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Abstract. The verification of railway interlocking systems is a chal-
lenging task, and therefore several research groups have suggested to
improve this task by using formal methods, but they use different mod-
elling and verification approaches. To advance this research, there is a
need to compare these approaches. As a first step towards this, in this
paper we suggest a way to compare different formal approaches for veri-
fying designs of route-based interlocking systems and we demonstrate it
on modelling and verification approaches developed within the research
groups at DTU/Bremen and at Surrey/Swansea. The focus is on designs
that are specified by so-called control tables. The paper can serve as a
starting point for further comparative studies.

1 Introduction

An interlocking system is responsible for guiding trains safely through a given
railway network. It is a vital part of any railway signalling system and has the
highest safety integrity level (SIL4) according to the CENELEC 50128 standard
[3].

Conventionally, the development and verification process of interlocking sys-
tems is informal and mostly manual.

Adding automated verification. The left-hand picture in Figure 1 provides some
detail as to how a conventional design process of interlocking systems is typi-
cally realised. Concretely it shows the process as implemented by our industrial
partner Siemens Rail Automation, UK, in the form of a UML activity diagram.
The client provides a CAD plan of the track plan and routes. Independently, the
regulator provides a set of design rules. Based on these, the routes are signalled,
i.e., various tables are developed. This scheme plan (i.e., track plan plus various
tables, e.g., control tables) undergoes thorough manual checks before the tables
are used to implement an interlocking. These checks are part of quality con-
trol: motivated on the one hand to detect mistakes early, already in the design
phase, on the other hand to adhere to development standards required by the
authorities as part of a certification process.

As the manual checks are time-consuming, costly, and error-prone, automated
verification of interlocking systems is an active research topic. The right-hand



picture in Figure 1 shows a lightweight integration of automated verification (AV)
into the traditional work-flow. It includes an automated check of the scheme plan
for safety conditions. Only if a scheme plan has been proven to be safe, the costly
manual checks are performed. Here, we deliberately refrain from replacing the
manual checks. One reason is that safety covers only part of them. Further-
more, academic tools often have not been certified to the tool qualification levels
required in safety cases. Finally, the railway domain is conservative: replacing
traditional checks by different methods would require additional arguments in
safety cases.

Automated verification of interlocking designs. It is still an open research ques-
tion as how to perform safety checks on interlocking designs. The challenge is how
to cope with the complexity of the problem: the state space grows exponentially
in the size of the scheme plan to be verified. Several research groups, see e.g.
[11, 1, 9, 6, 8, 7, 27, 16, 15, 13, 12, 4, 10, 29, 28, 23, 2, 20], have been addressing this
challenge and have developed a number of different modelling and verification
approaches.

The modelling part of such approaches usually consists of “transformations”
of how to derive a (formal) model from informal rail descriptions as used in
rail industry such as a track plan (e.g., as a CAD drawing) enriched by various
tables (e.g., a control table). Similarly, the verification part usually states a
safety condition (e.g., no train collision) and expresses this as a (formal) property
(e.g., as a logical formula). Finally, an (automated) verification tool is utilised
to provide an answer if the property holds in the model.

Different groups apply different design rules for signalling, country specific
rail standards, utilising various modelling languages, employing different verifi-
cation tools. This leads to the natural, however, fundamental question: how can
these many modelling and verification approaches be related with each other?
This question comes in at least three, interconnected forms: (i) how to relate the
input of these modelling approaches? (ii) how to relate the formal models? (iii)
how to relate the verification results?

Relating automated verification approaches. In this paper we suggest a general
way of how to compare different formal verification approaches for interlocking
systems and demonstrate it on modelling and verification approaches developed
within our respective research groups at DTU/Bremen and at Surrey/Swansea.
We see this comparison as pioneering work, to which we hope – in the long run
– other groups will contribute as well by running their verification approaches
through the very same exercises, i.e., this paper can serve as a start for a bench-
mark for railway verification.

While the focus of our comparison is on verification, to a certain extent we
also address the other two questions posed above. Concerning input, we define a
common core – see Section 2 – and discuss group specific extensions. Concerning
the models, for a start we attempt to present the modelling approaches in a
uniform way – see Section 3. The development of a general questionnaire on
models will require more experience, including analysing work by further groups.
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Fig. 1. Incorporating automated verification (AV) in a design & check cycle for a
scheme plan SP.

Concerning relating verification, we are confident to propose a practicable and
useful approach.

To the best of our knowledge, we are the first to address the question of how
different verification approaches for interlocking systems relate. This question
is important for various reasons: to advance the field, it will be necessary to
better understand work from other groups and to learn from each other; from a
company’s point of view it is important to be able to evaluate different techniques
when choosing one to be included in an interlocking design cycle.

Our comparison focuses on the safety claims that different approaches make.
Rather than directly comparing models or properties, we look into the ability
of verification approaches to detect errors in the design tables of an interlocking
system. Starting with a correct rail design, we inject an error (e.g., by altering the
entry of a table), and see if – under a given modelling and verification approach
– the injected error is caught. As rail designs can be fault tolerant, here it is
necessary to work with “minimal” designs, i.e., such designs, where an injected
error actually can be caught. When comparing now two verification approaches,
we say that an approach has more distinguishing power than another one, if the
first flags the same errors as the second and possibly more.

Our comparison draws on ideas from testing theory. Yu and Lau prove a
number of theorems on the error detecting capabilities of various coverage criteria



for testing logical decisions [30]. Their set-up consists of several elements: the
logical decision to be tested needs to be in a normal form – corresponding to our
minimal designs, see Section 2; they define a number of syntactic errors (e.g.,
adding or forgetting a negation, confusing a logical and with a logical or) – we
will define a number of error types, see Section 4; they establish theorems that
characterise the kind of errors that will be detected via testing provided a test
suite has been constructed to minimally fulfil a certain coverage criterion – we
will compare two verification approaches by defining and performing a number
of experiments, see Section 5.

Organisation of the paper. First, in Section 2, we introduce basic notions of
the railway domain, including the notions of scheme plan, track plan, and con-
trol table. Then, in Section 3, we provide a descriptive comparison between the
two different modelling and verification approaches by DTU/Bremen and Sur-
rey/Swansea, where both approaches are described using a similar scheme. In
Section 4 we identify a number of error types that might happen during the
design of a control table. Finally, in Section 5, we report on experimental results
demonstrating that all these errors can be detected by both formal methods, the
one from DTU/Bremen as well as the one from Surrey/Swansea.

2 Railway scheme plans

A railway scheme plan consists of a track plan and various tables, e.g., control
tables.

Track plans. A railway network consists of a number of track-side elements of
different types, for instance linear sections, points, and either marker boards
(for ETCS level 2 systems) or physical signals (for legacy systems). The track
plan in Fig. 2 shows an example layout of a railway network having six linear
sections (b20, t20, b10, t10, t13, b13, t23, b23), two points (t11, t12), and eight
marker boards (mb10, . . . , mb30). A linear section is a section with up to two
neighbours. A point can have up to three neighbours: one at the stem, one at
the plus end, and one at the minus end, e.g., point t12 in Fig. 2 has t11, t13,
and t30 as neighbours at its stem, plus, and minus ends, respectively. Linear
sections and points are collectively called detection sections, as they are used
by interlocking systems to detect the presence of trains in a railway network. A
point can be switched between two positions: PLUS and MINUS. When it is in
the PLUS (MINUS) position, traffic can run from its stem to its plus (minus)
end and vice versa. A marker board is installed along a section, and it is used
as reference location for an intended travel direction that it is facing, e.g. mb20
in Fig. 2 is installed along section b20, and it is intended for travel direction
towards t20. Contrary to legacy systems, in ETCS Level 2, there are no physical
signals, but virtual signals associated with marker boards. A virtual signal can
be OPEN or CLOSED, respectively, allowing or disallowing traffic to pass the
associated marker board. For simplicity, the terms virtual signals, signals, and
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(b) Control table

Route name From To Route path Point positions

r1 mb10 mb12 t10;t11;t12;t13 t11:p;t12:p

r2 mb10 mb30 t10;t11;t12;t30 t11:p;t12:m

r3 mb13 mb11 t13;t12;t11;t10 t11:p;t12:p

r4 mb13 mb21 t13;t12;t11;t20 t11:m;t12:p

r5 mb20 mb12 t20;t11;t12;t13 t11:m;t12:p

r6 mb20 mb30 t20;t11;t12;t30 t11:m;t12:m

r7 mb31 mb11 t30;t12;t11;t10 t11:p;t12:m

r8 mb31 mb21 t30;t12;t11;t20 t11:m;t12:m

Fig. 2. Scheme plan “Twist”.

marker boards are used interchangeably throughout this paper. Our approach
can be used for both, systems using marker boards and classical systems having
physical signals.

Control tables. An interlocking system monitors constantly the status of track-
side elements, and sets them to appropriate states in order to allow trains travel-
ling safely through the given railway network. A control table specifies the routes
in the given network layout and the conditions for setting these routes. A route
is a path from a source signal to a destination signal.

In railway signalling terminology, setting a route denotes the process of al-
locating the resources – i.e. sections, points, signals – for the route, and then
locking it exclusively for only one train when the resources are allocated. The
specification of a route and conditions for setting and releasing it includes the
following information – c.f. the control table shown in Fig. 2: the name of the
route (e.g. r1), at which marker board it starts (e.g. mb10) and ends (e.g., mb12),
a list of the detection sections in the routes path (e.g. t10;t11;t12;t13) and the
required positions of points used by the route (e.g. t11:p;t12:p). Here p and m
stands for PLUS and MINUS, respectively.

Note that – for the sake of comparison – we restrict the control table format
as illustrated in Fig. 2 to those parts common to both modelling and verification
approaches to be discussed in this paper. In general, the DTU/Bremen approach
utilises an extended control table discussed in Section 3.2. In contrast, the Sur-



rey/Swansea approach includes release tables which will be described in Section
3.3. In Section 5 on error injection we will discuss how the two different ap-
proaches deal with errors injected in the common part. Additionally we will also
demonstrate the effect of errors in the extended control tables and in release
tables within the DTU/Bremen approach and the Surrey/Swansea approach,
respectively.

In order to prevent collision and derailment of trains, route-based interlocking
systems employ a basic principle: a route is locked exclusively for use of one train
at a time.

In this setting, we consider three safety properties:

1. collision-freedom excludes two trains occupying the same track;

2. run-through-freedom says that whenever a train enters a point, the point
is set to cater for this; e.g., when a train travels from track t20 to track t11,
point t11 is set so that it connects t20 and t12 (and not t10 and t12);

3. no-derailment says that whenever a train occupies a point, the point does
not move.

The correct design for the control table is safety-critical: mistakes can lead to a
violation of any of the three safety properties and thus lead to death or serious
injury to people, or loss or severe damage to equipment.

3 A descriptive comparison between the modelling
and verification approaches of DTU/Bremen and
Surrey/Swansea

3.1 Commonalities of both approaches

The DTU/Bremen and the Surrey/Swansea approach share as common starting
points:

Assumption We assume track equipment (signals, points, track circuits) to
function without mistake, i.e., both our modelling and verification approaches
target normal operation.

Narrative As reference point for our modelling we take standard literature on
railway signalling such as the book by Kerr and Rowbothan [18], interact
with industry, and discuss our models with railway engineers. Communica-
tion with practitioners is essential, as the literature is written in jargon and
not always as concise as one would wish for as the following quote might
illustrate: “When a valid route is received, the interlocking first checks the
availability of each set of points in the route and overlap. Points are deemed
to be available if they are already lying the correct way, or are not locked
the other way.” [18].



3.2 DTU/Bremen specialities

This section gives an overview of the verification framework developed by DTU/-
Bremen as part of the RobustRailS research project4. For details of this frame-
work, see [27, 26, 25, 5].

Overall objectives The framework provides support for an automated 3 step
verification and testing approach: (1) First a static check is performed on the
input scheme plan, (2) then a formal, behavioural system model is automat-
ically generated and model checked, (3) and finally model based testing of the
implemented system is done using test cases, test oracles etc. automatically
generated from the formal model. The static check is able to catch errors in
scheme plans and in particular in the control tables. The model checking is
used to check that the system model is safe and can be used to catch errors
in the designed control algorithms as well as to catch errors in the control
table if these have not already been found by the static checker. The reason
for having the extra static check is to catch as many errors as possible before
the more time consuming model checking. The testing is used to catch errors
in the implemented system. Below we will provide some more details of the
two first steps, but not on the testing as that is outside the scope of this
paper.

DSL specification of scheme plans The CAD plan and the control table are
represented in a DSL. The DTU/Bremen DSL, called Interlocking Config-
uration Language (ICL), has been formally specified in RSL, and an XML
representation has been implemented. An ICL representation can be cre-
ated manually, or exported from computer-aided design tools supporting
the XML format. Alternatively, the user can use the graphical user inter-
face [5] to specify the scheme plan by drawing the track plan and type in
the control table via an editor implemented as an Eclipse plug-in. The editor
can then export the specification to the XML format. As an option the user
may not explicitly provide a control table, but only a track plan and then
get a complete control table created automatically from the track plan.

Static check of scheme plans A static checker validates that the track plan
and control tables are well-formed, and in case there are errors, it suggests
what might be wrong and in some cases also how this can be fixed. The
checker validates for instance that any route path in the control table is
a connected path in the track plan and that required point positions are
correct. It is out of the scope of this paper to list all kinds of checks as there
are about 55 of them.

Specification of generic system models For each product family of inter-
locking systems, a second input is needed: a formal, generic system model.
This is given in Interlocking Dynamic Language (IDL), which is another
DSL, specially designed for the DTU/Bremen framework. Specifications in
this language are similar to RSL-SAL transition system specifications (Kripke
model representations consisting of variable declarations and state transition

4 http://www.imm.dtu.dk/ aeha/RobustRailS/index/



rules) with some additional built-in types and operators. State transition
rules for different kind of entities, e.g. the interlocking system controller
and track side elements, are placed in different modules and combined by
non-deterministic choice (possibly including a prioritization of the transition
rules) at the top level.

Automated creation of instantiated system models A system model is au-
tomatically created by instantiating the generic IDL system model with data
from the ICL scheme plan. Hence, an instantiated model does not include a
scheme plan. The resulting instantiated IDL system model is automatically
converted to the internal model representation of the RT-Tester tool [21, 24].

Here is an example of an IDL transition rule expressing that when the actual
state of a virtual signal s differs from its commanded state, the actual aspect
of the signal is updated to the commanded aspect:

s.ACT 6= s.CMD −→ s.ACT ’ = s.CMD

Verification properties The verification properties are automatically created
by instantiating a description of generic properties with data from the ICL
scheme plan. The resulting verification properties are expressed in RT-Tester
as invariants in propositional logic over the state variables of the system
model.

Example: For the specific model we used for the experiments reported in
this paper, there were no explicit train objects. Instead, train behaviour was
implicitly modelled via the occupancy status of track detection sections. This
was chosen as it captures behaviours corresponding to all possible numbers
of trains, each train having an arbitrary length. The train occupancy of a
linear track section t is captured by two integer variables t.D2U and t.U2D,
one for each of the two travel directions (called down-to-up and up-to-down)
through the section. If no train is driving on t in direction down-to-up/up-to-
down t.D2U/t.U2D is zero. Hence, there is no head-to-head collision on t, if
at least one of the two variables is zero, and this can therefore be expressed
as the following invariant:

t.D2U * t.U2D = 0

Verification in step 2

Verification task (what): It is verified that the invariants hold in all reach-
able system states of the system model instance.

Verification technique (how): Model checking, more specifically by k-
induction using bounded model checking. If the system model does not
satisfy the invariants, counter-examples will be generated. An interface
for visualising the counter-examples at the DSL (ICL) level is integrated
into the editor in Eclipse, see [5].

Verification tool: The bounded model checker of the RT-Tester tool.



3.3 Surrey/Swansea specialities

This section gives an overview of the verification framework developed by Sur-
rey/Swansea as part of their SafeCap and Ditto research projects5. For details
of this framework, see [15, 14].

Overall objective is to verify if a control table is safe w.r.t. a track plan.
Architecture All verification shall be performed by a model checker. This

means that also checks that could be performed by some static analyser
are encoded as model checking problems. These checks concern conditions
on well-formedness of the tables. These lead to two further safety properties,
namely:

– “no train on a route with a green signal” – this encodes the check that
the route path of the clear table covers all detection sections between
two marker boards; and

– “no deviation from the designated route” – this encodes the check that
all points on a route path are in the right position to guide the train
from the start marker board to the end marker board of a route.

Specification Language for the system model is CSP||B [22], a combina-
tion of the process algebra CSP and the B specification language that allows
for a combination of event-based and state-based modelling.
We use event-based modelling to capture state changes, e.g., a train moves
from one track to the other is represented as move.A.B; we use state-based
modelling to represent the rules that guide the behaviour of the interlocking,
e.g., the conditions under which a route can be set or cancelled.

Modelling – DSL The CAD plan and the tables are first represented in a
Domain Specific Language (DSL) before being encoded in CSP||B. This in-
termediate step allows to implement the whole modelling process as a model
transformation in our tool OnTrack [17].

Modelling – Track-plan, tables are represented in dedicated data types in
CSP||B.

Modelling – Entities A speciality of the Surrey/Swansea modelling approach
is that it directly represents railway entities as part of the specification, i.e.,
there is a controller, there is an interlocking, there are trains. This allows to
observe these identities in simulations, i.e., one can directly see how the train
moves, how the state of the interlocking changes, which route requests come
from the controller. Besides being helpful in the validation of the modelling
approach, this helps to reflect about the model: Surrey/Swansea have proven
a number of theorems on their modelling approach, see e.g. [13].

Modelling – System dynamics Active entities, i.e., entities which are able
to initiate a system change, are modelled as CSP processes. These are the
controller (who can request or cancel route) and the trains (which can move
along the track or remain). The interlocking as a passive component, i.e., it
reacts to train movements or controller requests, is modelled in B.

5 http://www.cs.swan.ac.uk/ csmarkus/ProcessesAndData/ditto



For each event that the controller or the trains initiate, the interlocking
updates its status and the track equipment according to the dynamic rules
as stated in [18]. E.g., a route can be released provided the entry signal of
this route is green, all locks of the route are still there, and there is no train
in front of the entry signal.

Encoding of the safety conditions The verification properties are encoded
as invariants in the specification language B, see the below code representing
when there is a collision between two trains on a detection section t.

Collision(t) == #(t1,t2).(t1 : TRAIN & t2 : TRAIN

& t1 /= t2 & t1:dom(pos) & t2:dom(pos)

& (dom({pos(t1)}) = {t}) & (dom({pos(t2)}) = {t}));

Verification Technology Model checking with the ProB tool [19]; the tool
checks that the invariant holds in all system states.

4 Error injection

Interlocking applications are developed according to the CENELEC standard
EN50128 [3] and to processes prescribed by Railway Authorities. For the UK,
Network Rail’s Governance for Railway Investment Projects (GRIP) provides
such a process. The first four GRIP phases define the track plan and routes
of the railway to be constructed, while phase five – the detailed design – is
contracted to a signalling company such as Siemens Rail Automation, UK, which
chooses appropriate track equipment, adds control tables to the track plan, and
implements the interlocking. Thus, in such a process the track plan is developed
first. Only in a second step signalling engineers enrich the track plan with a
control table. It is for exactly this second step, namely for the design of a control
table that our paper discusses support in terms of formal methods. As track plan
and routes come from earlier phases, actually the control table is the element
that needs verification.

Track plans can have a considerable size, comprising of hundreds of track-
side elements such as linear sections, points, marker boards. This makes control
tables complex due to their sheer size measured in numbers of entries needed in
the various columns. The control table of Langley – a station which signalling
engineers consider to be a small one – has about 160 entries, c.f. [13]. To guaran-
tee safety, every single entry in the control table needs to be correct, none can be
forgotten or wrong. To manually check all these entries is a challenging task with
a high error probability. It is for that reason, that at Siemens Rail Automation,
UK, there are at least three different people who independently perform these
checks.

Signalling engineers are well trained to apply various sets of design rules to
systematically develop control tables. Thus, one can assume that they have the
correct design in mind, however, that due to the sheer number of entries to be
produced it is likely that they make a mistake due to an oversight. Consequently,
in this paper we inject errors of “syntactic type” into an originally correct control



table, i.e., a control table which we have proven to be safe w.r.t. a given track
plan. More precisely we start with a correct control table and apply one of the
following error types (ET) to it:

ET1 – leave out one of the track ids in the route path column.
ET2 – exchange one “p” with an “m” or vice verse in the point positions column.
ET3 – delete one point entry in the point positions column.

Then we check if this altered control table still is safe.
Adding elements to the table would not effect safety: as we presume the

original control table to be safe anyway, an added element would only further
constrain the possible train behaviour – as the original set of train behaviours
was already safe, there won’t be any safety violations to be found in the reduced
set of behaviours.

In the next section on error detection, we will consider various scenarios: we
will systematically explore the effects of errors on a number of scheme plans.

5 Error detection

Both, the DTU/Bremen and the Surrey/Swansea approach, verify safety for the
given table of “Twist” as shown in Fig. 2 – and for the tables of two more scheme
plans “Mini” and “Cross” shown in Figs. 3 and 4 in Sec. 5.4. Thus, starting with
a proven to be correct control table, we can perform experiments where errors
are injected into the control table.

5.1 Injecting a single error into “Twist”

As the network is double symmetric, i.e., all eight routes are built in the same
way, we decided to inject errors only into the row concerning route r1:

Route name From To Route path Point positions

r1 mb10 mb12 t10;t11;t12;t13 t11:p;t12:p

For route r1 this results in total into eight different errors:

ET1 Four errors e1, . . . e4, each by forgetting one track section in the route path.
ET2 Two errors e5, e6, each by requiring one point to be in the wrong position.
ET3 Two errors e7, e8, each by forgetting a point position.

DTU/Bremen approach For error e1 – forgetting t10 in the route path
column – the static checker provides the error message: In route r1, two

consecutive segments, b10 and t11, are not connected. Similar outputs
are produced for e2 and e3. For error e4 – forgetting the last section, t13, in
the route path column such that the route does not end at the exit signal – the
error message is: The exit signal is not placed at the end of the last

section of route r1. For error e5 – set t11 in wrong position (m rather than



p) – the static checker provides the error message: For route r1, point t11

is set to MINUS, but it should have been set to PLUS. Similarly for e6.
For error e7 – forgetting to set point t11 – the static checker provides the

following error message: For route r1, point t11 is not given a point

position. Similarly for e8.
All eight errors have been detected. Note that all errors have been detected

by static checking, including a suggestion on what the error might be.

Surrey/Swansea approach For error e1 – forgetting t10 in the route path
column – the ProB tool finds an invariant violation and provides a counter
example trace leading to the violating state:

request.r1.yes, move.albert.offUnit.b10, nextSignal.albert.b10.green,

move.albert.b10.t10, request.r1.yes, release.r1.yes, request.r4.yes,

move.albert.t10.nullUnit, run-through

I.e., in step 6 it is possible to release route r1 although train albert is currently
on track t10; this allows it to set route r4, which moves point t11 to minus; thus,
in step 7, train albert moves onto a point set in the wrong direction. The tool
detects a run-through. Similar counter example traces are found for e2, e3, e4,
– where a collision is detected.

For error e5 – set t11 in wrong position (m rather than p) – the ProB tool
finds an invariant violation and provides as last step of the counter example
trace the event move.albert.t10.nullUnit, indicating that train albert enters
point t11 at the plus end while t11 is connecting the minus end. Also, for error
e6 – set t12 in wrong position (m rather than p) – the ProB tool finds an
invariant violation and provides as last two steps of the counter example trace
the events move.bertie.offUnit.b30; move.albert.t30.b30 – i.e., the two
trains bertie and albert collide on section b30.

Similarly, for e7 – forgetting to set point t11 – ProB comes up with a counter
example trace where train albert enters the point t11 at the plus end while t11
is connecting the minus end. For e8 – forgetting to set point t12 – ProB comes
up with a counter example trace ending with a collision section b30.

All eight errors have been detected. Note that all errors have been uncovered
by model checking where the counter example trace provides an insight into the
nature of the first fault detected. Note that further faults might be possible – the
tool provides just the first counter example trace found during state exploration.

5.2 Injecting multiple errors in “Twist”

Naturally, it is also possible to inject several errors into one table. Therefore, as
in good testing practice, we experiment with at least one scenario including two
mistakes at the same time, namely

ET2 – e6 – set t12 in wrong position (m) and
ET3 – e7 – forget to set point t11.



In the DTU/Bremen approach the static checker find both errors:
For route r1, point t11 is not given a point position.

For route r1, point t12 is set to MINUS, but it should have been

set to PLUS.

In the Surrey/Swansea approach the model checker provides a counter ex-
ample trace classifying the safety violation as a run-through.

5.3 Further errors in the parts different in both modellings

As discussed earlier, the control table used above is common to both approaches.
However, thanks to national differences and also different suppliers, they both
have a richer input format. In the following we experiment with errors outside
of the shared input.

DTU/Bremen approach The DTU/Bremen approach has an extended con-
trol table that also includes a list of conflicting routes. In case one forgets to
include route r2 in the list of conflicting routes for route r1, the static checker
highlights this with the message:
Routes r1 and r2 are in conflict, but route r2 is not listed in

the conflicts of route r1. Reasons to be in conflict:

Non-concatenated routes with shared elements: t10, t11, t12.

Yet another column consists of protecting signals that must be closed when
setting a route. When one forgets mb11 (on track t10) in the list of protecting
signals for route r1, the static checker flags this with the message:
For route r1, signal mb11 at section t10 should have been listed as

a protecting signal.

Another type of error is to forget to set a point that should provide flank
protection for the route. Such errors will be caught by the static checker and
suggestions for fixing that will be presented. However, this type of error can’t
be illustrated for the twist network as there are no such cases.

Surrey/Swansea approach The Surrey/Swansea approach has as a further
input a collection of so-called release tables. These tables determine when the
locks on points can be released.

One interesting case is when one releases point t11 too early and forgets
to include t11 into the route path. Here, the model checker finds the following
counter example trace:

move.bertie.offUnit.b10, request.r1.yes nextSignal.bertie.b10.green,

move.bertie.b10.t10, move.albert.offUnit.b10, move.bertie.t10.t11,

request.r1,yes, nextSignal.albert.b10.green, move.albert.b10.t10,

move.albert.t10.t11, collide

The trains albert and bertie collide on point t11. This happens as route r1 is
wrongly set in step 7: as t11 is not in the route path, the interlocking does not
check if this track is free; as t11 is released early, there is also no lock on the
point t11.



5.4 Error injection in further scheme plans

In this section we consider error injections in the tables of the two scheme plans
shown in Figs. 3 and 4.

(a) Track plan

t10 t14t13t12

mb10 mb14mb13

mb12mb11 mb15
t20

mb21

mb20

t11

UPDOWN

b10 b14

(b) Control Table

Route name From To Route path Point positions

r1b mb10 mb13 t10;t11;t12 t11:p

r2b mb10 mb21 t10;t11;t20 t11:m

r3 mb12 mb11 t11;t10 t11:p

r4 mb13 mb14 t13;t14 t13:p

r5b mb15 mb12 t14;t13;t12 t13:p

r6b mb15 mb20 t14;t13;t20 t13:m

r7 mb20 mb11 t11;t10 t11:m

r8 mb21 mb14 t13;t14 t13:m

Fig. 3. Scheme plan for “Mini”

Mini. For symmetry reasons it is enough to consider route r1b (an entry route)
with five errors:

– three of type ET1 (forget t10, t11, and t12, respectively)
– one of type ET2 (set point t11 in wrong position)
– one of type ET3 (forget to set point t11)

and route r4 (an exit route) with four errors:

– two of type ET1 (forget t13 and t14, respectively)
– one of type ET2 (set point t13 in wrong position)
– one of type ET3 (forget to set point t13)

Cross. For symmetry reasons it is enough to consider routes r1b with five errors:

– three of type ET1 (forget t10, t11, and t12, respectively)
– one of type ET2 (set point t11 in wrong position)



(a) Track plan

t10 t11 t12
mb12

mb21

t20 t21 t22

mb11
mb22

mb10

b10

mb23

b22

mb20

b20

mb13

b12

(b) Control Table

Route name From To Route path Point positions

r1b mb10 mb12 t10;t11;t12 t11:p

r2 mb10 mb22 t10;t11;t21;t22 t11:m;t21:m

r3b mb13 mb11 t12;t11;t10 t11:p

r4b mb20 mb22 t20;t21;t22 t21:p

r5b mb23 mb21 t22;t21;t20 t21:p

r6 mb23 mb11 t22;t21;t11;t10 t11:m;t21:m

Fig. 4. Scheme plan for “Cross”

– one of type ET3 (forget to set point t11)

and route r2 with eight errors:

– four of type ET1 (forget t10, t11, t21 and t22, respectively)
– two of type ET2 (set points t11 and t21 in wrong position, respectively)
– two of type ET3 (forget to set points t11 and t21, respectively)

and route r4b with five errors

– three of type ET1 (forget t20, t21, and t22, respectively)
– one of type ET2 (set point t21 in wrong position)
– one of type ET3 (forget to set point t21)

Results. Both verification approaches find all errors, in case of the DTU/Bre-
men approach the static checker provides error messages as illustrated above,
in case of the Surrey/Swansea approach the ProB model checker finds counter
example traces.

6 Summary

This paper presented a first systematic comparison of rail modelling and verifica-
tion approaches developed by different research groups, in our case the research
groups at DTU/Bremen and at Surrey/Swansea.



In order to relate the input of these modelling approaches we defined a com-
mon core and discussed differences. In order to relate the formal models, we
attempted to present the modelling approaches in a uniform way. In order to
relate the verification results we proposed a practicable and useful approach in
the form of a testing equivalence: though input and output of both approaches
are different, however, both approaches catch the same errors.

For the research community we see this comparison as pioneering work, to
which we hope – in the long run – other groups will contribute as well by running
their verification approaches through the very same exercises, i.e., this paper can
serve as a starting point for a benchmark for railway verification.

In future work we would like

– to consolidate the common input core by including work from further group.
– extend the benchmark with further and larger scheme plans. However, note

that in general safety properties of scheme plans are local. This has been
exploited by several authors, e.g., for testing and for compositional reasoning
[13]. Therefore, one would not expect that considering larger scheme plans
would provide new insights into the error detection capabilities of verification
approaches.

– to develop a systematic questionnaire for comparing modelling and verifica-
tion approaches

– to compare actual models by (1) highlighting the different assumptions made
for the formal model, i.e., what are the chosen abstractions (e.g., with re-
spect to train length, speed, behaviour of trains, and whether shunting is
considered etc.) and (2) highlighting differences in the approaches to route
allocation and release (e.g., whether sequential release is used)

– to cover performance aspects such as (1) their scalability, i.e., the limits for
the size of track plans and control tables that the approaches can deal with
and (2) verification speed, i.e., how long time does it take to verify? For such
a comparison to be fair, it needs to be measured for models of the same
system, but such data is not currently available.
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