatively independent and adapted version, a
so-called profile of UML, but this profile has been adjusted in some parts by
modifications from UML 1.4 to UML 2.3. Because we use Java as the target of
generation and test activities, it is certainly of interest to refer to new concepts in
Java such as the generics and the assert statement.

Despite or maybe particularly because of the success of both approaches, the gap
between the worlds of the model-based software development with UML and agile
methods has not really decreased. While agile methods definitely prefer to generate

>Translated from the Preface of the German Edition.

vii

viii Preface to the Second Edition

code instead of writing it manually, many developers regard the hurdle to successful
generation to remain relatively high. Often, the reason for this is the inconvenient
and the heavyweight character of the generation process and the relatively high
initial effort required to introduce generation tools into the development process.
This gap still needs to be closed.

A number of people have directly or indirectly contributed to the creation of the
first, and the revision to the second, version of this book. My particular thanks go to
Manfred Broy, whose support made this book possible. I would also like to thank
my employees and students, especially Christian Berger, Marita Breuer, Angelika
Fleck, Hans Gronniger, Sylvia Gunder, Tim Giilke, Arne Haber, Christoph
Herrmann, Roland Hildebrandt, Holger Krahn, Thomas Kurpick, Markus Look,
Shahar Maoz, Philip Martzok, Antonio Navarro Pérez, Class Pinkernell, Dirk Reiss,
Holger Rendel, Jan Oliver Ringert, Martin Schindler, Mark Stein, Christopher
Vogt, Galina Volkova, Steven Volkel, and Ingo Weisenmoller who used this book
as a basis for their work or who helped to supplement and improve it for the second
edition. I would like to thank the former Bavarian Minister for Science, Research,
and the Arts, Hans Zehetmair, for the habilitation scholarship award and my
appreciated colleague and predecessor Prof. Dr. -Ing. Manfred Nagl for his
benevolent support in establishing the chair at Aachen.

My sincere thanks are due to my friends and colleagues, my scientific staff, and
the students from Munich for constructive discussions, collaboration in the appli-
cation examples and reviews of intermediate results of this book in its first edition:
Samer Alhunaty, Hubert Baumeister, Markus Boger, Peter Braun, Maria Victoria
Cengarle, David Cruz da Bettencourt, Ljiljana Ddhring, Jutta Eckstein, Andreas
Glinzler, Franz Huber, Jan Jiirjens, Ingolf Kriiger, Konstantin Kukushkin, Britta
Liebscher, Barbara Paech, Jan Philipps, Markus Pister, Gerhard Popp, Alexander
Pretschner, Mattias Rahlf, Andreas Rausch, Stefan Rumpe, Robert Sandner,
Bernhard Schitz, Markus Wenzel, Guido Wimmel, and Alexander Wisspeintner.

Aachen, Germany Bernhard Rumpe
June 2011

Preface to the English Edition

Colleagues have asked when the English version of this book would be published.
Finally, here it is. I wish all the readers, students, teachers, and developers fun and
inspiration for their work.

I would like to thank all the people that helped me translating and quality
checking this book, namely Sabine Blumensath, Robert FEikermann, Timo
Greifenberg, Julia Gunder, Sylvia Gunder, Arne Haber, Robert Heim, Lars
Hermerschmidt, Gabi Heuschen, Katrin Holldobler, Andreas Horst, Steffi Kaiser,
Carsten Kolassa, Thomas Kurpick, Achim Lindt, Markus Look, Klaus Miiller,
Antonio Navarro Pérez, Pedram Mir Seyed Nazari, Dimitri Plotnikov, Alexander
Roth, Christoph Schulze, Michael von Wenckstern, and Andreas Wortmann.

Aachen, Germany Bernhard Rumpe
February 2016

ix

Contents

1 Introduction 1
1.1 GoalsofBookland2iiiiiiiiiiinnnnnn.. 2
1.2 OVeIVIEW .ottt e e 3
1.3 Notational Conventionscoouiiiiiieinnennna... 4
1.4 Placement of UML/P ... i 5

1.4.1 Importance and Scopeof UML 5
142 UML Language Profiles............................. 6
1.4.3 NotationsinUML/P ..., 7

144 The Terms “Modeling” and “Model-Based
Development” i 8
1.5 The Future: Agile Modeling with UML 11

2 ClassDiagramsoiiiiiiiiieieee. .. 13
2.1 Relevance of Class Diagrams 14
2.2 Classesand Inheritanceo i, 17

221 Attributes. 18
222 Methods........ooiiiii 19
223 Inheritancecciiiiiiiiii 20
224 Interfaces 21
2.3 ASSOCIAtIONS . . .ot 22
231 ROIES ..ot 22
232 Navigation 23
233 Cardinality o 23
234 Composition................oooiiiiiiia 24
2.35 Derived Associationscoiiiiiiiiiia... 25
2.3.6 Tagsfor Associationsl 25
2.3.7 Qualified Associationsccooviiiiiiiinnnnn.. 26
2.4 View and Representation 27
2.5 StereotypesandTags................ciiiiiiiiiiL 30
251 Stereotypes ... 31
252 Tags ... 33

xi

Xii

Contents

2.5.3 Introduction of New Elements....................... 34
Object Constraint Language 37
3.1 Overview of OCL/P ... 39

3.1.1 The Context of a Constraint 40

3.1.2 Thelet Constructc.ooiiiiiiiiana... 42

3.1.3 Conditional Expressiono.... 43

3.1.4 BasicDataTypescoiiiiiiiii... 44
32 The OCLLOZICovviiiii i 45

3.21 The Boolean Conjunction 45

3.2.2 Two-Valued Semantics and Lifting 47

3.2.3 Control Structures and Comparisons................. 49
3.3 Container Data Structures 50

3.3.1 Representation of Setsand Lists 51

3.3.2 Setand List Comprehensions........................ 53

3.3.3 SetOperationscoiiiiiiiiiL 56

3.3.4 ListOperations................c.ooiiiiiiiiiiia... 59

3.3.5 Container Operations..................... ... 60

3.3.6 Flattening of Containers 62

3.3.7 Typingof Containersooo... 63

3.3.8 Set- and List-Valued Navigation 65

3.3.9 Qualified Associationccoiiiiiiiiia... 68

3.3.10 Quantifiersiiiiiii 70

3.3.11 Special Operatorscoiiiiiiiiinn.. 75
34 Functionsin OCL it 77

341 QUETIES . .ottt ettt e 78

342 <OCL»Methodsuuuuiiiiiiiiiiiiiaann.. 81

3.4.3 Method Specification 82

3.4.4 Libraries of QUeriescooviiiiiiiiiiinnnnn. 94
3.5 Expressivenessof OCL ...t 95

3.5.1 TransitiveClosure, 96

3.52 The Natureof anInvariant 99
3.6 Summary ... 101
Object Diagrams 103
4.1 Introduction to Object Diagrams 105

411 Objectsooiiiii 106

412 Attributes.......... ... 107

413 Links. ... 108

414 QualifiedLinks i 110

415 Composition................oooiiiiiiiia 110

41.6 Tagsand Stereotypes 112
42 Meaning of an Object Diagram............................. 114

421 Incompleteness and Exemplaricity 114

4.2.2 Prototypical Objectst 115

4.2.3 Instance Versus Model Instance...................... 116
4.3 Logic of Object Diagrams....................ot 118
43.1 NameforaDiagram....................... 118
432 Binding of Object Names............................ 119
4.3.3 Integration of Object Diagram and OCL 120
434 AnonymousObjects oL 121
43.5 OCL Constraints in Object Diagrams................. 122
43.6 Abstract Object Diagrams 124
4.4 Methodical Use of Object Diagrams 125
441 Composition of Object Diagrams 126
442 Negationiiiiiiiii 127
443 Alternative Object Structures 127
444 Object Diagrams in a Method Specification 128
445 ObjectCreationcoiiiiiiiiiiii . 129
4.4.6 Validity of Object Diagrams 130
4.47 Initialization of Object Structures 131
45 Summary ... 133
Statecharts............... 135
5.1 Properties of Statecharts...................... ... oL 136
5.2 Automaton Theory and Its Interpretation 138
52.1 Recognizing and Mealy Automata 138
522 Interpretationl 141
5.2.3 Nondeterminism as Underspecification 141
524 e-Transitionsl 143
52.5 Incompleteness il 143
52.6 Lifecycle.......o 144
52.7 EXpressivenessciiiiiiiiiiiiiia., 145
5.2.8 Transformations on Automata....................... 146
53 States 146
53.1 StateInvariants oo 148
5.3.2 Hierarchical States................. 153
5.3.3 Initial and Final States 155
54 Transitions 156
54.1 State Invariants Within the State Hierarchy 156
5.4.2 Initial and Final States in the State Hierarchy 157
5.4.3 Stimuli for Transitions 159
544 Enabledness i 161
5.4.5 Incomplete Statechart..................... 163
55 Actions 167
5.5.1 Procedural and Descriptive Actions.................. 167
552 State Actions........... ... il 169
5.5.3 State-Internal Transitions............................ 173
554 Do-Activity oo 173
5.6 Statecharts in the Context of UML.......................... 174

Xiv Contents
5.6.1 Inheritance of Statecharts 175
5.6.2 Transformations on Statecharts 175
56.3 MappingtoOCL 186
5.7 Summary ... 188
6 SequenceDiagrams i 191
6.1 Concepts of Sequence Diagrams 193
6.2 OCLin Sequence Diagrams.....................oooiuia.. 196
6.3 Semantics of a Sequence Diagram 198
6.4 Special Cases and Extensions for Sequence Diagrams 203
6.5 Sequence Diagramsin UML 206
6.6 SUMMATY 208
7 FurtherReading................ 209
A Language Representation with Syntax Class Diagrams 215
B Java..... 223
C TheSyntaxof UML/P 231
C.1 UML/PSyntaxOverviewo, 231
C2 ClassDiagramscooviiiiiiiiiiiiiiiiii i, 232
C.2.1 CorePartsofaClass Diagram 232
C.2.2 Text Parts of a Class Diagram........................ 233
C.2.3 Tags and Stereotypes 235
C.24 Comparison with the UML Standard................. 237
C.3 OCL . 239
C3.1 Syntaxof OCL ... 239
C.3.2 Differences From the OCL Standard 243
C.4 ObjectDiagramscoiiiiiiiiiiiii .. 246
C4.1 Context-FreeSyntax, 246
C.5 Statecharts ... 248
C.5.1 AbstractSyntax o i 248
C.5.2 Comparisons with the UML standard 252
C.6 SequenceDiagramst 253
C.6.1 AbstractSyntax il 253
C.6.2 Comparison with the UML Standard................. 255
D Sample Application: Internet-Based Auction System 257
D.1 Auctions as an E-Commerce Application 258
D.2 The Auction Platform oL 259
References. 263

	Foreword1
	Preface to the Second Edition2
	Preface to the English Edition
	Contents

