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Abstract. The rise of Big Data Analytics has shown the utility of ana-
lyzing all aspects of a problem by bringing together disparate data sets.
Efficient and accurate private record linkage algorithms are necessary to
achieve this. However, records are often linked based on personally iden-
tifiable information, and protecting the privacy of individuals is critical.
This paper contributes to this field by studying an important component
of the private record linkage problem: linking based on names while keep-
ing those names encrypted, both on disk and in memory. We explore the
applicability, accuracy and speed of three different primary approaches
to this problem (along with several variations) and compare the results
to common name-matching metrics on unprotected data. While these
approaches are not new, this paper provides a thorough analysis on a
range of datasets containing systematically introduced flaws common to
name-based data entry, such as typographical errors, optical character
recognition errors, and phonetic errors.

1 Introduction and Motivation

Data silos, in which organizations keep their data tightly isolated from other
systems, are a major barrier to the effective use of data analytics in many fields.
Unfortunately, when the data in question involves information about people,
integrating it often necessitates querying or joining based on personally identi-
fiable information (PII) that could be used to explicitly identify an individual.
As recent security breaches at organizations ranging from Target to the United
States Postal Service have made clear, it is important to protect PII, both while
it is at rest on a system and when it is read into memory. The goal of this
effort is to explore the applicability, accuracy, and speed of existing algorithms
for querying and joining databases while keeping the PII within those databases
protected.

This work focuses particularly on the situation in which a data provider main-
tains a database which authorized subscribers are able to query. For instance,
consider a company that maintains a database containing its customer data.
The company wishes to allow third party entities who have contracted with it to
access the information in this database.1 At the same time, the company wants
1 A standard access control system to allow authorized consumers to query the data-

base while preventing unauthorized users from doing so is assumed to be in place.
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to limit its vulnerability to data breaches by keeping the data encrypted as much
as possible, including while it is stored in the database and when it is loaded
into memory to do query processing. For instance, if an attacker gets access to
the system on which the database resides, he should not be able to see the raw
data values, either on disk or in memory.

Even though this situation occurs frequently, research on private record link-
age tends to focus more on a different use case, in which the data provider
and the data consumer do not fully trust one another. This typically leads
to solutions involving trusted third parties or asymmetric cryptography that
go beyond the requirements of this ubiquitous application scenario, and these
additional, unneeded capabilities negatively impact performance. For instance,
because access control mechanisms are already in place, this work is not concerned
about the data consumer (who has paid to access the information in the data-
base) gaining knowledge of any, or even all, of the records in the database. Fur-
thermore, this project is not concerned about the data consumer preventing the
data provider from gaining knowledge about what queries are being made. Rather,
the present use case allows a system in which the data consumer submits a query
containing the raw PII values, these values are encrypted using symmetric key
cryptography2, and the encrypted values are then used to query the database.

This work focuses on supporting privacy-preserving querying and merging
on string attributes and does not consider numeric data. While private record
linkage based on numeric fields of is course an important capability to estab-
lish, the techniques involved for this are distinctly different than for string-based
linking. Furthermore, string attributes, in particular person names, are a par-
ticularly common linkage point between datasets. We therefore leave the chal-
lenge of numeric attributes for future work and focus on name-based linking
here. The requirements of our target application scenario require PRL meth-
ods that support encryption and do not need to act directly on the raw field
values, so approaches that utilize the original string values at any stage in the
process are not suitable in this case. Because names are frequently misspelled,
mispronounced, or mistyped, it is important for the approach to support fuzzy
(approximate) matching as well as exact matching. This fuzzy matching should
be particularly tailored to support the types of lexical variations specific to
names. No data should be decrypted, even in memory, until a match is ensured.
In this paper we analyze the accuracy and efficiency of several metrics that meet
these requirements and compare those results to that of standard name-matching
methods employed on unencrypted data. The paper focuses entirely on technical
considerations of the targeted use case. Laws and regulations also have a bearing
on this application, but that aspect is not addressed here due to wide variance
between legal jurisdictions and the authors’ lack of legal expertise.

Note that nothing in this application scenario places any restrictions upon
the infrastructure in which the data records are stored. In particular, the results
presented here can be applied directly, with no modification, to data stored as

2 Note that this exposes the raw PII values in memory, though only those in the query,
not those in every database record.
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RDF triples in accordance with the linked data principles. This work therefore
joins a growing body of literature regarding how linked data can be secured while
retaining its utility for those authorized to access it [5,7].

The main contributions of this paper are:

– The usage of an advanced name matching benchmark generation tool to ana-
lyze the performance of several different name-based similarity metrics in a
nuanced way. In our analysis we consider numerous realistic sources of errors
and study the effect of the threshold value applied to each of the metrics.

– The accuracy of the privacy-preserving similarity metrics is compared to that
of standard string metrics on unprotected data in order to establish the accu-
racy lost in support of data privacy.

– The computational efficiency of the privacy-preserving similarity metrics is
also compared to that of standard string metrics.

The rest of this paper is organized as follows: In Sect. 2 we provide an overview
of some related work and briefly discuss the challenges that make record link-
age on names difficult. Section 3 introduces the metrics and algorithms used to
perform record linkage in this study. This includes the string similarity metrics
for unencrypted data which are used as a baseline for comparison purposes and
the metrics relevant to private record linkage. Section 4 analyzes and evaluates
the performance of the algorithms mentioned in Sect. 3 in terms of accuracy and
computational efficiency. Finally, Sect. 5 concludes the paper by summarizing
the results and provides an outlook to future work.

2 Background

There have been numerous approaches to solving the problem of record linkage
based on person names. A comprehensive overview of several name matching
techniques was provided by Snae in [9]. Snae describes four different types of
name matching algorithms and compares them in terms of accuracy and execu-
tion time: spelling analysis based algorithms (Guth and Levenshtein), phonetic
based algorithms (Soundex, Metaphonez, and Phonex), composite algorithms
(combination of sound and spelling based methods, e.g. ISG), and hybrid algo-
rithms (combination of phonetic and spelling based approaches, e.g. LIG). The
hybrid algorithms were recommended for many name based record linkage appli-
cations because of their flexibility that allows them to be easily tuned for specific
use cases. However, the results indicated that there is no single best method
for name matching. In the conclusion, the author suggests that the choice of
the name matching algorithm should depend on the specific application needs.
Moreover, this work doesn’t take into consideration the important aspect of our
study, which is linking records while keeping them encrypted.

As mentioned previously, many existing techniques for private record linkage
assume that the two parties involved do not want to reveal their data to the
other party. One way this is commonly achieved is by developing algorithms
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that avoid directly comparing the records to be linked. For example, in the two-
party protocol presented by Vatsalan and his colleagues in [11], two database
owners compute similarity values between the records in their dataset and public
reference values. Then, the similarity values are binned into intervals and the
bins are exchanged between the two database owners. Based on the exchanged
bins the protocol uses the reverse triangular inequality of a distance metric
to compute the similarity values of two records without revealing the records
themselves. Another, somewhat similar, two-party protocol was proposed by
Yakout et al. in [12]. In this approach, each database owner converts all of
their records into vector representations that are later mapped to points in a
complex plane. The planes are then exchanged between the owners in order to
identify pairs of points that are in proximity of each other. To calculate similarity
values between the candidate vectors, the Euclidean distance of two records is
computed using a secure distance computation. These two approaches are typical
of many existing PRL techniques and, like the majority of those techniques,
they implicitly assume that the records to be linked are not encrypted. We now
turn our attention to examples of the few approaches that do not make this
assumption.

One important thing to note is that not all string similarity metrics can
be applied to the problem of name-based private record linkage. In order for
a metric to be usable in this scenario, the metric must not require access to
individual characters within this string. This is because any such metric would
have to “encrypt” a string character-by-character, which is essentially a classical
substitution cipher that is not at all secure. This eliminates common metrics
such as Levenshtein and Monge Elkan from consideration.

Among the techniques that support approximate matching for linking records
are the Soundex and q-gram string similarity metrics. The Soundex metric was
originally designed as a phonetic encoding algorithm for indexing names by
sound. [1] Soundex encodes a string representing a name into a code that con-
sists of the first letter of the name followed by three digits, by applying a set
of transformation rules to the original name. When two Soundex encodings are
compared, the comparison is an exact match rather than approximate compar-
ison but common name mispronunciations will not cause the algorithm to miss
a match3. To use Soundex for private record linkage, both the name and the
phonetic encoding are stored in the database in encrypted form for each record,
but the encrypted phonetic encoding is the one used to respond to queries. The
comparison is still an exact rather than fuzzy comparison, but because it is
now being done on a phonetic encoding, common misspellings or other slight

3 In 1990 Lawrence Philips created a phoenetic algorithm called Metaphone that
improves upon Soundex by considering numerous situations in which the pronunica-
tion of English words differs from what would be anticipated based on their spelling
[8]. Metaphone was not considered for this effort because the extensions that it makes
beyond Soundex are primarily intended to improve the performance on regular words
rather than on names; however, the metric does fit the requirements for use in this
application, and will be considered during our future work on this topic.



Private Record Linkage: Comparison of Selected Techniques 597

differences will not cause the algorithm to miss matching records. This was the
approach suggested in [3].

Another of the string similarity metrics that can be used is q-grams. A q-
gram is created by splitting a string into a set of substrings of length q. An
example of a q-gram, given q = 2 and the input string Alice, is {“Al”, “li”, “ic”,
“ce”}. As with the Soundex approach, in order to use q-grams for name-based
private record linkage additional information must be stored with each record.
In the case of q-grams, the person’s name is divided into q-grams, each of the
substrings in the set of q-grams is encrypted, and those encrypted substrings are
also stored as part of the record. The amount of similarity between two records is
then computed as the degree of overlap between these set of encrypted q-grams
for each record. Each individual substring is compared based on exact match.
The degree of overlap is computed using a traditional set similarity metric such
as Jaccard or Dice, which are calculated as follows:

Jaccard =
gramscommon

grams1 + grams2 − gramscommon

Dice =
2 x gramscommon

grams1 + grams2
,

where gramscommon corresponds to the number of q-grams that are common to
both strings, grams1 to the number of q-grams in the first string, and grams2
to the number of q-grams in the second string. The intuition behind using q-
grams to compare two names is that a typo, misspelling, or other variation will
only impact a limited number of substrings and therefore similar strings will still
have a high degree of overlap and thus a high similarity value. The downside
is that the order of the substrings is not considered, so it is possible for two
very different strings, such as “stop” and “post” to have very high similarity
according to this metric.

A more in-depth review of techniques proposed to achieve private record
linkage can be found in [2].

In this work, we have evaluated the performance of the Soundex and q-gram
algorithms for name-based private record linkage in the scenario described in
the introduction. Because it is unrealistic to expect a privacy-preserving record
linkage algorithm to perform better than a linkage method that does not pro-
vide any protection for the data, we have compared the performance of Soundex
and q-gram to the performance of some traditional string similarity metrics on
unencrypted data. Specifically, we have used Levenshtein and Jaro-Winkler, two
of the most commonly used string similarity metrics, as a baseline. Levenshtein
is an edit distance metric. It simply counts the number of edits (insertions, dele-
tions, or substitutions) that must be applied to one string in order to transform
it into another one. For example, the Levenshtein distance between “Michelle”
and “Micheal” is 2. Jaro-Winkler is based on the Jaro metric, which counts
the number of “common” characters of two strings. Characters are considered
common when the difference between their indexes is no greater than half of
the length of the longer string. Jaro also takes into consideration the number
of character transpositions. The Jaro-Winkler version of the algorithm increases
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the similarity value returned by Jaro if the two strings begin with the same
sequence of characters and differences appear only in the middle or at the end
of string [2].

Name matching has been researched for many years and numerous studies
have proven that it is not an easy task. This is because a name’s spelling can
be malformed in a wide variety of ways, including punctuation, abbreviation,
pronunciation, spelling, the order of writing, use of prefixes, typos, or optical
recognition errors to name a few. In addition, privacy concerns have made it
very difficult to find publicly available data that can be used for benchmark
purposes, particularly a collection of names that accurately reflects worldwide
name distribution rather than being US-centric. This lack of suitable benchmarks
was a considerable challenge during this study, leading to the use of a newly-
available name matching benchmark generation system, described in Sect. 4.

3 Approach

We analyzed the performance of several string similarity metrics for linking
encrypted records. The metrics considered were Soundex and several varia-
tions of the q-gram technique. This performance was compared against those
of Jaro and a normalized version of Levenshtein on the unencrypted data. The
data and Java source code are available from https://github.com/prl-dase-wsu/
prl-technique-comparison.

We used two metrics based on q-grams. The first is q-grams with q = 2
(also called bigrams). Because studies have shown [6] that padding the input
string with a special character (one that never appears as part of any string in
the dataset) at the beginning and the end of string can increase the accuracy
when comparing two different q-grams we also tried padded q-grams with q = 2.
Both q-grams and padded q-grams were compared using two different similarity
coefficient methods, Jaccard and Dice.

The string metrics that were used on unencrypted data, Jaro and Levestein,
were introduced in Sect. 2. To formally define both algorithms, the similarity
value of two strings returned by the Jaro algorithm is calculated as follows:

Jaro =
c
s1

+ c
s2

+ c - t
c

3
,

where c is the number common characters in both strings, s1 is the length of
the first string, s2 is the length of the second string, and t is the number of
transpositions (the number of common characters that are not in sequence order,
divided by 2). Since all of the metrics used in this study return a value between
0.0 (when strings are completely different) and 1.0 (when string are the same) we
modified the original Levenshtein algorithm so that it returns a similarity value
that falls in the same range. The Normalized Levenshtein formula is defined as
follows:

NormalizedLevenshtein = 1 − Levenshtein

max(s1,s2)
,

https://github.com/prl-dase-wsu/prl-technique-comparison
https://github.com/prl-dase-wsu/prl-technique-comparison
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where Levenshtein is the number of replacements needed to transform the first
string into the second string, s1 is the length of the first string, and s2 is the
length of the second string.

The benchmark datasets used in this study were created by using the
advanced personal data generation tool called “GeCo” and developed by K-N.
Tran et al. [10] The tool was created to address the issue of lack of publicly avail-
able data that contains PII information. GeCo has two main functionalities: data
generation and data corruption. The data generation module provides the user
with an interface capable of producing records with five different attribute gen-
eration mechanisms. The first two can be used to generate individual attributes
such as credit card number, social security number, name, age, etc. The attribute
values are created by either user-defined functions or based on frequency look-up
files that specify the set of all possible values of an attribute and their relative
frequencies. The other three types of attribute generation mechanisms allow the
user to produce compound attributes where the attributes’ values depend on
each other. For example, a compound attribute with fields such as: city, gender,
and blood pressure can be created, where the value of the blood pressure depends
on the previously generated city and gender values. The second module of GeCo
provides users with a sophisticated interface allowing them to corrupt the gener-
ated data using six different corruption techniques that simulate real-world errors
that can occur during data processing. Those techniques include introducing:
(1) missing values (one of the record’s fields gets lost), (2) character edits (a
random character of a string attribute is inserted, deleted, substituted, or trans-
posed), (3) keyboard edits (simulates a human mistake during typing), (4) optical
character recognition (OCR) errors (simulates OCR software mistakes), (5) pho-
netic edits (replaces substrings with their corresponding phonetic variations),
and (6) categorical value swapping (replaces an attribute value with one of
its possible variations). The user can also specify numerous other parameters
such as: the number of records to corrupt, the number of corruptions applied
to a record or single attribute, or the probability of corruption of a particular
attribute.

For benchmark purposes we generated a dataset of 10,000 records where
each of the records had the following attributes: first name, last name and credit
card number. Then, we used the GeCo tool to introduce various types of real-
istic corruption to the generated dataset. The corrupted datasets produced by
the GeCo tool were categorized using three parameters: type of applied corrup-
tion technique (Character Edit, Keyboard Edit, OCR Edit, Phonetic Edit, or
mix of all), the percentage of original record corruption (high - 10 %, medium
- 5 %. or low - 2 %), and the number of corruptions applied to either the first
name, last name, or both (1 or 2). This resulted in 30 variations of the dataset.
Once the datasets were corrupted we added additional attributes to each of the
records from all datasets to be able to perform record linkage using encrypted
q-grams and Soundex encodings. Each q-gram array and Soundex encoding were
encrypted using 256-bit AES password-based encryption.
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To evaluate the performance of the string metrics, the uncorrupted dataset
was cross joined with each of the corrupted datasets using each of the string
metrics discussed in the previous section. During the join operation only the
pairs of records with the highest similarity score that exceeded a threshold value
were joined. If the an individual pair of joined records corresponded to the same
individual we counted it as a “Correct” join, otherwise the join was counted
as “False Positive”. If none of the scores returned by a string metric exceeded
a threshold value we incremented the “False Negative” count by 1 to indicate
that a corresponding record was not found in the other dataset. In a special
case, when more than one pair of records had the same highest score, the pair of
records that corresponded to the same individual was marked as “Correct” and
the rest of the pairs were counted as “False Positive”.

4 Evaluation and Analysis

Performing record linkage using each of the seven string metrics (q-grams com-
pared using Jaccard coefficient, q-grams compared using Dice coefficient, padded
q-grams compared using Jaccard coefficient, padded q-grams compared using
Dice coefficient, Soundex, Levenshtein, and Jaro) between the uncorrupted
dataset and the 30 corrupted datasets resulted in a massive amount of statisti-
cal data. Instead of presenting the outcome of every single cross join operation,
this section summarizes our key findings, with an emphasis on practical advice
related to selecting a metric, setting the threshold, and conveying the type of
performance that can be expected by someone attempting to do name-based
private record linkage.

4.1 Observation 1: Soundex is Not Viable, but (Padded) q-grams are

Figure 1 Shows the results of all of the string metrics on a version of the data
in which 10 % of the names have had one (the solid lines) or two (the dotten
lines) characters edited. In the single edit case, all versions of the q-gram metric
are able to achieve the same, nearly perfect, accuracy on the encrypted data
that Levenshtein and Jaro achieve on the encrypted data. The performance of
all metrics is lower for the two character edit case, with a top accuracy of 90 %
rather than the completely accurate results possible in the single edit situation.
However, we again see that the performance of at least the padded versions of
the q-gram approach on the ciphertext can match that of Levenshtein and Jaro
on the plaintext.

The results for the Soundex metric are not included in Fig. 1 because the
results showed that comparing names based on encrypted Soundex encodings is
not viable in most of the cases as a record linkage technique. The only exception
was noted when the datasets containing records with the phonetic type of record
corruption were joined. Still, in the best case scenario only 60.71 % of corrupted
data was successfully matched using this technique. Table 1 presents the accuracy
of record linkage on all types of corrupted datasets using the Soundex technique.
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Fig. 1. Illustration of the decrease in accuracy of record linkage of selected string
metrics. Solid lines correspond to accuracy when linkage was performed on datasets
corrupted with 1 Character Edit, dotted lines with 2 Character Edits.

Table 1. Performance of record linkage based on encrypted Soundex encodings.
The percentage values reflect the number of corrupted records that were successfully
matched with their uncorrupted versions.

Corruption type Number of corruptions per record

1 2

Character Edit 47.24 % 24.06 %

Keyboard Edit 48.06 % 21.94 %

OCR Edit 38.29 % 13.71 %

Phonetic Edit 60.71 % 43.88 %

Mix 50.82 % 25.47 %

4.2 Observation 2: Dice is Preferable to Jaccard for Calculating
q-gram Similarity

Out of the four similarity metrics based on q-grams, the ones using the Dice
coefficient to measure the similarity between the sets of encrypted q-grams were
more accurate. This was the case with q-grams as well as padded q-grams. This
can be explained by the fact that Dice favors the occurrences of common q-
grams more than Jaccard. As a result, a pair of similar records is likely to have a
higher similarity score when calculated using Dice coefficient. To illustrate this,
in Table 2 we provide a sample results from record linkage performed against a
dataset with the phonetic type of corruption, where 10 % of original records had
two phonetic errors introduced. Similar results were recorded for datasets with
other types of corruptions.
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Table 2. Sample results of record linkage performed against phonetically corrupted
dataset showing the performance of q-grams based string similarity metrics

Threshold Unpadded q-grams Padded q-grams

Jaccard Dice Jaccard Dice

Correct FP FN Correct FP FN Correct FP FN Correct FP FN

0.30 9837 60 163 9837 60 163 9949 45 51 9949 45 51

0.35 9837 60 163 9837 60 163 9949 45 51 9949 45 51

0.40 9834 57 166 9837 60 163 9948 45 52 9949 45 51

0.45 9814 56 186 9837 60 163 9937 43 63 9949 45 51

0.50 9778 48 222 9837 60 163 9910 38 90 9949 45 51

0.55 9614 29 386 9834 57 166 9790 27 210 9949 45 51

0.60 9506 25 494 9826 57 174 9589 18 411 9946 45 54

0.65 9329 21 671 9778 48 222 9337 18 661 9910 38 90

0.70 9198 18 802 9637 32 363 9170 18 830 9792 27 208

0.75 9101 18 899 9467 22 532 9081 17 919 9538 18 462

0.80 9046 18 954 9264 19 736 9032 17 968 9233 18 767

0.85 9023 18 977 9125 18 875 9011 17 989 9097 17 903

0.90 9009 18 991 9036 18 964 9002 17 998 9021 17 979

0.95 9002 18 998 9009 18 991 9000 17 1000 9002 17 998

4.3 Observation 3: Lower Thresholds are Better for q-grams

Figure 1 illustrates that the threshold value for the Levenshtein and Jaro metrics
can be set relatively high without sacrificing accuracy when linking the unen-
crypted data, which was not the case when the q-gram techniques were used to
link the encrypted data. For instance, to achieve an accuracy of 99.5 % when
performing linkage against datasets where records contain one corruption of any
type, the threshold value applied to the Jaro or Levenshtein metric was set to
0.8 whereas the threshold value applied to q-grams based metrics needs to be
set to a value between 0.55 and 0.75 to achieve the same result, depending on
the type of corruption applied to the datasets.

Table 2 makes the point that the padded versions of the q-gram metric in
particular have better performance when the threshold value is kept low, which
as explained in the previous paragraph is the optimal approach. For threshold
values up to 0.7 for the Jaccard coefficient and 0.8 for the Dice coefficient,
padding the q-grams produces better results. For higher threshold values, the
unpadded version is slightly better. The reason behind this is that similarity
scores calculated using padded q-grams are higher when the differences between
the strings used to generate the q-grams appear in the middle of the strings.
[2] When the differences appear at the beginning or at the end of strings the
similarity scores are lower because the number of common q-grams is smaller.
Statistically, the differences between strings appear more often in the middle,
which explains why the padded q-grams can produce higher similarity scores
for the majority of corrupted data. This pattern occurred in all of the results
produced during this study.
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4.4 Observation 4: Some Types of Errors are Worse than Others

Out of all corrupted datasets the worst performance in terms of accuracy and
the number of false positives found was “achieved” when the datasets with OCR
Edits were linked. This is most likely due to the fact that some of the mistakes
that OCR Edits introduce are replacements of two characters in place of one
character, or vice versa. For instance, character “m” can be replaced with “rn”
and the string “cl” can be replaced by the character “d”. Those kind of replace-
ments can have a significant negative impact on the string similarity scores pro-
duced by all of the metrics. The best performance results were recorded when
the datasets corrupted with Character Edits were linked, those are presented
in Fig. 1. Figure 2 illustrates the accuracies of linking datasets corrupted with
OCR Edits errors. The accuracies of datasets corrupted with Keyboard Edits,
Phonetic Edits, and a mix of all types of edits fall in between the accuracies
presented in Figs. 1 and 2.

Another pattern common for the results obtained from linking all types of
corrupted datasets was a significant drop in accuracy when the corrupted records
contained more than one error of any type. For instance, for Threshold = 0.85
the accuracies of the Jaro, Levenshtein, unpadded q-grams compared using the
Dice coefficient, and padded q-grams compared using the Dice coefficient were
97.5 %, 90.79 %, 57.46 %, and 73.37 % respectively when there was only one error
of the Character Edit type per record. When the number of errors per corrupted
record increased to two, the accuracies decreased to 88.39 %, 39.54 %, 13.31 %,
and 10.41 %. Figure 1 presents a full overview of the accuracy degradation for
datasets corrupted with Character Edits where 10 % of all original records were
corrupted.
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Fig. 2. Accuracy of string metrics used to perform record linkage on dataset with 10 %
of the records corrupted using OCR Edits with 1 corruption per record.
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4.5 Observation 5: The Efficiency Penalty for These
Privacy-Preserving String Similarity Metrics is Small

The Jaro, Levenshtein, and Jaccard and Dice variants of the q-grams metric all
have a O(nm) time complexity, where n and m are the lengths of the strings
to be compared. Because the Soundex metric is only checking for equality of
the Soundex representation of the strings, its time complexity just O(n). When
determining whether a particular name is in the dataset, the query name is
compared against all of the names in the dataset. It should be noted that the
Soundex algorithm, because it is an exact rather than fuzzy match, could be
made more efficient by indexing the database on the Soundex representation of
the name. Also, there has been some work on eliminating the need to consider
all names in the dataset when querying using the Jaro metric through the user
of character and length-based filters to quickly determine if it is possible for a
particular name to match the query within a specified threshold [4]. Neither of
these optimizations were considered in this work.

While most of the string metrics considered have the same computational
complexity, constant factors differ between the approaches. For example, because
Jaro only looks for matching characters within a window that is half the length
of the longer string, it is generally faster than Levenstein. To evaluate the com-
putational efficiency of each of the string metrics in a practical setting, the time
taken to perform the join operation between the original dataset and the cor-
rupted dataset was measured. We explored the impact on the performance when
the number of characters in names increases. In this case, the datasets always
consisted of 10,000 records but the number of characters in each name was equal
to 10, 15, or 20. These tests were done on datasets with a record corruption of
10 %, where the records were corrupted using the Character Edit technique and
contained one corruption per record. The results are shown in Fig. 3. The timing
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results of linkage performed on the other corrupted datasets were very similar
to the ones presented in this figure.

The results show that the q-grams approaches are very slightly faster than
Jaro in these tests, and significantly faster than Levenshtein. The average time
taken to perform the join operation on the datasets using Levenshtein was more
than five times the magnitude of the time taken by the other string metrics.
Of course, the best speed was observed when the datasets were linked using
the Soundex metric. In those cases the linkage was performed almost instantly,
averaging only about one second.

Additionally, we have investigated the impact on the performance when the
number of records increases. Three datasets of different volumes (10, 20, and 30
thousand records) were linked to conduct the tests. The results shown in Fig. 3
indicate that as the number of records to be linked increases, the time required
to link all the records is again very similar for Jaro and the q-grams techniques,
significantly greater for Levenstein, and very low for Soundex.

5 Conclusions and Future Work

In this work we evaluated the accuracy and speed of selected string metrics
that support approximate matching for querying and joining databases based
on encrypted names. An advanced benchmark generation tool, “GeCo”, was
used to produce sample datasets with records containing common mistakes in
name spelling such as typographical errors, optical recognition errors, and pho-
netic errors. The performance of several string metrics that support approximate
matching on encrypted data (four variations of q-grams based techniques and
one technique based on encodings produced by the Soundex algorithm), was
compared against commonly used string metrics, such as Jaro and Levenshtein,
employed on unencrypted data.

Joining databases based on Soundex encodings did not prove to be a feasible
option since it failed to find a correct match for more than 50 % of records
when the name in a corrupted record contained one error, and for almost 75 %
when corrupted records could contain two errors in a single name. Q-grams
based techniques seem to be viable option for joining databases on encrypted
names. While their performance in terms of precision is slightly worse than the
performance of metrics such as Jaro or Levenshtein on unencrypted data, this
can be easily dealt with by adjusting the threshold value that determines when
two q-grams are likely to correspond to the same name.

In future work we plan to extend the range of attribute types that can be
used to perform record linkage. In this study we focused on linking records based
only on an individual’s first and last name. However other types of attributes,
such as numeric or categorical ones, can also carry PII. We want to be able to
integrate those kind of attributes into private record linkage queries. Finally, we
want to address the potentially significant security vulnerability of the encrypted
q-grams approach, on which a frequency attack based on common q-grams can be
launched, by investigating possible ways to make the encrypted q-grams resilient
to those kind of attacks.
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