Title	Revisiting two-sided stability constraints				
Authors	Siala, Mohamed;O'Sullivan, Barry				
Publication date	$2016-05$				
Original Citation	Siala, M. and 0'Sullivan, B. (2016) 'Revisiting Two-Sided Stability Constraints', in Quimper, C.-G. led.) Integration of Al and OR Techniques in Constraint Programming: 13th International Conference, CPAIOR 2016, Banff, AB, Canada, May 29 -				
June 1, 2016, Lecture Notes in Computer Science, vol. 9676,					
Cham: Springer International Publishing, pp. 342-357. doi:					
$10.1007 / 978-3-319-33954-2 _25$		$	$	Conference item	
:---	:---				
Type of publication	10.1007/978-3-319-33954-2_25				
Link to publisher's version	© Springer International Publishing AG. The final publication is available at Springer via https:// doi.org/10.1007/978-3-319-33954-2_25				
Rights	2024-04-24 08:10:37 Download date				
Item downloaded from	https://hdl.handle.net/10468/2480				

University College Cork, Ireland
Coláiste na hOllscoile Corcaigh

Revisiting Two-Sided Stability Constraints^

Mohamed Siala and Barry O'Sullivan
Insight Centre for Data Analytics
Department of Computer Science, University College Cork, Ireland
\{mohamed.siala|barry.osullivan\}@insight-centre.org

Abstract

We show that previous filtering propositions on two-sided stability problems do not enforce arc consistency (AC), however they maintain $\operatorname{Bound}(\mathcal{D})$ Consistency ($\mathrm{BC}(\mathrm{D})$). We propose an optimal algorithm achieving $\mathrm{BC}(\mathrm{D})$ with $O(L)$ time complexity where L is the length of the preference lists. We also show an adaptation of this filtering approach to achieve AC. Next, we report the first polynomial time algorithm for solving the hospital/resident problem with forced and forbidden pairs. Furthermore, we show that the particular case of this problem for stable marriage can be solved in $O\left(n^{2}\right)$ which improves the previously best complexity by a factor of n^{2}. Finally, we present a comprehensive set of experiments to evaluate the filtering propositions.

1 Introduction

Many real world problems involve matching preferences between two sets of agents while respecting some stability criteria. For instance, in College Admissions one needs to assign students to colleges while respecting the students' preferences over colleges, the colleges' preferences over students, as well as college quotas [3]. Gale and Shapley introduced the first polynomial time algorithm for solving this problem in their seminal paper [3]. Since then a number of algorithms have been proposed for solving variants of these problems. Such ad-hoc methods are unlikely to be reusable if there are minor changes to the problem.

Constraint programming (CP) is a rich framework for modelling and solving many combinatorial problems. Expressing problems involving preferences in CP is extremely beneficial for tackling variants that involve side constraints. We consider the notion of two-sided stability as a global constraint. We first make the observation that the previous CP propositions on two-sided stability problems (such as $[4,9,7,10]$) do not enforce Arc Consistency (AC), however they do maintain Bound (\mathcal{D}) Consistency ($\mathrm{BC}(\mathrm{D})$). We propose an incremental algorithm that achieves $\mathrm{BC}(\mathrm{D})$ with $O(L)$ time complexity where L is the length of the preference lists, thereby improving the previously best known complexity of $O(c \times L)$ (where c is the maximum quota). We also present, for the first time, an adaptation of the filtering to achieve AC on this global constraint with an additional cost of $n \times L$ (where n is the number of residents).

[^0]Based on the $\mathrm{BC}(\mathrm{D})$ propagator, we show that the hospital/resident problem with forced and forbidden pairs can be solved in polynomial time. Furthermore, we show that the particular case of this problem for stable marriage can be solved in $O\left(n^{2}\right)$ which improves the previously best complexity by a factor of n^{2}. Finally, we present a set of experiments to evaluate the filtering efficiency on randomly generated instances. The experimental results show compelling evidence that AC does further prune the search space as compared with $\mathrm{BC}(\mathrm{D})$, however, it considerably slows down the exploration of the search space.

The remainder of the paper is organized as follows. In Section 2 we give the definitions and the notation used throughout the paper. In Section 3 we show that the level of filtering of previous CP approaches is only $\mathrm{BC}(\mathrm{D})$. Next, we show an optimal implementation of a $\mathrm{BC}(\mathrm{D})$ algorithm running in $O(L)$ time in Section 4. We also show how to use the same algorithm to achieve AC. In Section 5 we discuss the complexity of the hospital/resident problem with forced and forbidden pairs. Finally, we present the experimental results in Section 6.

2 Definitions and Related work

2.1 Constraint Programming

Let \mathcal{X} be a set of integer variables. A domain for \mathcal{X}, denoted by \mathcal{D}, is a mapping from variables to finite sets of integers. For each variable x, we call $\mathcal{D}(x)$ the domain of the variable x. We use $\min (x)$ to denote the minimum value in $\mathcal{D}(x)$ and $\max (x)$ to denote the maximum value in $\mathcal{D}(x)$. Let $\left[x_{1}, \ldots, x_{k}\right]$ be a sequence of integer variables. A constraint C defined over $\left[x_{1}, \ldots, x_{k}\right]$ is a finite subset of \mathbb{Z}^{k}. The sequence $\left[x_{1}, \ldots, x_{k}\right]$ is the scope of C (denoted by $\left.\mathcal{X}(C)\right)$ and k is called the arity of C. A support for C in a domain \mathcal{D} is a k-tuple τ such that $\tau \in C$ and $\tau[i] \in \mathcal{D}\left(x_{i}\right)$ for all $i \in[1, \ldots, k]$. The constraint C is Arc-Consistent $(A C)$ in \mathcal{D} iff $\forall i \in[1, \ldots, k], \forall j \in \mathcal{D}\left(x_{i}\right)$, there exists a support τ for C in \mathcal{D} such that $\tau[i]=j$. C is Bound (D) Consistent $(B C(D))$ in \mathcal{D} iff $\forall i \in[1, \ldots, k]$, there exists two supports τ_{1} and τ_{2} for C in \mathcal{D} such that $\tau_{1}[i]=\min \left(x_{i}\right)$ and $\tau_{2}[i]=\max \left(x_{i}\right)[1]$.

2.2 The Hospital/Resident Problem

Given a sequence \mathcal{S} of distinct elements and $j \in \mathcal{S}$, we denote by $\mathcal{S}^{-1}[j]$ the index i such that $\mathcal{S}[i]=j$. We define a complete order $\underset{\mathcal{S}}{\prec}$ on \mathcal{S} as follows: $\forall k, l \in \mathcal{S}, k \underset{\mathcal{S}}{\prec} l$ iff $\mathcal{S}^{-1}[k]<\mathcal{S}^{-1}[l]$. We will also use the notation $l \succ \succ_{\mathcal{S}} k$ when $k \underset{\mathcal{S}}{\prec} l$. In the context of preferences, $k \underset{\mathcal{S}}{\prec} l$ (respectively $k \succ_{\mathcal{S}} l$) can be understood as k is better (respectively worse) than l with respect to \mathcal{S}.

In the Hospital/Resident (HR) problem (called College Admissions in [3]), we are seeking the assignment of residents $r_{1}, \ldots, r_{n_{R}}$ to hospitals $h_{1}, \ldots, h_{n_{H}}$. Each hospital h_{j} has a capacity c_{j} as the maximum number of assigned residents. Each resident r_{i} has a sequence of integers \mathcal{R}_{i} ranking some hospitals in a strictly
increasing order of preferences. That is, r_{i} prefers hospital h_{k} to hospital h_{l} iff $k \underset{\mathcal{R}_{i}}{\prec} l$. Conversely, each hospital h_{j} is associated with a sequence of integers \mathcal{H}_{j} ranking some residents in a strictly increasing order. We denote by $l e n^{r}{ }_{i}$ the length of \mathcal{R}_{i} and len ${ }_{j}$ the length of \mathcal{H}_{i}.

Let $\mathcal{E}=\left\{(i, j) \mid i \in\left[1, n_{R}\right] \wedge j \in\left[1, n_{H}\right] \wedge i \in \mathcal{H}_{j} \wedge j \in \mathcal{R}_{i}\right\}$ the set of acceptable pairs. A matching \mathcal{M} is a subset of \mathcal{E} where $|\{j \mid(i, j) \in \mathcal{M}\}| \leq 1 \forall i \in\left[1, n_{R}\right]$ and $|\{i \mid(i, j) \in \mathcal{M}\}| \leq c_{j}, \forall j \in\left[1, n_{H}\right]$. A resident r_{i} is said to be unassigned in \mathcal{M} iff $|\{j \mid(i, j) \in \mathcal{M}\}|=0$. Similarly, a hospital h_{j} is under-subscribed in \mathcal{M} iff $|\{i \mid(i, j) \in \mathcal{M}\}|<c_{j}$. A pair $(i, j) \in \mathcal{E} \backslash \mathcal{M}$ is said to be blocking \mathcal{M} iff the following two conditions are true:

1. r_{i} is unassigned in \mathcal{M} or $\exists k \in\left[1, n_{H}\right]$ such that $(i, k) \in \mathcal{M}$ and $j \underset{\mathcal{R}_{i}}{\prec}{ }_{i} k$
2. h_{j} is under-subscribed in \mathcal{M} or $\exists l \in\left[1, n_{R}\right]$ such that $(l, j) \in \mathcal{M}$ and $i \underset{\mathcal{H}_{j}}{\prec} l$

A matching \mathcal{M} is said to be stable iff there is no blocking pair for \mathcal{M}.
The Hospital/Resident ($H R$) problem is to find a stable matching for a given instance. The stable marriage problem $(S M)$ is a particular case of HR where $c_{j}=1$ for all $j \in\left[1, n_{H}\right]$. We assume, without loss of generality in the remainder of the paper, that a resident r has a hospital h in its preference list iff h has r in its preference list. In this case, the length of the preference lists $L=\sum_{i=1}^{n_{R}} \operatorname{len}^{r}{ }_{i}=$ $\sum_{j=1}^{n_{H} l e n^{r}}{ }_{j}$.

Gale and Shapley proposed an $O(L)$ algorithm for solving the HR problem [3]. The algorithm, known as the resident-oriented Gale/Shapley algorithm (RGS) returns the unique matching where each resident is assigned to the best possible hospital that it can be assigned to in any stable matching. A similar algorithm for hospitals (i.e. hospital-oriented Gale/Shapley algorithm (HGS)) exists and has the same complexity $O(L)$. RGS and HGS operate by removing residents/hospitals from preference lists. The intersection of the reduced lists (returned by RGS and HGS) is called the GS-lists. The GS-lists are important since every stable matching is included in it [5].

Theorem 1. From [5]

1. The number of assigned residents per hospital is the same in all stable matchings
2. If a resident r_{i} is unassigned in one stable matching then it is unassigned in all stable matchings.
3. If a hospital h_{j} is under-subscribed in one stable matching then it is assigned exactly the same residents in all stable matching

We will use the following notation:

- HUnder $=\left\{j \mid h_{j}\right.$ is under-subscribed in all stable matchings $\}$.
- HUnder ${ }_{j}=\left\{i \mid r_{i}\right.$ is assigned to h_{j} in all stable matchings $\}$ where $j \in$ HUnder
- HFull $=\left[1, n_{H}\right] \backslash$ HUnder.
- RUnassigned $=\left\{i \mid r_{i}\right.$ is unassigned in all stable matchings $\}$.
- RFree $=\left\{i \mid r_{i} \notin\right.$ RUnassigned and $\left\{j \mid i \in\right.$ HUnder $\left.\left._{j}\right\}=\emptyset\right\}$.

2.3 Related Work in Constraint Programming

We first describe one of the CP models for the HR problem proposed in [7]. Each resident r_{i} is associated with an integer variable x_{i} where $\mathcal{D}\left(x_{i}\right)=\left[1, . .\right.$, len $\left.{ }^{r}{ }_{i}\right] \cup$ $\left\{n_{H}+1\right\}$. Each hospital h_{j} is associated with $c_{j}+1$ integer variables $y_{j, k}(k \in$ $\left.\left[0 . . c_{j}\right]\right)$ where $\mathcal{D}\left(y_{j, 0}\right)=0$ and $\mathcal{D}\left(y_{j, k}\right)=\left[k\right.$, len $\left.^{h}{ }_{j}\right] \cup\{n+k\}$. Assigning x_{i} to $n_{H}+1$ is understood as the resident r_{i} being unassigned. Assigning x_{i} to a value $a \in\left[1, l e n^{r}{ }_{i}\right]$ is semantically equivalent to assigning r_{i} to its a th favourite hospital. Similarly, assigning $y_{j, k}$ to a value $b \in\left[1, l e n^{h}{ }_{j}\right]$ means that the b th favourite resident to h_{j} is assigned to the k th position of h_{j}. If $y_{j, k}$ is assigned to $\{n+k\}$ then the $k^{t h}$ position for hospital h_{j} is not assigned to any resident. These variables are subject to the following constraints (in these constraints $p_{i, j}$ denotes the rank of hospital h_{j} in \mathcal{R}_{i} and $q_{i, j}$ denotes the rank of the resident r_{i} in \mathcal{H}_{j}):

$$
\begin{gather*}
y_{j, k}<y_{j, k+1}\left(\forall j \in\left[1, n_{H}\right], \forall k \in\left[1, c_{j}-1\right]\right) \tag{1}\\
y_{j, k} \geq q_{i, j} \Longrightarrow x_{i} \leq p_{i, j}\left(\forall j \in\left[1, n_{H}\right], \forall k \in\left[1, c_{j}\right], \forall i \in \mathcal{H}_{j}\right) \tag{2}\\
x_{i} \neq p_{i, j} \Longrightarrow y_{j, k} \neq q_{i, j}\left(\forall i \in\left[1, n_{R}\right], \forall j \in \mathcal{R}_{i}, \forall k \in\left[1, c_{j}\right]\right) \tag{3}\\
\left(x_{i} \geq p_{i, j} \wedge y_{j, k-1}<q_{i, j}\right) \Longrightarrow y_{j, k} \leq q_{i, j}\left(\forall i \in\left[1, n_{R}\right], \forall j \in \mathcal{R}_{i}, \forall k \in\left[1, c_{j}\right]\right) \tag{4}\\
y_{j, c_{j}}<q_{i, j} \Longrightarrow x_{i} \neq p_{i, j}\left(\forall j \in\left[1, n_{H}\right], \forall i \in \mathcal{H}_{j}\right) \tag{5}
\end{gather*}
$$

We refer to this encoding as Γ. Enforcing AC on Γ yields to a domain that is equivalent to the GS-lists [7]. This property is important, however, it does not necessarily rule out all inconsistent values. The authors of [7] showed an efficient implementation of this encoding using one constraint. Their filtering runs in $O(c \times L)$ (where $c=\max \left\{c_{j} \mid j \in\left[1, n_{H}\right]\right\}$) and does not further prune the domains. In fact, in terms of the level of propagation, all previous work in the literature including SM $[4,9,7,10]$ focus on showing how their encodings maintains the GS-lists and never investigate the question of completing the filtering.

Note also that the notion of GS-lists is not well-defined during search. That is, for instance, when few residents are assigned/unassigned to some specific hospitals at a given node of the search tree.

3 Characterizing the Level of Consistency

We show in this section that the previous CP models are not complete and enforce only $\mathrm{BC}(\mathrm{D})$.

Example 1 (Counter-example). Consider the case where $n_{R}=n_{H}=4, c_{1}=c_{2}=$ $c_{3}=c_{4}=1, \mathcal{R}_{1}=[3,2,1], \mathcal{R}_{2}=[4,1,3,2], \mathcal{R}_{3}=[2,4,3], \mathcal{R}_{4}=[1,3,4], \mathcal{H}_{1}=$ $[1,2,4], \mathcal{H}_{2}=[2,1,3], \mathcal{H}_{3}=[3,2,4,1], \mathcal{H}_{4}=[4,3,2]$. The domain is initialised as follows: $\mathcal{D}\left(x_{1}\right)=\mathcal{D}\left(x_{3}\right)=\mathcal{D}\left(x_{4}\right)=\{1,2,3,5\}, \mathcal{D}\left(x_{2}\right)=\{1,2,3,4,5\}, \mathcal{D}\left(y_{1,0}\right)=$ $\mathcal{D}\left(y_{2,0}\right)=\mathcal{D}\left(y_{3,0}\right)=\mathcal{D}\left(y_{4,0}\right)=0, \mathcal{D}\left(y_{1,1}\right)=\mathcal{D}\left(y_{2,1}\right)=\mathcal{D}\left(y_{4,1}\right)=\{1,2,3,5\}$, and $\mathcal{D}\left(y_{3,1}\right)=\{1,2,3,4,5\}$. Constraint 2 with $y_{1,1}>=1$ enforces $x_{1} \leq 3$,
hence removing the value 5 from $\mathcal{D}\left(x_{1}\right)$. A similar propagation is performed on Constraint 2 with $y_{2,1} \geq 1, y_{3,1} \geq 1$, and $y_{4,1} \geq 1$ and the value 5 is removed from $\mathcal{D}\left(x_{2}\right), \mathcal{D}\left(x_{3}\right)$, and $\mathcal{D}\left(x_{4}\right)$. Now consider Constraint 4 with $x_{1} \geq 1 \wedge y_{3,0}<4$. This enforces $y_{3,1} \leq 4$. The same constraint is triggered with $x_{2} \geq 1 \wedge y_{4,0}<3$, $x_{3} \geq 1 \wedge y_{2,0}<3$, and $x_{4} \geq 1 \wedge y_{1,0}<3$. Therefore the value 5 is removed from $\mathcal{D}\left(y_{1,1}\right), \mathcal{D}\left(y_{2,1}\right), \mathcal{D}\left(y_{3,1}\right)$, and $\mathcal{D}\left(y_{4,1}\right)$. No more propagation is needed. However, assigning x_{2} to 3 does not belong to any solution.

Example 1 shows that AC on Γ is not sufficient to provide complete filtering. Note that since all capacities $c_{j}=1$ this example confirms the property even for the particular case of stable matching.

In the rest of the paper we use 2 - $\operatorname{SidedStability}(\mathcal{X}, \mathcal{A}, \mathcal{B}, \mathcal{C})$ to denote the global constraint modelling 2 -sided stability. More precisely, for a given HR problem:
$-\mathcal{X}$ is the set of variables $x_{1}, \ldots, x_{n_{R}}$ defined the same way in Γ,
$-\mathcal{A}=\left\{\mathcal{R}_{1}, \ldots, \mathcal{R}_{n_{R}}\right\}$
$-\mathcal{B}=\left\{\mathcal{H}_{1}, \ldots, \mathcal{H}_{n_{H}}\right\}$
$-\mathcal{C}=\left\{c_{1}, \ldots, c_{n_{H}}\right\}$
We show that AC on Γ enforces $\mathrm{BC}(\mathrm{D})$ on any domain \mathcal{D}.
Lemma 1. If Γ is $A C$ then

1. $\forall i \in$ RUnassigned, $\mathcal{D}\left(x_{i}\right)=\left\{n_{H}+1\right\}$.
2. $\forall j \in$ HUnder, $\forall i \in$ HUnder $_{j}, \mathcal{D}\left(x_{i}\right)=\{k\}$ such that $k=\mathcal{R}_{i}{ }^{-1}[j]$.
3. $\forall j \in$ HUnder, $\forall k \in\left[1, \mid\right.$ HUnder $\left._{j} \mid\right], \mathcal{D}\left(y_{j, k}\right)=\left\{a_{k}\right\}$ such that a_{k} is the k th favourite resident to h_{j} whose index is in HUnder $_{j}$.
4. $\forall j \in$ HUnder, $\forall k>\mid$ HUnder $_{j} \mid, \mathcal{D}\left(y_{j, k}\right)=\{n+k\}$.
5. $\forall j \in$ HFull, $\forall i \in\left[1, n_{R}\right]$, if $\exists k \in \mathcal{D}\left(x_{i}\right)$, such that $j=\mathcal{R}_{i}[k]$, then $i \in$ RFree.
6. $\forall i \in$ RFree, $\forall j \in\left[1, n_{H}\right]$ if $\exists k \in \mathcal{D}\left(x_{i}\right)$, such that $j=\mathcal{R}_{i}[k]$, then $j \in$ HFull.
7. \mid RFree $\mid=\sum_{j \in \text { HFull }} c_{j}$.

Proof. The lemma is a direct consequence of Theorem 1 and the fact that AC on the initial domain is a superset of any domain returned by AC in the search tree. Recall that AC on the initial domain is equivalent to the GS-lists.

Lemma 2. If Γ is $A C$ then for all $i \in\left[1, n_{R}\right], 1 \leq k<\max \left(x_{i}\right)$, and $h=\mathcal{R}_{i}[k]$, we have $h \in$ HFull.

Proof. Consider the domain \mathcal{D}^{*} obtained after enforcing AC on the initial domain. We know that this domain corresponds to the GS-lists. Therefore, assigning all variables to their maximum in \mathcal{D}^{*} is a support (i.e. the hospital-oriented stable matching). Hence for all $1 \leq k<\max \left(\mathcal{D}^{*}\left(x_{i}\right)\right)$, and $h=\mathcal{R}_{i}[k], h \in$ HFull (from the definition of stability). Therefore, if Γ is AC on any arbitrary domain, then we know that $\max \left(x_{i}\right) \leq m$, and consequently for all $1 \leq k<\max \left(x_{i}\right)$, and $h=\mathcal{R}_{i}[k]$, we have $h \in$ HFull.

Lemma 3. If Γ is $A C$ then $\forall j \in$ HFull, $\left|\left\{i \mid \mathcal{R}_{i}\left[\min \left(x_{i}\right)\right]==j\right\}\right|=c_{j}$.

Proof. Let $\Phi_{j}=\left\{i \mid \mathcal{R}_{i}\left[\min \left(x_{i}\right)\right]==j\right\}$. We first show that $\left|\Phi_{j}\right| \leq c_{j}$. Suppose by contradiction that $\exists j \in$ HFull, $\left|\Phi_{j}\right|>c_{j}$. For all $k \in\left[1,\left|\Phi_{j}\right|\right]$, we define $r_{a_{k}}$ to be the $\mathrm{k} t h$ favourite resident to h_{j} whose index is in Φ_{j} (i.e. $a_{k} \in \Phi_{j}$).

We show by induction that $\forall k \in\left[1, c_{j}\right], \max \left(y_{j, k}\right) \leq \mathcal{H}_{j}{ }^{-1}\left[x_{a_{k}}\right]$. For $k=1$, since Constraint 4 of Γ is AC, and $y_{j, 0}=0<\mathcal{H}_{j}^{-1}\left[x_{a_{1}}\right]$ then $\max \left(y_{j, 1}\right) \leq$ $\mathcal{H}_{j}{ }^{-1}\left[x_{a_{1}}\right]$. Suppose that the property holds for $k \in\left[1, c_{j}-1\right]$. We have $\max \left(y_{j, k}\right) \leq$ $\mathcal{H}_{j}{ }^{-1}\left[x_{a_{k}}\right]$. Therefore, Constraint 4 of Γ enforces $\max \left(y_{j, k+1}\right) \leq \mathcal{H}_{j}{ }^{-1}\left[x_{a_{k+1}}\right]$ since $\mathcal{H}_{j}{ }^{-1}\left[x_{a_{k}}\right]<\mathcal{H}_{j}{ }^{-1}\left[x_{a_{k+1}}\right]$.

Consider now $k \in\left[c_{j}+1,\left|\Phi_{j}\right|\right]$. We have $\max \left(y_{j, c_{j}}\right)<\mathcal{H}_{j}{ }^{-1}\left[x_{a_{k}}\right]$ (since $\left.\mathcal{H}_{j}{ }^{-1}\left[x_{a_{c_{j}}}\right]<\mathcal{H}_{j}^{-1}\left[x_{a_{k}}\right]\right)$. Therefore Constraint 5 of Γ removes $\mathcal{R}_{a_{k}}{ }^{-1}[j]$ from $\mathcal{D}\left(x_{a_{k}}\right)$ which contradicts the fact that $\mathcal{R}_{a_{k}}\left[\min \left(x_{a_{k}}\right)\right]=j$. Hence $\left|\Phi_{j}\right| \leq c_{j}$.

Using Properties 5, 6, and 7 of Lemma 1 we obtain

$$
\sum_{j \in H F u l l}\left|\Phi_{j}\right|=\sum_{j \in H F u l l} c_{j} .
$$

Therefore, $\left|\Phi_{j}\right|=c_{j}$.
Lemma 4. If Γ is $A C$ then $\forall j \in \operatorname{HFull},\left|\left\{i \mid \mathcal{R}_{i}\left[\max \left(x_{i}\right)\right]==j\right\}\right|=c_{j}$.
Proof. We show first that $\forall j \in H F u l l, \forall k \in\left[1, c_{j}\right]$, if $\mathcal{H}_{j}\left[\min \left(y_{j, k}\right)\right]=i$, then $\mathcal{R}_{i}\left[\max \left(x_{i}\right)\right]=j$. Suppose by contradiction that there exists j, k, i such that $\mathcal{H}_{j}\left[\min \left(y_{j, k}\right)\right]=i$ and $\mathcal{R}_{i}\left[\max \left(x_{i}\right)\right] \neq j$. Then Constraint 2 enforces $\max \left(x_{i}\right) \leq$ $\mathcal{R}_{i}{ }^{-1}[j]$. Therefore we have $\max \left(x_{i}\right)<\mathcal{R}_{i}{ }^{-1}[j]$. Thus, Constraint 3 removes $\mathcal{H}_{j}{ }^{-1}[i]$ from $\mathcal{D}\left(y_{j, k}\right)$ which contradicts the hypothesis. Hence we have $\forall j \in$ HFull, $\forall k \in\left[1, c_{j}\right]$, if $\mathcal{H}_{j}\left[\min \left(y_{j, k}\right)\right]=i$, then $\mathcal{R}_{i}\left[\max \left(x_{i}\right)\right]=j$.

Observe that propagating Constraint 1 enforces $\min \left(y_{j, 1}\right), \min \left(y_{j, 2}\right), \ldots$, $\min \left(y_{j, c_{j}}\right)$ to have different values. Therefore $\forall j \in \operatorname{HFull}, \mid\left\{\min \left(y_{j, k}\right) \mid k \in\right.$ $\left.\left[1, c_{j}\right]\right\} \mid=c_{j}$. Thus $\left|\left\{i \mid \mathcal{R}_{i}\left[\max \left(x_{i}\right)\right]==j\right\}\right| \geq c_{j}$.

Since $\mathcal{R}_{i}\left[\max \left(x_{i}\right)\right]==j$ is true only when $i \in$ RFree, and for all $i \in$ RFree, $\mathcal{R}_{i}\left[\max \left(x_{i}\right)\right] \in$ HFull then $\sum_{j \in \text { HFull }}\left|\left\{i \mid \mathcal{R}_{i}\left[\max \left(x_{i}\right)\right]==j\right\}\right|=\mid$ RFree $\mid=$ $\sum_{j \in \text { HFull }} c_{j}$. Therefore, $\forall j \in$ HFull, $\left|\left\{i \mid \mathcal{R}_{i}\left[\max \left(x_{i}\right)\right]==j\right\}\right|=c_{j}$.
We now introduce a sufficient and necessary condition for stability in Theorem 2.
Theorem 2. 2-SidedStability $(\mathcal{X}, \mathcal{A}, \mathcal{B}, \mathcal{C})$ is satisfiable iff

$$
\begin{gathered}
\forall 1 \leq j \leq n_{H}, \sum_{i=1}^{n_{R}}\left(\mathcal{R}_{i}\left[x_{i}\right]==j\right) \leq c_{j} \wedge \\
\forall 1 \leq i \leq n_{R}, \forall 1 \leq j \leq n_{H}+1, x_{i}=j \Longrightarrow \forall k \in\left[1, j\left[, \text { if } h=\mathcal{R}_{i}[k]\right. \text {, then }\right. \\
\sum_{m=1}^{n_{R}}\left(\mathcal{R}_{m}\left[x_{m}\right]==h\right)=c_{h} \wedge \forall l \underset{\mathcal{H}_{h}}{\succ} i, \mathcal{R}_{l}\left[x_{l}\right] \neq h .
\end{gathered}
$$

Proof. (\Rightarrow) Let \mathcal{M} be a stable matching and suppose that the variables are assigned accordingly. Clearly, by construction, $\forall 1 \leq j \leq n_{H}, \quad \sum_{i=1}^{n_{R}}\left(\mathcal{R}_{i}\left[x_{i}\right]==\right.$ $j) \leq c_{j}$. Let x_{i} be assigned to $j, 1 \leq k<j$, and $h=\mathcal{R}_{i}[k]$. We show that $\sum_{m=1}^{n_{R}}\left(\mathcal{R}_{m}\left[x_{m}\right]==h\right)=c_{h} \wedge \forall l \underset{\mathcal{H}_{h}}{\succ} i, \mathcal{R}_{l}\left[x_{l}\right] \neq h$.

If we suppose by contradiction that $\sum_{m=1}^{n_{R}}\left(\mathcal{R}_{m}\left[x_{m}\right]==h\right) \neq c_{h} \vee \exists l \underset{\mathcal{H}_{h}}{\succ}$ $i, \mathcal{R}_{l}\left[x_{l}\right]=h$, then, \mathcal{H}_{h} is under subscribed or $\exists(l, h) \in \mathcal{M}$ and $i \underset{\mathcal{H}_{h}}{\prec} l$. Therefore, (i, h) is blocking \mathcal{M}. Hence the contradiction.
(\Leftarrow) Consider an assignment of the the variables $x_{1}, . ., x_{n}$ satisfying the property. We show that the corresponding matching \mathcal{M} is stable. If \mathcal{M} is not stable then there exists a blocking pair (a, b). There are two cases to consider:
$-r_{a}$ is unassigned in \mathcal{M} : In this case $x_{a}=n_{H}+1$, hence $\forall h \in\left[1, n_{H}\right], \sum_{l=1}^{l=n_{R}}\left(\mathcal{R}_{l}\left[x_{l}\right]==h\right)=c_{h} \wedge \forall l \underset{\mathcal{H}_{h}}{\succ} a, \mathcal{R}_{l}\left[x_{l}\right] \neq h$. Therefore h_{b} cannot be under-subscribed and there does not exist $l \in\left[1, n_{R}\right]$ such that $(l, b) \in \mathcal{M}$ and $a \underset{\mathcal{H}_{b}}{\prec} l$.
$-\exists k \in\left[1, n_{H}\right]$ such that $(a, k) \in \mathcal{M}$ and $b \underset{\mathcal{R}_{a}}{\prec} k$: In this case $x_{a}=e$ where $e=\mathcal{R}_{a}{ }^{-1}[k]$, hence for all $w \underset{\mathcal{H}_{a}}{\prec} k, \sum_{m=1}^{n_{R}}\left(\mathcal{R}_{m}\left[x_{m}\right]==w\right)=c_{w} \wedge \forall l \underset{\mathcal{H}_{w}}{\succ}$ $a, \mathcal{R}_{l}\left[x_{l}\right] \neq w$. Since $b \underset{\mathcal{R}_{a}}{\prec} k$, then h_{b} cannot be under-subscribed and there does not exist $l \in\left[1, n_{R}\right]$ such that $(l, b) \in \mathcal{M}$ and $a \underset{\mathcal{H}_{b}}{\prec} l$.

Therefore \mathcal{M} is stable.
Lemma 5. If Γ is $A C$ then assigning all variables to their minimum value is solution.

Proof. We use Theorem 2 to prove that assigning all variables to their minimum satisfies the constraint. We already know that $\forall j \in\left[1, n_{H}\right], \mid\left\{i \mid \mathcal{R}_{i}\left[\min \left(x_{i}\right)\right]==\right.$ $j\} \mid \leq c_{j}$ by Lemma 1 and Lemma 3. Let $1 \leq i \leq n_{R}, j=\min \left(x_{i}\right), k \in[1, j[, h=$ $\mathcal{R}_{i}[k]$. We show that $\sum_{m=1}^{n_{R}}\left(\mathcal{R}_{m}\left[\min \left(x_{m}\right)\right]==h\right)=c_{h} \wedge \forall l \underset{\mathcal{H}_{h}}{\succ} i, \mathcal{R}_{l}\left[\min \left(x_{l}\right)\right] \neq$ h. Note first that $h \in$ HFull (Lemma 2). Therefore, by using Lemma 3 we obtain $\sum_{m=1}^{n_{R}}\left(\mathcal{R}_{m}\left[\min \left(x_{m}\right)\right]==h\right)=c_{h}$. Recall that $\min \left(x_{i}\right)>\mathcal{R}_{i}{ }^{-1}[h]$. Therefore, Constraint 2 of Γ enforces $\max \left(y_{h, k}\right)<\mathcal{H}_{h}^{-1}[i]$ for all $k \in\left[1, c_{h}\right]$. Thus, Constraint 5 removes $\mathcal{R}_{l}{ }^{-1}[h]$ from $\mathcal{D}\left(x_{l}\right)$ for all $l \underset{\mathcal{H}_{h}}{\succ} i$.

Lemma 6. If Γ is $A C$ then assigning all variables to their maximum value is solution.

Proof. Here again we use Theorem 2 to prove the result. First observe that $\forall j \in$ $\left[1, n_{H}\right],\left|\left\{i \mid \mathcal{R}_{i}\left[\max \left(x_{i}\right)\right]==j\right\}\right| \leq c_{j}$ by Lemma 1 and Lemma 4 . Let $1 \leq i \leq$ $n_{R}, j=\max \left(x_{i}\right), k<j$, and $h=\overline{\mathcal{R}}_{i}[k]$, we show that $\sum_{m=1}^{n_{R}}\left(\mathcal{R}_{m}\left[\max \left(x_{m}\right)\right]==\right.$ $h)=c_{h} \wedge \forall l \underset{\mathcal{H}_{h}}{\succ} i, \mathcal{R}_{l}\left[\max \left(x_{l}\right)\right] \neq h$. Observe first that $h \in$ HFull (Lemma 2). Therefore, by using Lemma 4 we have $\sum_{m=1}^{n_{R}}\left(\mathcal{R}_{m}\left[\max \left(x_{m}\right)\right]==h\right)=c_{h}$. Next, we show that for any l such that $\mathcal{R}_{l}\left[\max \left(x_{l}\right)\right]=h$, then $\exists k \in\left[1, c_{h}\right]$ such that $\min \left(y_{h, k}\right)=\mathcal{H}_{h}{ }^{-1}[l]$. In fact, if it's not the case, then by the proof of Lemma 4, we know that if $\min \left(y_{h, k}\right)=\mathcal{H}_{h}{ }^{-1}[a]$ (for any $a \in\left[1, n_{R}\right]$), then $\mathcal{R}_{a}\left[\max \left(x_{a}\right)\right]=h$ and in this case we have $\sum_{m=1}^{n_{R}}\left(\mathcal{R}_{m}\left[\max \left(x_{m}\right)\right]==h\right)>c_{h}$ which contradicts Lemma 4 because $h \in$ HFull.

Suppose now by contradiction that $\exists l \underset{\mathcal{H}_{h}}{\succ} i, \mathcal{R}_{l}\left[\max \left(x_{l}\right)\right]=h$ and consider k such that $\mathcal{H}_{h}{ }^{-1}\left[\min \left(y_{h, k}\right)\right]=l$. Since $l \underset{\mathcal{H}_{h}}{\succ} i$ then $\min \left(y_{h, k}\right) \geq \mathcal{H}_{h}{ }^{-1}[i]$. Therefore, Constraint 2 enforces $\max \left(x_{i}\right) \leq \mathcal{R}_{i}{ }^{-1}[h]$ which is false since $h \underset{\mathcal{R}_{i}}{\prec}$ $\mathcal{R}_{i}\left[\max \left(x_{i}\right)\right]$. Therefore we have $\forall l \underset{\mathcal{H}_{h}}{\succ} i, \mathcal{R}_{l}\left[\max \left(x_{l}\right)\right] \neq h$.
The following Theorem is an immediate consequence of Lemma 5 and Lemma 6.
Theorem 3. Enforcing $A C$ on Γ makes 2 - $\operatorname{SidedStability~}(\mathcal{X}, \mathcal{A}, \mathcal{B}, \mathcal{C}) \operatorname{Bound}(\mathcal{D})$ consistent.

4 Revisiting Bound(\mathcal{D}) Consistency

We assume that a preprocessing step is performed where the GS-lists are computed and that the domain is updated accordingly. We suppose without loss of generality that $\exists n \in\left[1, n_{R}\right]$ such that $\forall i \in[1, n], i \in$ RFree and \mid RFree $\mid=n$. Note that $\forall i>n,\left|\mathcal{D}\left(x_{i}\right)\right|=1$ after the preprocessing step. Therefore, we shall assume that this holds for the rest of the section and we will focus only on $\left[x_{1}, \ldots, x_{n}\right]$. We show that $\mathrm{BC}(\mathrm{D})$ on 2 - $\operatorname{SidedStability~}(\mathcal{X}, \mathcal{A}, \mathcal{B}, \mathcal{C})$ can be implemented with $O(L)$ time complexity down a branch of the search tree which improves the previous complexity $O(c \times L)$ (where $c=\max \left\{c_{j} \mid j \in\left[1, n_{H}\right]\right\}$). Next we show an adaptation of the filtering to achieve AC on this constraint.

4.1 Bound(D) Consistency

Our revision of $\mathrm{BC}(\mathrm{D})$ for this constraint is based essentially on Theorem 4.
Theorem 4. 2-SidedStability $(\mathcal{X}, \mathcal{A}, \mathcal{B}, \mathcal{C})$ is $B C(D)$ iff assigning every variable to its maximum is a solution and assigning every variable to its minimum is a solution.
Proof. (\Rightarrow) Let \mathcal{D} be a domain where 2 - $\operatorname{SidedStability}(\mathcal{X}, \mathcal{A}, \mathcal{B}, \mathcal{C})$ is $\operatorname{BC}(\mathrm{D})$. Consider the encoding Γ on a domain \mathcal{D}^{*} where $\mathcal{D}^{*}\left(x_{i}\right)=\mathcal{D}\left(x_{i}\right)$ for all $x_{i} \in \mathcal{X}$ and $\mathcal{D}^{*}\left(y_{j, k}\right)$ equals to the initial domain detailed in Section 2.3 for all $j \in\left[1, n_{H}\right]$ and $k \in\left[0, c_{j}\right]$. Let \mathcal{D}^{\prime} be the domain obtained after enforcing AC on Γ. We know that \mathcal{D}^{\prime} cannot be empty (i.e., failure) since otherwise it will contradict the fact that 2-SidedStability $(\mathcal{X}, \mathcal{A}, \mathcal{B}, \mathcal{C})$ is $\operatorname{BC}(\mathrm{D})$. Moreover, no lower/upper bound can change after AC on Γ since every lower/upper bound has a support. Therefore, by using Lemmas 5 and 6 , we know that assigning every variable to its minimum (respectively maximum) is a solution.
(\Leftarrow) Straightforward.
Theorem 4 shows that in order to maintain $\mathrm{BC}(\mathrm{D})$, it is sufficient to make sure that two specific solutions exist: one by assigning all variables to their minimum, and the other to their maximum. In the following, we show that one can maintain this property in $O(L)$ time down a branch of the search tree using an incremental algorithm.

Given a domain \mathcal{D}, we define for each hospital h in HFull the following:

```
Algorithm 1: \(\mathrm{BC}(\mathrm{D})\)
    1 while \(\exists<i, j>\in N e w_{l b}\) do
        UpdateLB \(\left(i, j, \min \left(x_{i}\right)-1, N e w_{l b}\right)\);
        Apply ( \(\left.i, N e w_{l b}\right)\);
    while \(\exists<i, j>\in N e w_{u b}\) do
        UpdateUB \(\left(i, j, N e w_{u b}\right)\);
```

 \(-\operatorname{MIN}_{h}=\left\{k \mid \mathcal{R}_{\mathcal{H}_{h}[k]}\left[\min \left(x_{\mathcal{H}_{h}[k]}\right)\right]=h\right\}\)
 \(-M A X_{h}=\left\{k \mid \mathcal{R}_{\mathcal{H}_{h}[k]}\left[\max \left(x_{\mathcal{H}_{h}[k]}\right)\right]=h\right\}\)
 \(-\operatorname{maxof} M A X_{h}=\max \left\{l \mid l \in M A X_{h}\right\}\).
 For any $k \in M I N_{h}$ (respectively $k \in M A X_{h}$), if r is the correspondent resident (i.e., $r=\mathcal{H}_{h}[k]$), then h is the hospital of index $\min \left(x_{r}\right)$ (respectively $\left.\max \left(x_{r}\right)\right)$ in \mathcal{R}_{r}.

We also define lastLeft ${ }_{h}$ for every hospital $h \in$ HFull as follows: lastLeft $t_{h}=$ $\max \left\{k \mid k \in\left[1\right.\right.$, len $\left.\left.^{h}{ }_{h}\right] \wedge \mathcal{R}_{\mathcal{H}_{h}[k]}{ }^{-1}[h] \in \mathcal{D}\left(x_{\mathcal{H}_{h}[k]}\right)\right\}$. That is lastLeft ${ }_{h}$ is the last index in the list of \mathcal{H}_{h} where the corresponding resident still has the rank of h in its domain.

We suppose that $M I N_{h}, M A X_{h}$, maxof $M A X_{h}$, and lastLeft t_{h} are implemented as "reversible" data structures (i.e. their values are restored whenever the solver backtracks).

Let $\mathcal{D}_{B C(D)}$ be a domain that is $\mathrm{BC}(\mathrm{D})$ for 2 - $\operatorname{SidedStability~}(\mathcal{X}, \mathcal{A}, \mathcal{B}, \mathcal{C})$. Let $N e w_{l b}$ (respectively $N e w_{u b}$) be a set of pairs such that $<i, j>\in N e w_{l b}$ (respectively $<i, j>\in N e w_{u b}$) iff the lower (respectively upper) bound j has been removed from $\mathcal{D}_{B C(D)}\left(x_{i}\right)$. We show that Algorithm 1 maintains $\mathrm{BC}(\mathrm{D})$.

Take the case where only one variable x_{i} has a new lower bound $\min \left(x_{i}\right)$ and j was the previous lower bound. To maintain $\mathrm{BC}(\mathrm{D})$, we need to compute the new domain where assigning all variables to their minimum/maximum value is a solution. We therefore need to maintain $\forall 1 \leq j \leq n_{H}, \quad \sum_{i=1}^{n_{R}}\left(\mathcal{R}_{i}\left[x_{i}\right]==\right.$ $j) \leq c_{j}$, and $\forall a \in[1, n], \forall h \underset{\mathcal{R}_{a}}{\prec} \mathcal{R}_{a}\left[\min \left(x_{a}\right)\right], \forall l \underset{\mathcal{H}_{h}}{\succ} a, \mathcal{R}_{l}\left[\min \left(x_{l}\right)\right] \neq h$. In other words, $\forall a \in[1, n], \forall v<\min \left(x_{a}\right), \forall k>i d x, \min \left(x_{r}\right) \neq \mathcal{R}_{r}{ }^{-1}[h]$ where $h=\mathcal{R}_{i}[v]$, $i d x=\mathcal{H}_{h}^{-1}[i]$, and $r=\mathcal{H}_{h}[k]$.

Consider first the variable x_{i}. Since $\mathcal{D}_{B C(D)}$ is $\mathrm{BC}(\mathrm{D})$, then the property already holds for all $v<j$. Let $[a, b]=\left[j, \min \left(x_{i}\right)-1\right]$. The property must be enforced for all $v \in[a, b]$. This is precisely what Algorithm 2 does. Let $h \leftarrow \mathcal{R}_{i}[v]$. Observe that $\forall k>$ lastLeft $_{h}$, if $r=\mathcal{H}_{h}[k]$ then $\mathcal{R}_{r}{ }^{-1}[h] \notin \mathcal{D}\left(x_{r}\right)$ (from the definition of lastLeft ${ }_{h}$). Therefore, one needs only to enforce the property for $k \in\left[\right.$ idx, lastLeft $\left.{ }_{h}\right]$ (Line 1) where $i d x=\mathcal{H}_{h}{ }^{-1}[i]$ and perform the filtering in Line 5. Note that this value removal might change the lower (respectively upper) bound for a given x_{r}. In this case, the pair $\left\langle r, \min \left(x_{r}\right)\right\rangle$ (respectively $\left.\left\langle r, \max \left(x_{r}\right)\right\rangle\right)$ is added to $N e w_{l b}$ (respectively $N e w_{u b}$) in Line 3 (respectively Line 4). The case where $k \in M I N_{h}$ is handled at Line 2 by removing k from $M I N_{h}$.

```
Algorithm 2: UpdateLB \(\left(i, a, b\right.\), New \(\left._{l b}\right)\)
    for \(v \in[a, b]\) do
        \(h \leftarrow \mathcal{R}_{i}[v]\);
        \(i d x \leftarrow \mathcal{H}_{h}^{-1}[i] ;\)
        for \(k \in\left[i d x\right.\), lastLeft \(\left._{h}\right]\) do
            \(r \leftarrow \mathcal{H}_{h}[k] ;\)
            if \(k \in M I N_{h}\) then
                    \(M I N_{h} \leftarrow M I N_{h} \backslash\{k\} ;\)
            if \(\mathcal{R}_{r}{ }^{-1}[h]==\min \left(x_{r}\right)\) then
                \(N e w_{l b} \leftarrow N e w_{l b} \cup\left\{\left\langle r, \min \left(x_{r}\right)\right\rangle\right\} ;\)
            if \(\mathcal{R}_{r}{ }^{-1}[h]==\max \left(x_{r}\right)\) then
                \(N e w_{u b} \leftarrow N e w_{u b} \cup\left\{\left\langle r, \max \left(x_{r}\right)\right\rangle\right\} ;\)
            \(\mathcal{D}\left(x_{r}\right) \leftarrow \mathcal{D}\left(x_{r}\right) \backslash\left\{\mathcal{R}_{r}{ }^{-1}[h]\right\} ;\)
        if lastLeft \(_{h}>i d x-1\) then
            lastLeft \(_{h} \leftarrow i d x-1\);
```

Now once the call to $\operatorname{UpdateLB}\left(i, j, \min \left(x_{i}\right)-1, N e w_{l b}\right)$ ends, we have to make sure that it is actually possible to assign x_{i} to its new minimum. This is performed by calling $\operatorname{Algorithm} 3 \operatorname{Apply}\left(i, N e w_{l b}\right)$. More precisely, let $h=$ $\mathcal{R}_{i}\left[\min \left(x_{i}\right)\right]$. Obviously if $\mathcal{H}_{h}^{-1}[i]>$ lastLeft h_{h} then x_{i} cannot be assigned to its minimum (Lines 9 and 10). Otherwise, $\mathcal{H}_{h}{ }^{-1}[i]$ is added to $M I N_{h}$ (Line 1). Suppose now that $M I N_{h}$ has more than c_{h} elements. We can easily show that this happens only if $\left|M I N_{h}\right|=c_{h}+1$. In this case, we can see that the resident associated with the maximum index in $M I N_{h}$ cannot be assigned to hospital h anymore. The maximum is computed by looking for the first index less than or equal to $M I N_{h}$ (Line 3). Lines 4, 5, 6, 7, and 8 handle the fact that the corresponding resident cannot be assigned to hospital h.

At the end of the first loop in Algorithm 1, we may argue that $\left|M I N_{h}\right|=c_{h}$. Therefore $\forall 1 \leq j \leq n_{H}, \quad \sum_{i=1}^{n_{R}}\left(\mathcal{R}_{i}\left[x_{i}\right]==j\right) \leq c_{j}$, and $\forall a \in[1, n], \forall h \underset{\mathcal{R}_{a}}{\prec}$ $\mathcal{R}_{a}\left[\min \left(x_{a}\right)\right], \forall l \underset{\mathcal{H}_{h}}{\succ} a, \mathcal{R}_{l}\left[\min \left(x_{l}\right)\right] \neq h$. Thus assigning all variable to their minimum is a solution.

Consider now the case where only one variable x_{i} has a new upper bound $\max \left(x_{i}\right)$ and j was the previous upper bound. We use the following lemma to to compute the new domain.

Lemma 7. Assigning all variables to their maximum is a solution iff $\forall h \in$ HFull, $\left|M A X_{h}\right|=c_{h}$, and $\forall i \leq \operatorname{maxof~MAX}_{h}$, let $r=\mathcal{H}_{h}[i]$, and $l=\mathcal{R}_{r}{ }^{-1}[h]$, then $i \notin M A X_{h} \Longrightarrow \max \left(x_{r}\right)<l$.

Proof. (\Rightarrow) Let M be the matching where each resident is assigned to the hospital corresponding to the maximum value in its domain. Let $h \in$ HFull. We know that $\left|M A X_{h}\right|=c_{h}$ since M is stable. Consider now $i \leq \operatorname{maxofMAX} X_{h}$, such that $i \notin M A X_{h}$. Let $r=\mathcal{H}_{h}[i]$, and $l=\mathcal{R}_{r}{ }^{-1}[h]$. Observe first that $\max \left(x_{r}\right) \neq l$

```
Algorithm 3: \(\operatorname{Apply}\left(i, N e w_{l b}\right)\)
    \(j \leftarrow \min \left(x_{i}\right) ;\)
    \(h \leftarrow \mathcal{R}_{i}[j]\);
    if \(\mathcal{H}_{h}^{-1}[i] \leq\) lastLeft \(_{h}\) then
        \(M I N_{h} \leftarrow M I N_{h} \cup\left\{\mathcal{H}_{h}{ }^{-1}[i]\right\} ;\)
        if \(\left|M I N_{h}\right|=c_{h}+1\) then
            \(\max \leftarrow\) lastLeft \(_{h} ;\)
            max_found \(=\) false ;
            while \(n o t\) (max_found) do
                    if \(\max \in M I N_{h}\) then
                        max_found \(=\) true ;
                    else
                        \(\max \leftarrow \max -1\)
                \(M I N_{h} \leftarrow M I N_{h} \backslash\{\max \} ;\)
                \(l=\mathcal{H}_{h}[\max ] ;\)
                \(\mathcal{D}\left(x_{l}\right) \leftarrow \mathcal{D}\left(x_{l}\right) \backslash\left\{\mathcal{H}_{l}{ }^{-1}[h]\right\} ;\)
                \(N e w_{l b} \leftarrow N e w_{l b} \cup\left\{\left\langle l, \min \left(x_{l}\right)\right\rangle\right\} ;\)
                lastLeft \(_{h} \leftarrow \max\)
    else
        \(\mathcal{D}\left(x_{i}\right) \leftarrow \mathcal{D}\left(x_{i}\right) \backslash\left\{\min \left(x_{i}\right)\right\} ;\)
        \(N e w_{l b} \leftarrow N e w_{l b} \cup\left\langle i, \min \left(x_{i}\right)\right\rangle ;\)
```

(otherwise $i \in M A X_{h}$). Next, one can easily show that if $\max \left(x_{r}\right)>l$ then the pair (r, h) blocks M. Therefore, $\max \left(x_{r}\right)<l$.
(\Leftarrow) We use Theorem 2 to show that assigning all variables to their maximum is a solution. We already have $\forall 1 \leq j \leq n_{H}, \quad \sum_{i=1}^{n_{R}}\left(\mathcal{R}_{i}\left[\max \left(x_{i}\right)\right]==j\right) \leq c_{j}$. We show that $\forall 1 \leq i \leq n_{R}, \forall 1 \leq j \leq n_{H}+1, \max \left(x_{i}\right)=j \Longrightarrow \forall k \in[1, j[$, if $h=$ $\mathcal{R}_{i}[k]$, then $\sum_{m=1}^{n_{R}}\left(\mathcal{R}_{m}\left[\max \left(x_{m}\right)\right]==h\right)=c_{h} \wedge \forall l \underset{\mathcal{H}_{h}}{\succ} i, \mathcal{R}_{l}\left[\max \left(x_{l}\right)\right] \neq h$. Note first that the property is true for all $i \in\left[n+1, n_{R}\right]$. Let $i \in[1, n] j=\max \left(x_{i}\right)$, and $h \underset{\mathcal{R}_{i}}{\prec} \mathcal{R}_{i}[j]$ (note that $j \neq n_{H}+1$). We have necessarily $h \in$ HFull (Lemma 2), and therefore $\sum_{m=1}^{n_{R}}\left(\mathcal{R}_{m}\left[\max \left(x_{m}\right)\right]==h\right)=c_{h}$ since $\left|M A X_{h}\right|=c_{h}$. Let $l \underset{\mathcal{H}_{h}}{\succ} i$. We show that $\mathcal{R}_{l}\left[\max \left(x_{l}\right)\right] \neq h$. Suppose by contradiction that $\mathcal{R}_{l}\left[\max \left(x_{l}\right)\right]=$ h, and let $m=\mathcal{H}_{h}^{-1}[l]$. We have $m \in M A X_{h}$, hence $m \leq \max \left\{M A X_{h}\right\}$. Therefore, $\mathcal{H}_{h}{ }^{-1}[i]<\max \left\{M A X_{h}\right\}$ because $l \underset{\mathcal{H}_{h}}{\succ} i$. Since $\mathcal{H}_{h}^{-1}[i] \notin M A X_{h}$, then $\max \left(x_{i}\right)<\mathcal{R}_{i}{ }^{-1}[h]$ which contradicts the hypothesis that $h \underset{\mathcal{R}}{\prec} \mathcal{R}_{i}[j]$.

We maintain the property in Lemma 7 by calling Algorithm 4, $\operatorname{UpdateUB}\left(i, j, N e w_{u b}\right)$. Recall that, in this case, the current upper bound of x_{i} is strictly less than j.

Let $h=\mathcal{R}_{i}[j]$ and $i d x=\mathcal{H}_{h}{ }^{-1}[i]$. There are two cases to consider. First if $i d x \in M A X_{h}$, we know that $M A X_{h}$ has to be of cardinality c_{h}. Therefore, a new index needs to be added to $M A X_{h}$. From Lemma 7 we can argue that the

```
Algorithm 4: UpdateUB \(\left(i, j, N e w_{u b}\right)\)
    \(h \leftarrow \mathcal{R}_{i}[j]\);
    \(i d x \leftarrow \mathcal{H}_{h}{ }^{-1}[i]\);
    if \(i d x \in M A X_{h}\) then
        \(M A X_{h} \leftarrow M A X_{h} \backslash\{i d x\} ;\)
        new_resident \(\leftarrow\) false ;
        \(\max =\operatorname{maxof} M A X_{h} ;\)
        do
            \(\max \leftarrow \max +1 ;\)
            \(r \leftarrow \mathcal{H}_{h}[\max ] ;\)
            if \(\mathcal{R}_{r}{ }^{-1}[h] \leq \max \left(x_{r}\right)\) then
                new_resident \(\leftarrow\) true ;
        while not new_resident;
        \(M A X_{h} \leftarrow M A X_{h} \cup\{\max \} ;\)
        \(\operatorname{maxof~}_{\mathrm{MAX}}^{h} \boldsymbol{\leftarrow} \leftarrow \max\);
        rankOfh \(=\mathcal{R}_{r}{ }^{-1}[h]\);
        if rankOfh \(<\max \left(x_{r}\right)\) then
            \(N e w_{u b} \leftarrow N e w_{u b} \cup\left\{\left\langle r, \max \left(x_{r}\right)\right\rangle\right\} ;\)
            \(\%\) make a new upper bound for \(x_{r}\);
            \(\left.\left.\mathcal{D}\left(x_{r}\right) \leftarrow \mathcal{D}\left(x_{r}\right) \cap\right]-\infty, \operatorname{rank} O f h\right] ;\)
    else
        if \(j-1>\max \left(x_{i}\right)\) then
            \(N e w_{u b} \leftarrow N e w_{u b} \cup\{\langle i, j-1\rangle\} ;\)
```

new index cannot correspond to a value less than or equal to $\operatorname{maxof} A A X_{h}$. Therefore, we start looking for a new index in the main loop (Line 2) starting from maxof $\mathrm{MAX}_{h}+1$. The loop ends when we find a replacement for r_{i}. The new index corresponds to a resident r such that $\mathcal{R}_{r}{ }^{-1}[h] \leq \max \left(x_{r}\right)$. The set $M A X_{h}$ is updated accordingly in Lines 1 and 3 . The upper bound of x_{r} is changed if h is better than the hospital corresponding to $\max \left(x_{r}\right)$ (Line 6). In this case, $\langle r, h\rangle$ is added to $N e w_{u b}$ in Line 5.

Second, in the case where $i d x \notin M A X_{h}$, we just need to make sure that if $j-1$ is not the current upper bound of $\max \left(x_{i}\right)$, then we need to simulate the case where $j-1$ was an upper bound for x_{r} and has been removed.

To maintain $\operatorname{BC}(\mathrm{D})$ in Algorithm 1, we loop over all the lower/upper bound changes and call the appropriate algorithms. The new domain is $\mathrm{BC}(\mathrm{D})$ as an immediate consequence of Theorems 4, and 2, and Lemma 7.

Complexity. We discuss now the complexity of this incremental algorithm. We assume that all set operations are implemented in constant time.

Observe that down a branch of the search tree the value of lastLefth can always decrement (Line 6 in Algorithm 2 and Line 8 in Algorithm 3). Now consider one iteration of the main loop in Algorithm 2. The number of operations is bounded by $O\left(\left|i d x-l a s t L e f t_{h}\right|\right)$. Similarly, one call to Algorithm 3 is bounded
by $O\left(\left|m-m^{\prime}\right|\right.$) where m (respectively m^{\prime}) is the value of lastLeft $_{h}$ at Line 2 (respectively 8). Since lastLeft t_{h} can only decrement, then the time complexity of all lower bound operations down a branch is $O\left(l e n^{h}{ }_{h}\right)$ for any hospital h. Therefore the complexity for lower bound operations is $O(L)$.

Consider now upper bound operations. Each call to Algorithm 4 is bounded by $O\left(\left|m^{\prime}-m\right|\right)$ where m and m^{\prime} are the values of $\operatorname{maxof} M A X_{h}$ at Lines 1 and 4 respectively. And since maxof $M A X_{h}$ can only increment down a branch of the search tree, then the number of upper bound operations for any hospital h is $O\left(l e n^{h}{ }_{h}\right)$. Therefore the total upper bound operations is $O(L)$. Hence the complexity of enforcing $\mathrm{BC}(\mathrm{D})$ is $O(L)$ down a branch of the search tree.

4.2 Arc Consistency

Assume that 2-SidedStability $(\mathcal{X}, \mathcal{A}, \mathcal{B}, \mathcal{C})$ is $\mathrm{BC}(\mathrm{D})$. We use a straightforward way to enforce AC based on the $\mathrm{BC}(\mathrm{D})$ propagator. For every variable x_{i}, we remove its upper bound u then we enforce $\mathrm{BC}(\mathrm{D})$. Let u^{\prime} the new upper bound for x_{i}. Clearly any value $\left.v \in\right] u^{\prime}, u[$ cannot be part of any support, hence should be removed from $\mathcal{D}\left(x_{i}\right)$. Moreover, the new upper bound u^{\prime} has a support on the constraint because $\mathrm{BC}(\mathrm{D})$ is maintained. By repeating the process until reaching the lower bound of x_{i}, we are guaranteed that all values without a support in $\mathcal{D}\left(x_{i}\right)$ are removed. Therefore AC is maintained by using this procedure for every variable x_{i}. The overall complexity is $O(n \times L)$ since for each variable it takes $O(L)$ to enforce $\mathrm{BC}(\mathrm{D})$ from $\max \left(x_{i}\right)$ to $\min \left(x_{i}\right)$. Note that the algorithm is not incremental and the cost of $O(n \times L)$ is for each call to the propagator.

5 On the Complexity of the Hospital/Resident Problem with Forced and Forbidden Pairs

The variant of the Hospital/Resident problem with forced and forbidden pairs $(H R F F)$ seeks to find a stable matching that includes or excludes, respectively, a number of pairs $\langle r, h\rangle$ (r denotes a resident and h denotes a hospital). To the best of our knowledge no polynomial algorithm exists in the literature to solve this problem; this observation is also true even if there is no forced pairs [7]. We show that the problem is indeed polynomial and can be solved in $O(L)$ time.

Recall that Theorem 4 states that once Bound(D) consistency is established, then assigning every variable to its maximum is a solution and assigning every variable to its minimum is a solution. Therefore, it is sufficient to enforce Bound(D) consistency on the problem and then take the minimum value in the domain of each variable as the assignment of the correspondent resident. Since $\mathrm{BC}(\mathrm{D})$ takes $O(L)$ time, then the complexity of solving HRFF is $O(L)$.

Consider now the particular case of stable marriage with forced and forbidden pairs. There exist a number of polynomial algorithms for solving this problem. The best algorithm for solving this problem runs in $O\left(n^{4}\right)$ time ([2] and Section 2.10 .1 in [8]) where n is number of men/women. Now since this problem is a particular case of HRFF, then the complexity for solving it using the above

Table 1. Summary of the Experimental Results

Set	BC(D)-min			AC-min			BC(D)-max													
	Time	Nodes	Opt	Time	Nodes	Opt	Time	Nodes	Opt											
2 k	2	16.56	$\mathbf{1 0 0}$	19	13.33	$\mathbf{1 0 0}$	8	256.38	$\mathbf{1 0 0}$											
4 k	5	18.14	$\mathbf{1 0 0}$	151	14.69	$\mathbf{1 0 0}$	37	394.86	$\mathbf{1 0 0}$											
6 k	9	18.08	$\mathbf{1 0 0}$	393	14.89	93	86	648.82	$\mathbf{1 0 0}$											
8 k	19	18.16	$\mathbf{1 0 0}$	332	15.80	79	131	491.50	$\mathbf{1 0 0}$											
											AC-max				BC(D)-rand			AC-rand		
	Time	Nodes	Opt	Time	Nodes	Opt	Time	Nodes	Opt											
2 k	28	204.53	$\mathbf{1 0 0}$	4	67.36	$\mathbf{1 0 0}$	12	81.91	$\mathbf{1 0 0}$											
4 k	202	320.33	$\mathbf{1 0 0}$	12	81.91	$\mathbf{1 0 0}$	160	65.61	$\mathbf{1 0 0}$											
6 k	564	535.65	85	25	120.58	$\mathbf{1 0 0}$	502	99.20	92											
8 k	530	432.87	69	42	98.88	$\mathbf{1 0 0}$	475	88.11	77											

approach is also $O(L)$. Recall that in the case of stable marriage L is bounded by n^{2}, therefore the worst case complexity is $O\left(n^{2}\right)$, hence it is optimal.

6 Experimental Results

We consider a variant of the HR problem where some couples can express their desire to be matched together, assuming that they have the same preference lists. The problem is to find a stable matching maximizing the number of such couples who are matched together.

We generated a set of random instances as follows. Each instance is described by a tuple $\langle r, h, c\rangle$ where: $r \in\{2000,4000,6000,8000\}$ is the number of residents; $h \in\{100,200,300,400,500\}$ is the number of hospitals; and $c \in\{100+50 * k \mid k \in[0,8]\}$ is the number of couples. We implemented the AC and $\mathrm{BC}(\mathrm{D})$ propagators in Mistral-2.0 [6]. We use Intel Xeon E5-2640 processors for the experiments running on Linux. The variable ordering is fixed to be lexicographical for all experiments. As for the value ordering, we use three different branching strategies: minimum value (static); maximum value (static); and random min/max. We also use a geometric restart. Note that for random \min / \max, we use five different seeds since the heuristic is randomized. The time limit is fixed to 20 minutes for each instance and configuration.

The results are shown in Table 1 and Figure 1. The table is split into two parts. In each part, each column depicts one configuration $a-b$ where a is the propagator $(\mathrm{BC}(\mathrm{D})$ or AC$)$ and b is the value branching strategy. Each row represents the results for one set of instances by their size (i.e. number of residents). We report for each configuration the runtime (Time) in second, the number of nodes (Nodes), and the percentage of instances where optimality where proven (Opt). All the statistics are given as averages across all successful runs (i.e. when optimality is found). Bold faced values show the best results in terms of percent-

Fig. 1. Runtime and Speed of exploration
age of optimality. Figure 1 shows two plots corresponding to the runtime and the speed of exploration in terms of nodes explored per second.

There are a number of observations based on Table 1 and Figure 1. First, clearly the models enforcing $\mathrm{BC}(\mathrm{D})$ outperform the AC models in terms of optimality. For instance, in the 8 k set, with min value branching, $\mathrm{BC}(\mathrm{D})$ finds the optimal solution for all instances whereas the AC models finds optimality only for 79% of the instances. Second, we observe that enforcing AC considerably slows down the exploration of the search tree. For instance, with set 2 k and min value, $\mathrm{BC}(\mathrm{D})$ is 21 times faster at exploring the search space (see Figure 1). This behaviour negatively affects the total runtime for AC. For instance, it takes AC 150s to find optimal solutions for the 4 k set with min value, whereas the $\mathrm{BC}(\mathrm{D})$ models needs about 5 s . Last, it should be noted that the search tree is slightly different between the two models. AC does prune some additional nodes as compared to $\mathrm{BC}(\mathrm{D})$, but the impact of the pruning does not pay off as it consumes an enormous amount of time. This behaviour is mainly due to the non-incrementality of the AC algorithm.

7 Conclusion

We addressed the filtering aspect of the 2-SidedStability constraint. We first showed that the filtering level of all previous approaches is $B C(D)$. Then, we proposed an optimal $\mathrm{BC}(\mathrm{D})$ algorithm, as well as an AC algorithm for this constraint. Our experiments showed that, in practice, $\mathrm{BC}(\mathrm{D})$ completely outperforms AC on a variant of the HR problem involving couples. While the aim of this paper was to revisit the current filtering approaches for two-sided stability constraints, we found new theoretical results related to the complexity of the variant of HR with forced and forbidden pairs. We showed, for the first time, that this problem is polynomial and we improved the best known existing complexity for the the particular case of stable marriage with forced and forbidden pairs by a factor of n^{2}.

References

1. Christian Bessiere. Constraint propagation. In Peter van Beek Francesca Rossi and Toby Walsh, editors, Handbook of Constraint Programming, volume 2 of Foundations of Artificial Intelligence, pages 29 - 83. Elsevier, 2006.
2. Vânia M. F. Dias, Guilherme Dias da Fonseca, Celina M. Herrera de Figueiredo, and Jayme Luiz Szwarcfiter. The stable marriage problem with restricted pairs. Theor. Comput. Sci., 306(1-3):391-405, 2003.
3. David Gale and Lloyd S Shapley. College admissions and the stability of marriage. American mathematical monthly, pages 9-15, 1962.
4. Ian P. Gent, Robert W. Irving, David Manlove, Patrick Prosser, and Barbara M. Smith. A constraint programming approach to the stable marriage problem. In Proceedings of CP, pages 225-239, 2001.
5. Dan Gusfield and Robert W. Irving. The Stable marriage problem - structure and algorithms. Foundations of computing series. MIT Press, 1989.
6. Emmanuel Hebrard. Mistral, a Constraint Satisfaction Library. In Proceedings of the CP-08 Third International CSP Solvers Competition, pages 31-40, 2008.
7. David Manlove, Gregg O'Malley, Patrick Prosser, and Chris Unsworth. A constraint programming approach to the hospitals / residents problem. In Proceedings of CPAIOR, pages 155-170, 2007.
8. David F. Manlove. Algorithmics of Matching Under Preferences, volume 2 of Series on Theoretical Computer Science. WorldScientific, 2013.
9. Chris Unsworth and Patrick Prosser. A specialised binary constraint for the stable marriage problem. In Abstraction, Reformulation and Approximation, 6th International Symposium, SARA 2005, Airth Castle, Scotland, UK, July 26-29, 2005, Proceedings, pages 218-233, 2005.
10. Chris Unsworth and Patrick Prosser. An n-ary constraint for the stable marriage problem. CoRR, abs/1308.0183, 2013.

[^0]: * This research has been funded by Science Foundation Ireland (SFI) under Grant Number SFI/12/RC/2289.

