

Non-recursive Approach for Sort-Merge Join
Operation

Norah Asiri(B) and Rasha Alsulim

Computer and Information Sciences College,
King Saud University, Riyadh, Saudi Arabia asiri.norah.m@gmail.com,

r.m.z1433@hotmail.com

Abstract. Several algorithms have been developed over the years to

perform join operation which is executed frequently and affects the

efficiency of the database system. Some of these efforts prove that join

performance mainly depends on the sequences of execution of relations in

addition to the hardware architecture. In this paper, we present a method

that processes a many-to-many multi join operation by using a non-

recursive reverse polish notation tree for sort-merge join. Precisely, this

paper sheds more light on main memory join operation of two types of sort-

merge join sequences: sequential join sequences (linear tree) and general

join sequences (wide bushy tree, also known as composite inner) and also

tests their performance and functionality. We will also provide the

algorithm of the proposed system that shows the implementation steps.

Keywords: Join operation · Bushy tree · Sequential tree · Multi-join query · RPN

· Concurrent operations

1 Introduction

Database query operations facilitate the ease of information retrieval from one or
more relations. However, binary join operation is one of the most challenging

operations to be implemented efficiently. It is the only relational algebra operation

that combines the related tuples from different relations among different

attributes schemes [10].

The improvement of the performance of any database system necessitates
improvement of the frequently executed operations such as join because it

depends on transferring and moving data to/from the main memory [10]. Thus,

the optimization for this process should be offered to reduce its expenses and to

improve its functionality. The join operation which is denoted by is used to

combine related tuples from two relations into a single longer tuple [11].

The join operation over two datasets R and S with binary predicate t and
attributes a and b is given as:

 Non-recursive Approach for Sort-Merge Join Operation 217

 (1)

c Springer International Publishing Switzerland 2016

S. Kozielski et al. (Eds.): BDAS 2016, CCIS 613, pp. 216–224, 2016. DOI: 10.1007/978-

3-319-34099-9 16

There are many types of relationships among relations, such as one-to-one,
one-to-many and many-to-many. A many-to-many relationship refers to a

relationship between tables in a database when a parent row in one table contains

several child rows in the second table and vice versa. Currently, many-to-many

relationship is usually a mirror of the real-life relationship between the objects

that the two tables represent. In this paper, we investigate sort-merge with multi-
join queries and try to optimize the join process and to achieve efficient execution

[5,13].

The rest of this paper is organized as follows: in Sect.2, background of join

strategies. In Sect.3 methodology that are used in our approach. Our experiment

and results are given in Sect.4. Finally, conclusions from our findings are
presented in Sect.5.

2 Background

2.1 Join Strategies

The strategies used to perform join operations are discussed in this section, were
some are implemented while others are just proposed. The debate over which are

the comparative performance join algorithms of these approaches has been going

on for decades. The main reason behind discussing these methods is to identify

which one is the best and most applicable with our suggested system.

1. Simple Nested-Loops: is considered to be the simplest form of join. It starts

from the inner loop which is designated to the inner relation and the other loop

which is tied to the outer relation. For each tuple in the outer relation, all tuples

in the inner relation are scanned and compared with the current tuple in the

outer relation. In case of matching the condition of join, the two tuples are
joined and positioned in the outer buffer [10]. In practical view, nested-loop

join is performed as a nested-block join, because the tuples are retrieved in

form of blocks rather than individual tuples [11].

In this algorithm, the total amount of reduction in I/O activity depends on the

size of the available main memory; it is noticed that each tuple of the inner
relation is compared with every tuple of the outer relation. In this way, the

execution of this algorithm requires O(n × m) time for joins execution.

2. Nested-Loops Join with Rocking: to optimize the simple nested-loops join

method, we can use an extra step to ensure it works with more efficiency. This

step is called: rocking the inner relation [8]. Rocking the inner relation means

to read the inner relation from top-most to bottom for one tuple only of the

outer relation and from bottom to top for the next tuple. Consequently, the I/O

218 N. Asiri and R. Alsulim

overhead is reduced since the last returned page of the inner relation in the

current loop is also used in the next loop.

Granting all this, the exhaustive matching strategies and the poor efficiency in

both simple and rocking nested-loops join makes it inappropriate for joining

large relations.

3. Hash Join Methods: a large number of join processes uses the hash methods.

With the simple hash join methods, the join attribute(s) values at the inner

relation are hashed using hash function to create a hash table with keys of inner

relation and then sort them. After that the partitioning phase carried out by

looping over the tuples of outer relation. For each key in the outer relation,
search for matching keys in the hash table and attach the matching tuple(s) to

the output. Its search execution is O(1) which outperforms other join methods

in some cases and makes it an accepted solution to researchers. However, it has

some disadvantages such as the duplicate keys in inner relation which causes

conflict in the hash table. Also, there are extra irrelevant comparisons resulting
from the size of the hash table. Moreover, it has a limitation due to current CPU

architecture [7].

4. Sort-Merge Join: relies on sorting the rows in both input tables by the join key

and merges these relations. Sort-merge performance mainly depends on

choosing an efficient sorting implementation where more than 98% of

sortmerge method costs lies [7]. The investigative studies show that hash join
needs at a least 1.5X more memory bandwidth than sort merge join [7].

Furthermore, authors in [3] proves that in multi-core databases and modern

multi-core servers, sort-based join beats hash-based parallel join algorithms

and mostly has a linear relationship with the number of cores [3]. For the future

computer system architectures, if the growth gap between compute and
bandwidth continues to expand, the sort-merge join will be more effective than

hash join [7].

2.2 Multi-join Queries (Linear and Bushy Trees for Many-to-Many Multi-

join Queries)

Investigators have argued and worked on the implementation and the

performance of parallel and concurrent DBMS. To optimize a multi join query
response time, the exploitation of concurrency by using trees is used. Hence, any

differ-

 Non-recursive Approach for Sort-Merge Join Operation 219

Fig.1. Linear and wide bushy trees multi-join sequences shapes

ences in response time result from the differences in the shape of the tree [14].

This paper presents analytical experiments of two types of join sequences [12].

The first type is the linear tree or sequential join sequence, in which the

resulting relation of an intermediate join can only be used in the next join. For

instance, in Fig.1(a) where every non-leaf node (internal node) denotes the
resulting relation from joining its child nodes. The second type is known as general

join sequence (wide bushy tree, also known as composite inner) [6] in which the

current resulting relation of a join is not mandatory to be only used in the next join

as shown in Fig.1(b).

3 Methodology

Most references present tree traversal using recursion only. In [2], the literature

survey shows that most references only indicate the implementations of the

recursive algorithms, and only few references address the issue of non-recursive

algorithms. In our investigation, we use a non-recursive algorithm that is simple,

efficient which depends on a stack and a post-order binary tree traversal. We
dynamically allocate the binary trees elements in a way that each element (node)

has at most two potential successors.

We cover two kinds of binary trees: the wide bushy tree and the linear tree.

Particular multi-join expressions are applied to the tree because all of the join

operations are binary. It is also possible for a node to have only one child; as in the
case with the linear tree. An expression tree can be evaluated by applying the join

operators at the root and the values obtained by evaluating the left and right sub

trees that contain the relations keys. We evaluate each sub tree individually with

postfix traversal by using reverse polish notation (RPN). The reverse polish

notation (RPN) is a well-known method for the expression notification in a postfix
way compared with the typical infix notation [9].

When comparing the reverse polish notation with algebraic notation, RPN has

been found to achieve faster calculations [1]. Based on that, we will convert the

multi-join queries into RPN expression in a postfix bottom-up manner instead of

using the normal recursive multi-queries form. We construct the binary tree from

the multi-join queries expression. Then, we use RPN to traverse it depending on

220 N. Asiri and R. Alsulim

the operand of the tree. Table1 presents an example of applying the RPN to SQL

expression [4].

Figures2 and 3 show an example of a wide bushy tree and a linear tree of multi-

join queries that uses RPN stacks. They present multi-join queries of

Table 1. Example of infix and RPN expressions [4].

Infix expression ((Department = ‘Dep1’)or(Department like ‘Dep2%’))

and ((Title = ‘t1’) or (Title like ‘t2%’))

RPN expression (Department = ‘Dep1’) (Department,like ‘Dep2%’) or

(Title = ‘t1’) (Title like ‘t2%’) or and

six relations. At the beginning, we construct the binary trees where the leaves

contain the operands of multi-join queries which are the relations keys. Join
operation by default should contain two operands. Hence, the tree should at least

contain two leaves and dynamically expands and shrinks depending on the

number of join operations.

Fig.2. General (bushy) join sequence.

 Non-recursive Approach for Sort-Merge Join Operation 221

Fig.3. Sequential join sequence.

This solution has a minimum space complexity of O(n), where n is the number

of nodes of the tree. Figure2 presents an example of wide bushy tree of six

relations R1, R2, R3, R4, R5 and R6. The final join operation between R12 and R51

would be as following:

In linear tree as shown in Fig.3, we can notice that there is an extra joined
relation R15 that needs one more join operation, which means more processing.

The final joined relation can be obtained by:

Algorithm 1 presents the proposed technique by using subtree that adopts

RPN.

Algorithm 1. Multi-join subtree that depends on RPN expression.

While nodes not empty

– Read lc from subtree – Push

lc→ st

– Read rc of lc from subtree –

Push rc → st

– If root is join operator

222 N. Asiri and R. Alsulim

• If st.lenght < 2 and IsNull(subtree.rightChild) Then

Report an error

• Else pop lc, pop rc from st jbt.leftChild =(

4 Performance Evaluation

We conducted experiments on the proposed algorithm for concurrent join and

compared it with linear sequence. We applied equi-joins which depends on
equality (matching column values) where the primary keys of the tables are

generated randomly from a predefined integer range. A two-phase strategy for

multi-join queries is proposed in this paper.

The first phase studies a simple and cheap join algorithm, which is quicksort
algorithm. Quicksort is a sorting-in place technique that applies divide and
conquer algorithm. The advantage of this technique is that it is remarkably
efficient on the average and it outperforms other sort-merge algorithms.

Fig.4. Execution time of join operation using RPN tree regarding number of tuples.

 Non-recursive Approach for Sort-Merge Join Operation 223

Fig.5. Execution time of join operation using sequential and bushy trees regarding number

of relations.

The second phase applies reverse polish notation for reading the tree in bushy

or linear manner. A relation, Ri, with records, that is populated with integer

values have been used in the system. The system used for our evaluation was

equipped with concurrent multi-threaded processor with 3MG cache and 6GB of
system memory.

Figures4 and 5 present the performance of executing the sequential and

general trees regarding the number of tuples and tables. Figure4 shows the

performance of quicksort with RPN tree with 2 relations. Figure5 shows the

execution time of 100 tuples when the number of relations is increased. The bushy
trees would be a better choice with larger number of tuples and relations.

We notice that bushy trees still outperform the sequential trees.

Fig.6. Execution time of join operation using sequential and bushy trees regarding number

of relations and tuples.

Table 2. Other experiments on performance of sequential and bushy trees.

Tuples # Relations
Time in millisecond

Tuples # Relations
Time in millisecond

Sequential Bushy Sequential Bushy
300 4 916 2071 900 10 5513 10808

500 6 1299 3520 1000 11 7108 13981

600 7 2101 3975 1100 12 5712 14488

700 8 2347 4221 1200 13 19916 27311

800 9 3372 9801 1400 15 19992 24937

Figure6 also presents the execution time when increasing both tuples and

relations. However, sequential could beat the bushy trees in case of having a small

number of tuples and relations as shown in Table2.

224 N. Asiri and R. Alsulim

5 Conclusions

Join operation is still a vital step in most DBMS and the cost of queries is highly
affected by this operation, hence, optimizing join operations leads to enhancing

the DBMS. This paper presents a new methodology for sort-merge join by using

RPN tree to perform multi join. We consider two factors in evaluating the

performance: the number of tuples and the number of relations. Our approach was

tested on both sequential and general trees. We concluded that the general tree
outperforms the sequential tree in case of having a huge number of relations and

tuples. In our future work, we plan to run the system on multi-core processors

environment and also plan to expand this methodology to other queries

operations.

Acknowledgments. We would like to thank Nada Alzahrani for her efforts during the

progress of this research.

References

1. Agate, S., Drury, C.: Electronic calculators: which notation is the better?

Appl.ergonomics 11(1), 2–6 (1980)
2. Al-Rawi, A., Lansari, A., Bouslama, F.: A new non-recursive algorithm for binarysearch

tree traversal. In: 10th IEEE International Conference on Electronics, Circuits and

Systems, ICECS 2003 (2003)
3. Albutiu, M.C., Kemper, A., Neumann, T.: Massively parallel sort-merge joins inmain

memory multi-core database systems. Proc. VLDB Endowment. 5(10), 1064– 1075

(2012)
4. Capasso, T.: Evaluate Logical Expressions Using Recursive CTEs and ReversePolish

Notation. Penton Business Media, Inc (2014)
5. Chen, M.S., Yu, P., Wu, K.L.: Optimization of parallel execution for multi-joinqueries.

IEEE Trans. Knowl. Data Eng. 8(3), 416–428 (1996)
6. Graefe, G.: Rule-based query optimization in extensible database systems (1987)
7. Kim, C., et al.: Sort vs. hash revisited: fast join implementation on modern multicore

cpus. Proc. VLDB Endowment 2(2), 1378–1389 (2009)
8. Kim, W.: A new way to compute the product and join of relations. In: Proceedingsof

the 1980 ACM SIGMOD International Conference on Management of Data
(1980)

9. Krtolica, P., Stanimirovi, P.: Reverse polish notation method. Int. J. Comput.Math.

81(3), 273–284 (2004)
10. Mishra, P., Eich, M.: Join processing in relational databases. ACM Comput. Surv.(CSUR)

24(1), 63–113 (1992)
11. Navathe, S., Elmasri, R.: Fundamentals of Database Systems, pp. 652–660.

PearsonEducation, Upper Saddle River (2010)
12. Ono, K., Lohman, G.: Measuring the complexity of join enumeration in

queryoptimization. In: VLDB (1990)
13. Taniar, D., Tan, R.B.N.: Parallel processing of multi-join expansion-aggregate datacube

query in high performance database systems. In: International Symposium on Parallel

Architectures, Algorithms and Networks, I-SPAN 2002 (2002)
14. Wilschut, A., Flokstra, J., Apers, P.: Parallel evaluation of multi-join queries. In:

ACM SIGMOD Record (1995)

