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Abstract

We consider the stable matching problem when the preference lists are not given explicitly
but are represented in a succinct way and ask whether the problem becomes computationally
easier and investigate other implications. We give subquadratic algorithms for finding a stable
matching in special cases of natural succinct representations of the problem, the d-attribute,
d-list, geometric, and single-peaked models. We also present algorithms for verifying a stable
matching in the same models. We further show that for d = ω(logn) both finding and verifying
a stable matching in the d-attribute and d-dimensional geometric models requires quadratic time
assuming the Strong Exponential Time Hypothesis. This suggests that these succinct models
are not significantly simpler computationally than the general case for sufficiently large d.

1 Introduction

The stable matching problem has applications that vary from coordinating buyers and sellers to
assigning students to public schools and residents to hospitals [21, 29, 37]. Gale and Shapley [17]
proposed a quadratic time deferred acceptance algorithm for this problem which has helped clear
matching markets in many real-world settings. For arbitrary preferences, the deferred acceptance
algorithm is optimal and even verifying that a given matching is stable requires quadratic time
[33, 38, 19]. This is reasonable since representing all participants’ preferences requires quadratic
space. However, in many applications the preferences are not arbitrary and can have more structure.
For example, top doctors are likely to be universally desired by residency programs and students
typically seek highly ranked schools. In these cases participants can represent their preferences
succinctly. It is natural to ask whether the same quadratic time bounds apply with compact and
structured preference models that have subquadratic representations. This will provide a more
nuanced understanding of where the complexity lies: Is stable matching inherently complex, or
is the complexity merely a result of the large variety of possible preferences? To this end, we
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examine several restricted preference models with a particular focus on two originally proposed by
Bhatnagar et al. [8], the d-attribute and d-list models. Using a wide range of techniques we provide
algorithms and conditional hardness results for several settings of these models.

In the d-attribute model, we assume that there are d different attributes (e.g. income, height,
sense of humor, etc.) with a fixed, possibly objective, ranking of the men for each attribute. Each
woman’s preference list is based on a linear combination of the attributes of the men, where each
woman can have different weights for each attribute. Some women may care more about, say,
height whereas others care more about sense of humor. Men’s preferences are defined analogously.
This model is applicable in large settings, such as online dating systems, where participants lack
the resources to form an opinion of every other participant. Instead the system can rank the
members of each gender according to the d attributes and each participant simply needs to provide
personalized weights for the attributes. The combination of attribute values and weights implicitly
represents the entire preference matrix. Bogomolnaia and Laslier [9] show that representing all
possible n × n preference matrices requires n − 1 attributes. Therefore it is reasonable to expect
that when d ≪ n − 1, we could beat the worst case quadratic lower bounds for the general stable
matching problem.

In the d-list model, we assume that there are d different rankings of the men. Each women selects
one of the d lists as her preference list. Similarly, each man chooses one of d lists of women as his
preference list. This model captures the setting where members of one group (i.e. student athletes,
sorority members, engineering majors) may all have identical preference lists. Mathematically, this
model is actually a special case of the d-attribute model where each participant places a positive
weight on exactly one attribute. However, its motivation is distinct and we can achieve improved
results for this model.

Chebolu et al. prove that approximately counting stable matchings in the d-attribute model for
d ≥ 3 is as hard as the general case [12]. Bhatnagar et al. showed that sampling stable matchings
using random walks can take exponential time even for a small number of attributes or lists but
left it as an open question whether subquadratic algorithms exist for these models [8].

We show that faster algorithms exist for finding a stable matching in some special cases of these
models. In particular, we provide subquadratic algorithms for the d-attribute model, where all
values and weights are from a small set, and the one-sided d-attribute model, where one side of the
market has only one attribute. These results show we can achieve meaningful improvement over
the general setting for some restricted preferences.

While we only provide subquadratic algorithms to find stable matchings in special cases of
the attribute model, we have stronger results concerning verification of stable matchings. We
demonstrate optimal subquadratic stability testing algorithms for the d-list and boolean d-attribute
settings as well as a subquadratic algorithm for the general d-attribute model with constant d.
These algorithms provide a clear distinction between the attribute model and the general setting.
Moreover, these results raise the question of whether verifying and finding a stable matching are
equally hard problems for these restricted models, as both require quadratic time in the general
case.

Additionally, we show that the stable matching problem in the d-attribute model for d =
ω(log n) cannot be solved in subquadratic time under the Strong Exponential Time Hypothesis
(SETH) [23, 25]. We show SETH-hardness for both finding and verifying a stable matching and for
checking if a given pair is in any or all stable matchings, even when the weights and attributes are
boolean. This adds the stable matching problem to a growing list of SETH-hard problems, including
Fréchet distance [10], edit distance [6], string matching [1], k-dominating set [34], orthogonal vectors
[42], and vector domination [24]. Thus the quadratic time hardness of the stable matching problem
in the general case extends to the more restricted and succinct d-attribute model. This limits the
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space of models where we can hope to find subquadratic algorithms.
We further present several results in related succinct preference areas. Single-peaked preferences

are commonly used to model preferences in social choice theory because of their simplicity and
because they often approximate reality. Essentially, single-peaked preferences require that everyone
agree on a common spectrum along which all alternatives can be ranked. However, each individual
may have a different ideal choice and prefers the “closest” alternatives. A typical example is
the political spectrum where candidates fall somewhere between liberal and conservative. In this
setting, voters tend to prefer the candidates that are closer to their own ideals. As explained below,
these preferences can be succinctly represented. Bartholdi and Trick [7] present a subquadratic time
algorithm for stable roommates (and stable matching) with narcissistic, single-peaked preferences.
In the narcissistic case, the participants are located at their own ideals. This makes sense in some
applications but is not always realistic. We provide a subquadratic algorithm to verify if a given
matching is stable in the general single-peaked preference model. Chung uses a slightly different
model of single-peaked preferences where a stable roommate matching always exists [13]. In this
model the participants would rather be unmatched than matched with someone further away from
their ideal than they are themselves, leading to incomplete preference lists.

We extend our algorithms and lower bounds for the attribute model to the geometric model
where preference orders are formed according to euclidean distances among a set of points in
multi-dimensional space. Arkin et al. [5] derive a subquadratic algorithm for stable roommates
with narcissistic geometric preferences in constant dimensions. Our algorithms do not require the
preferences to be narcissistic.

It is worth noting that all of our verification and hardness results apply to the stable roommates
problem as well. This problem is identical to stable matching except we remove the bipartite
distinction between the participants [21]. Unlike with bipartite stable matching, there need not
always exist a stable roommate matching. However Irving discovered an algorithm that produces
a stable matching or identifies that none exists in quadratic time [26]. Since finding a stable
roommate matching is strictly harder than finding a stable matching, this is also optimal. Likewise,
verification is equally hard for both stable roommates and stable matching, as we can simply
duplicate every participant and treat the roommate matching as bipartite. Therefore, our results
show that verification can be done more efficiently for the stable roommates problem when the
preferences are succinct.

Finally, we address the issue of strategic behavior in these restricted models. It is often preferable
for a market-clearing mechanism to incentivize truthful behavior from the participants so that the
outcome faithfully captures the optimal solution. Particularly in matching markets, this objective
complements the desire for a stable matching where participants have incentives to cooperate with
the outcome. Roth [36] showed that there is no strategy proof mechanism to find a stable matching
in the general preferences setting. Additionally, if a mechanism outputs the man-optimal stable
matching, the women can manipulate it to obtain the woman-optimal solution by truncating their
preference lists [36, 18]. Even if the women are required to rank all men, they can still achieve more
preferable outcomes in some instances [41, 30]. However, in the d-attribute, d-list, single-peaked,
and geometric preference models, there are considerably fewer degrees of freedom for preference
misrepresentation. Nevertheless, we show that there is still no strategy proof mechanism to find a
stable matching for any of these models with d ≥ 2 and non-narcissistic preferences.

Dabney and Dean [14] study an alternative succinct preference representation where there is a
canonical preference list for each side and individual deviations from this list are specified separately.
They provide an adaptive O(n + k) time algorithm for the special one-sided case, where k is the
number of deviations.
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2 Summary of Results

Section 4.1 gives an O(C2dn(d + log n)) time algorithm for finding a stable matching in the d-
attribute model if both the attributes and weights are from a set of size at most C. This gives a
strongly subquadratic algorithm (i.e. O(n2−ε) for ε > 0) if d < 1

2 logC log n.
Section 4.2 considers an asymmetric case, where one side of the matching market has d at-

tributes, while the other side has a single attribute. We allow both the weights and attributes
to be arbitrary real values. Our algorithm for finding a stable matching in this model has time
complexity Õ(n2−1/⌊d/2⌋), which is strongly subquadratic for constant d.

In Section 5.1 we consider the problem of verifying that a given matching is stable in the
d-attribute model with real attributes and weights. The time complexity of our algorithm is
Õ(n2−1/2d), which is again strongly subquadratic for constant d.

Section 5.2 gives an O(dn) time algorithm for verifying a stable matching in the d-list model.
This is linear in its input size and is therefore optimal.

In Section 5.3 we give a randomized Õ(n2−1/O(c log2(c))) time algorithm for d = c log n for
verifying a stable matching in the d-attribute model when both the weights and attributes are
boolean. This algorithm is strongly subquadratic for d = O(log n).

In Section 6 we give a conditional lower bound for the three problems of finding and verifying
a stable matching in the d-attribute model as well as the stable pair problem. We show that there
is no strongly subquadratic algorithm for any of these problems when d = ω(log n) assuming the
Strong Exponential Time Hypothesis. For the stable pair problem we give further evidence that
even nondeterminism does not give a subquadratic algorithm.

Finally in Section 7 we consider the related preference models of single-peaked and geometric
preferences. We extend our algorithms and lower bounds for the attribute model to the geometric
model and give an O(n log n) algorithm for verifying a stable matching with single-peaked prefer-
ences.

3 Preliminaries

A matching market consists of a set of men M and a set of women W with |M | = |W | = n. We
further have a permutation of W for every m ∈ M , and a permutation of M for every w ∈ W ,
called preference lists. Note that representing a general matching market requires size Ω(n2).

For a perfect bipartite matching µ, a blocking pair with respect to µ is a pair (m,w) 6∈ µ where
m ∈M and w ∈W , such that w appears before µ(m) in m’s preference list and m appears before
µ(w) in w’s preference list. A perfect bipartite matching is called stable if there are no blocking
pairs. In settings where ties in the preference lists are possible, we consider weakly stable matchings
where (m,w) is a blocking pair if and only if both strictly prefer each other to their partner. For
simplicity, we assume all preference lists are complete though our results trivially extend to cases
with incomplete lists.

Gale’s and Shapley’s deferred acceptance algorithm [17] works as follows. While there is an
unmatched man m, have m propose to his most preferred woman who has not already rejected
him. A woman accepts a proposal if she is unmatched or if she prefers the proposing man to her
current partner, leaving her current partner unmatched. Otherwise, she rejects the proposal. This
process finds a stable matching in time O(n2).

A matching market in the d-attribute model consists of n men and n women as before. A
participant p has attributes Ai(p) for 1 ≤ i ≤ d and weights αi(p) for 1 ≤ i ≤ d. For a man m and
woman w, m’s value of w is given by valm(w) = 〈α(m), A(w)〉 = ∑d

i=1 αi(m)Ai(w). m ranks the
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women in decreasing order of value. Symmetrically, w’s value of m is valw(m) =
∑d

i=1 αi(w)Ai(m).
Note that representing a matching market in the d-attribute model requires size O(dn). Unless
otherwise specified, both attributes and weights can be negative.

A matching market in the d-list model is a matching market where both sides have at most d
distinct preference lists. Describing a matching market in this model requires O(dn) numbers.

Throughout the paper, we use Õ to suppress polylogarithmic factors in the time complexity.

4 Finding Stable Matchings

4.1 Small Set of Attributes and Weights

We first present a stable matching algorithm for the d-attribute model when the attribute and
weight values are limited to a set of constant size. In particular, we assume that the number of
possible values for each attribute and weight for all participants is bounded by a constant C.

Algorithm 1: Small Constant Attributes and Weights

Group the women into sets Si with a set for each of the C ′ = O(C2d) types of women.
(O(Cd) possible attribute values and O(Cd) possible weight vectors.)
Associate an empty min-heap hi with each set Si.
for each man m do

Create m’s preference list of sets Si.
index(m)← 1

while there is a man m who is not in any heap do
Let Si be the index(m) set on m’s list.
if |hi| < |Si| then

hi. insert(m)

else

if valSi
(m) > valSi

(hi.min) then
hi.delete min()
hi. insert(m)

index(m)← index(m) + 1

for i = 1 to C ′ do
µ← µ

⋃

Arbitrarily pair women in Si with men in hi.

return µ

Theorem 1. There is an algorithm to find a stable matching in the d-attribute model with at most
a constant C distinct attribute and weight values in time O(C2dn(d+ log n)).

Proof. Consider Algorithm 1. First observe that each man is indifferent between the women in a
given set Si because each woman has identical attribute values. Moreover, the women in a set Si

share the same ranking of the men, since they have identical weight vectors. Therefore, since we
are looking for a stable matching, we can treat each set of women Si as an individual entity in a
many to one matching where the capacity for each Si is the number of women it contains.

With these observations, the stability follows directly from the stability of the standard deferred
acceptance algorithm for many-one stable matching. Indeed, each man proposes to the sets of
women in the order of his preferences and each set of women tentatively accepts the best proposals,
holding onto no more than the available capacity.

The grouping of the women requires O(C2d + dn) time to initialize the groups and place each
woman in the appropriate group. Creating the men’s preference lists requires O(dC2dn) time
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to evaluate and sort the groups of women for every man. The while loop requires O(C2dn(d +
log n)) time since each man will propose to at most C2d sets of women and each proposal requires
O(d + log n) time to evaluate and update the heap. This results in an overall running time of
O(C2dn(d+ log n)).

As long as d < 1
2 logC log n, the time complexity in Theorem 1 will be subquadratic. It is worth

noting that the algorithm and proof actually do not rely on any restriction of the men’s attribute
and weight values. Thus, this result holds whenever one side’s attributes and weight values come
from a set of constant size.

4.2 One-Sided Real Attributes

In this section we consider a one-sided attribute model with real attributes and weights. In this
model, women have d attributes and men have d weights, and the preference list of a man is given
by the weighted sum of the women’s attributes as in the two-sided attribute model. On the other
hand there is only one attribute for the men. The women’s preferences are thus determined by
whether they have a positive or negative weight on this attribute. For simplicity, we first assume
that all women have a positive weight on the men’s attribute and show a subquadratic algorithm
for this case. Then we extend it to allow for negative weights.

To find a stable matching when the women have a global preference list over the men, we use
a greedy approach: process the men from the most preferred to the least preferred and match
each man with the highest unmatched woman in his preference list. This general technique is
not specific to the attribute model but actually works for any market where one side has a single
global preference list. (e.g. [14] uses a similar approach for their algorithm.) The complexity lies
in repeatedly finding which of the available women is most preferred by the current top man.

This leads us to the following algorithm: for every woman w consider a point with A(w) as its
coordinates and organize the set of points into a data structure. Then, for the men in order of
preference, query the set of points against a direction vector consisting of the man’s weight and
find the point with the largest distance along this direction. Remove that point and repeat.

The problem of finding a maximal point along a direction is typically considered in its dual
setting, where it is called the ray shooting problem. In the ray shooting problem we are given n
hyperplanes and must maintain a data structure to answer queries. Each query consists of a vertical
ray and the data structure returns the first hyperplane hit by that ray.

The relevant results are in Lemma 1 which follows from several papers for different values of d.
For an overview of the ray shooting problem and related range query problems, see [3].

Lemma 1 ([22, 16, 2, 32]). Given an n point set in R
d for d ≥ 2, there is a data structure for

ray shooting queries with preprocessing time Õ(n) and query time Õ(n1−1/⌊d/2⌋). The structure
supports deletions with amortized update time Õ(1).

For d = 1, queries can trivially be answered in constant time. We use this data structure to
provide an algorithm when there is a global list for one side of the market.

Lemma 2. For d ≥ 2 there is an algorithm to find a stable matching in the one-sided d-attribute
model with real-valued attributes and weights in time Õ(n2−1/⌊d/2⌋) when there is a single preference
list for the other side of the market.

Proof. For a man m, let dim(m) denote the index of the last non-zero weight, i.e. αdim(m)+1(m) =
· · · = αd(m) = 0. We assume dim(m) > 0, as otherwise m is indifferent among all women and we
can pick any woman as µ(m). We assume without loss of generality αdim(m)(m) ∈ {−1, 1}. For
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each d′ such that 1 ≤ d′ ≤ d we build a data structure consisting of n hyperplanes in R
d′ . For each

woman w, consider the hyperplanes

Hd′(w) =

{

xd′ =
d′−1
∑

i=1

Ai(w)xi −Ad′(w)

}

(1)

and for each d′ preprocess the set of all hyperplanes according to Lemma 1. Note that Hd′(w) is
the dual of the point (A1(w), . . . , Ad′(w)).

For a man m we can find his most preferred partner by querying the dim(m)-dimensional data
structure. Let s = αdim(m)(m). Consider a ray r(m) ∈ R

dim(m) originating at

(−α1(m)

s
, . . . ,−

αdim(m)−1(m)

s
,−s · ∞) (2)

in the direction (0, . . . , 0, s). If αdim(m) = 1 we find the lowest hyperplane intersecting the ray,
and if αdim(m) = −1 we find the highest hyperplane. We claim that the first hyperplane r(m)
hits corresponds to m’s most preferred woman. Let woman w be preferred over woman w′,

i.e. valm(w) =
∑dim(m)

i=1 Ai(w)αi(m) ≥ ∑dim(m)
i=1 Ai(w

′)αi(m) = valm(w′). Since the ray r(m) is
vertical in coordinate xd′ , it is sufficient to evaluate the right-hand side of the definition in equation
1. Indeed we have valm(w) ≥ valm(w′) if and only if

dim(m)−1
∑

i=1

−Ai(w)
αi(m)

s
−Adim(m)(w) ≤

dim(m)−1
∑

i=1

−Ai(w
′)
αi(m)

s
−Adim(m)(w

′) (3)

when s = 1 and

dim(m)−1
∑

i=1

−Ai(w)
αi(m)

s
−Adim(m)(w) ≥

dim(m)−1
∑

i=1

−Ai(w
′)
αi(m)

s
−Adim(m)(w

′) (4)

when s = −1.
Note that the query ray is dual to the set of hyperplanes with normal vector (α1(m), . . . , αd(m)).
Now we pick the highest man m in the (global) preference list, consider the ray as above and find

the first hyperplane Hdim(m)(w) hit by the ray. We then match the pair (m,w), remove H(w) from
all data structures and repeat. Correctness follows from the correctness of the greedy approach
when all women share the same preference list and the properties of the halfspaces proved above.

The algorithm preprocesses d data structures, then makes n queries and dn deletions. The
time is dominated by the n ray queries each requiring time Õ(n1−1/⌊d/2⌋). Thus the total time
complexity is bounded by Õ(n2−1/⌊d/2⌋), as claimed.
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Algorithm 2: One-Sided Stable Matching

// For points in P ∈ R
d we use the notation (x1, . . . , xd) to refer to its coordinates.

Input: matching µ
for d′ = 1 to d do

for each woman w do

H(w)← {xd =
∑d−1

i=1 Ai(w)xi −Ad′(w)}
Hd′ ← Hd′ ∪H(w)

Hd′ .preprocess()

for each man m in order of preference do
s← αdim(m)(m)

r(m)← (−α1(m)
s , . . . ,−αdim(m)−1(m)

s ,∞ · s) + t · (0, . . . , 0,−s)
H(w)← Query(Hdim(m), r(m))
µ← µ ∪ (m,w)
for d′ = 1 to d do

Hd′ ← Hd′ −Hd′(w)

return µ

Note that for d = 1 there is a trivial linear time algorithm for the problem.
We use the following lemma to extend the above algorithm to account for positive and negative

weights for the women. It deals with settings where the women choose one of two lists (σ1, σ2) as
their preference lists over the men while the men’s preferences can be arbitrary.

Lemma 3. Suppose there are k women who use σ1. If the top k men in σ1 are in the bottom k
places in σ2, then the women using σ1 will only match with those men and the n− k women using
σ2 will only match with the other n− k men in the woman-optimal stable matching.

Proof. Consider the operation of the woman-proposing deferred acceptance algorithm for finding
the woman-optimal stable matching. Suppose the lemma is false so that at some point a woman
using σ1 proposed to one of the last n− k men in σ1. Let w be the first such woman. w must have
been rejected by all of the top k, so at least one of those men received a proposal from a woman,
w′, using σ2. However, since the top k men in σ1 are the bottom k men in σ2, w

′ must have been
rejected by all of the top n − k men in σ2. But there are only n − k women using σ2, so one of
the top n − k men in σ2 must have already received a proposal from a woman using σ1. This is a
contradiction because w was the first woman using σ1 to propose to one of the bottom n− k men
in σ1 (which are the top n− k men in σ2).

We can now prove the following theorem where negative values are allowed for the women’s
weights.

Theorem 2. For d ≥ 2 there is an algorithm to find a stable matching in the one-sided d-attribute
model with real-valued attributes and weights in time Õ(n2−1/⌊d/2⌋).

Proof. Suppose there are k women who have a positive weight on the men’s attribute. Since the
remaining n − k women’s preference list is the reverse, we can use Lemma 3 to split the problem
into two subproblems. Namely, in the woman-optimal stable matching the k women with a positive
weight will match with the top k men, and the n − k women with a negative weight will match
with the bottom n − k men. Now the women in each of these subproblems all have the same list.
Therefore we can use Lemma 2 to solve each subproblem. Splitting the problem into subproblems
can be done in time O(n) so the running time follows immediately from Lemma 2.
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Table 1: Two-list preferences where no participant receives their top choice in the stable matching

σ1 σ2 π1 π2
m1 m3 w1 w3

m2 m5 w2 w5

m3 m1 w3 w1

m4 m4 w4 w4

m5 m2 w5 w2

Man List Woman List

m1 π1 w1 σ2
m2 π1 w2 σ2
m3 π2 w3 σ1
m4 π1 w4 σ2
m5 π2 w5 σ1

As a remark, this “greedy” approach where we select a man, find his most preferred available
woman, and permanently match him to her will not work in general. Table 1 describes a simple 2-
list example where the unique stable matching is {(m1, w2), (m2, w3), (m3, w5), (m4, w4), (m5, w1)}.
In this instance, no participant is matched with their top choice. Therefore, the above approach
cannot work for this instance. This illustrates to some extent why the general case seems more
difficult than the one-sided case.

An alternative model of a greedy approach that is based on work by Davis and Impagliazzo in
[15] also will not work. In this model, an algorithm can view each of the lists and the preferences of
the women. It can then (adaptively) choose an order in which to process the men. When processing
a man, he must be assigned a partner (not necessarily his favorite available woman) once and for
all, based only on his choice of preference list and the preferences of the previously processed men.
This model is similar to online stable matching [28] except that it allows the algorithm to choose the
processing order of the men. Using the preferences in Table 2 and minor modifications to them, we
can show that no greedy algorithm of this type can successfully produce a stable matching. Indeed,
the unique stable matching of the preference scheme below is µ = {(m1, w3), (m2, w1), (m3, w2)}.
However, changing the preference list for whichever of m1 or m2 is processed later will form a
blocking pair with the stable partner of the other. If m1 uses π1, (m1, w1) blocks µ and if m2 uses
π2, (m2, w3) blocks µ. Therefore, no algorithm can succeed in assigning stable partners to these
men without first knowing the preference list choice of all three.

Table 2: Two-list preferences where a greedy approach will not work

σ1 σ2 π1 π2
m1 m2 w1 w3

m2 m1 w2 w2

m3 m3 w3 w1

Man List Woman List

m1 π2 w1 σ1
m2 π1 w2 σ2
m3 π1 w3 σ2

4.3 Strategic Behavior

As mentioned earlier, strategic behavior in the general preference setting allows for participants to
truncate or rearrange their lists. However, in the d-attribute and d-list models, we assume that
the attributes or lists are fixed, so that the only manipulation the participants are allowed is to
misrepresent their weight vectors or which list they choose. Despite this limitation, there is still no
strategy proof mechanism for finding a stable matching when d ≥ 2.

Theorem 3. For d ≥ 2 there is no strategy proof algorithm to find a stable matching in the d-list
model.
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Proof. Table 3 describes true preferences that can be manipulated by the women. Observe that
there are two stable matchings: the man-optimal matching {(m1, w1), (m2, w2), (m3, w3), (m4, w4)}
and the woman-optimal matching {(m1, w2), (m2, w3), (m3, w1), (m4, w4)}. However, if w2 used list
σ2 instead of σ1, then there is a unique stable matching which is {(m1, w2), (m2, w3), (m3, w1), (m4, w4)},
the woman-optimal stable matching from the original preferences. Therefore, any mechanism that
does not always output the woman optimal stable matching can be manipulated by the women
to their advantage. By symmetry, any mechanism that does not always output the man-optimal
matching could be manipulated by the men. Thus there is no strategy-proof mechanism for the
d-list setting with d ≥ 2.

Table 3: Two-list preferences that can be manipulated

σ1 σ2 π1 π2
m1 m3 w1 w3

m2 m1 w2 w1

m3 m4 w3 w2

m4 m2 w4 w4

Man List Woman List

m1 π1 w1 σ2
m2 π1 w2 σ1
m3 π2 w3 σ1
m4 π2 w4 σ1

Since the d-list model is a special case of the d-attribute model, we immediately have the
following result from Theorem 3.

Corollary 1. For d ≥ 2 there is no strategy proof algorithm to find a stable matching in the
d-attribute model.

Of course in the 1-list setting there is a trivial unique stable matching. Moreover, in the
one-sided d-attribute model our algorithm is strategy proof since the women are receiving the
woman-optimal matching and each man receives his best available woman, so misrepresentation
would only give him a worse partner.

5 Verification

We now turn to the problem of verifying whether a given matching is stable. While this is as hard
as finding a stable matching in the general setting, the verification algorithms we present here are
more efficient than our algorithms for finding stable matchings in the attribute model.

5.1 Real Attributes and Weights

In this section we adapt the geometric approach for finding a stable matching in the one-sided d-
attribute model to the problem of verifying a stable matching in the (two-sided) d-attribute model.
We express the verification problem as a simplex range searching problem in R

2d, which is the dual
of the ray shooting problem. In simplex range searching we are given n points and answer queries
that ask for the number of points inside a simplex. In our case we only need degenerate simplices
consisting of the intersection of two halfspaces. Simplex range searching queries can be done in
sublinear time for constant d.

Lemma 4 ([31]). Given a set of n points in R
d, one can process it for simplex range searching in

time O(n log n), and then answer queries in time Õ(n1− 1
d ).
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For 1 ≤ d′ ≤ d we use the notation (x1, . . . , xd, y1, . . . , yd′−1, z) for points in R
d+d′ . We again let

dim(w) be the index of w’s last non-zero weight, assume without loss of generality αdim(w) ∈ {−1, 1},
and let sgn(w) = sgn(αdim(w)). We partition the set of women into 2d sets Wd′,s for 1 ≤ d′ ≤ d and
s ∈ {−1, 1} based on dim(w) and sgn(w). Note that if dim(w) = 0, then w is indifferent among all
men and can therefore not be part of a blocking pair. We can ignore such women.

For a woman w, consider the point

P (w) = (A1(w), . . . , Ad(w), α1(w), . . . , αdim(w)−1(w), valw(m)) (5)

where m = µ(w) is the partner of w in the input matching µ. For a set Wd′,s we let Pd′,s be the
set of points P (w) for w ∈Wd′,s. The basic idea is to construct a simplex for every man and query
it against all sets Pd′,s.

Given d′,s, and a man m, let H1(m) be the halfspace
{

∑d
i=1 αi(m)xi > valm(w)

}

where w =

µ(m). For w′ ∈Wd′,s we have P (w′) ∈ H1(m) if and only if m strictly prefers w′ to w. Further let

H2(m) be the halfspace
{

∑d′−1
i=1 Ai(m)yi +Ad′(m)s > z

}

. For w′ ∈ Wd′,s we have P (w′) ∈ H2(m)

if and only if w′ strictly prefers m to µ(w′). Hence (m,w′) is a blocking pair if and only if
P (w′) ∈ H1(m) ∩H2(m).

Using Lemma 4 we immediately have an algorithm to verify a stable matching.

Theorem 4. There is an algorithm to verify a stable matching in the d-attribute model with real-
valued attributes and weights in time Õ(n2−1/2d)

Proof. Partition the set of women into sets Wd′,s for 1 ≤ d′ ≤ d and s ∈ {−1, 1} and for w ∈Wd′,s

construct P (w) ∈ R
d+d′ as above. Then preprocess the sets according to Lemma 4. For each man

m query H1(m) ∩ H2(m) against the points in all sets. By the definitions of H1(m) and H2(m),
there is a blocking pair if and only if for some man m there is a point P (w) ∈ H1(m) ∩H2(m) in
one of the sets Pd′,s.

The time to preprocess is O(n log n). There are 2dn queries of time Õ(n1−1/2d). Hence the
whole process requires time Õ(n2−1/2d) as claimed.

Algorithm 3: Verify Stable Matching with Reals

// For points in P ∈ R
d+d′ we use the notation (x1, . . . , xd, y1, . . . , yd′−1, z) to refer to its

coordinates.
Input: matching µ
for each woman w do

m← µ(w)
P (w)← (A1(w), . . . , Ad(w), α1(w), . . . , αd(w), valw(m))
Pdim(w),sgn(w) ←Wdim(w),sgn(w) ∪ P (w)

for d′ = 1 to d and s ∈ {−1, 1} do
Pd′,s.preprocess()
for each man m do

w← µ(m)

H1(m)←
{

∑d
i=1 αi(m)xi > valm(w)

}

H2(m)←
{

∑d′−1
i=1 Ai(m)yi +Ad′(m) · s > z

}

if Query(Pd′,s,H1(m) ∩H2(m)) > 0 then
return µ is not stable

return µ is stable

11



5.2 Lists

When there are d preference orders for each side, and each participant uses one of the d lists, we
provide a more efficient algorithm. Here, assume µ is the given matching between M and W . Let
{πi}di=1 be the set of d permutations on the women and {σi}di=1 be the set of d permutations on
the men. Define rank(w, i) to be the position of w in permutation πi. This can be determined in
constant time after O(dn) preprocessing of the permutations. Let head(πi, j) be the first woman in
πi who uses permutation σj and next(w, i) be the next highest ranked woman after w in permutation
πi who uses the same permutation as w or ⊥ if no such woman exists. These can also be determined
in constant time after O(dn) preprocessing by splitting the lists into sublists, with one sublist for the
women using each permutation of men. The functions rank, head, and next are defined analogously
for the men.

Algorithm 4: Verify d-List Stable Matching

for i = 1 to d do

for j = 1 to d do
w← head(πi, j).
m← head(σj, i).
while m 6= ⊥ and w 6= ⊥ do

if rank(w, i) > rank(µ(m), i) then
m← next(m, j).

else

if rank(m, j) > rank(µ(w), j) then
w← next(w, i).

else
return (m,w) is a blocking pair.

return µ is stable.

Theorem 5. There is an algorithm to verify a stable matching in the d-list model in O(dn) time.

Proof. We claim that algorithm 4 satisfies the theorem. Indeed, if the algorithm returns a pair
(m,w) where m uses πi and w uses σj , then (m,w) is a blocking pair because w appears earlier in
πi than µ(m) and m appears earlier in σj than µ(w).

On the other hand, suppose the algorithm returns that µ is stable but there is a blocking
pair, (m,w), where m uses πi and w uses σj . The algorithm considers permutations πi and σj
since it does not terminate early. Clearly if the algorithm evaluates m and w simultaneously when
considering permutations πi and σj , it will detect that (m,w) is a blocking pair. Therefore, the
algorithm either moves from m to next(m, j) before considering w or it moves from w to next(w, i)
before considering m. In the former case, rank(µ(m), i) < rank(w′, i) for some w′ that comes before
w in πi. Therefore m prefers µ(m) to w. Similarly, in the latter case, rank(µ(w), j) < rank(m′, i)
for some m′ that comes before m in σj so w prefers µ(w) to m. Thus (m,w) is not a blocking pair
and we have a contradiction.

The for and while loops proceed through all men and women once for each of the d lists in
which they appear. Since at each step we are either proceeding to the next man or the next woman
unless we find a blocking pair, the algorithm requires time O(dn). This is optimal since the input
size is dn.
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5.3 Boolean Attributes and Weights

In this section we consider the problem of verifying a stable matching when the d attributes and
weights are restricted to boolean values and d = c log n. The algorithm closely follows an algorithm
for the maximum inner product problem by Alman and Williams [4]. The idea is to express the
existence of a blocking pair as a probabilistic polynomial with a bounded number of monomials and
use fast rectangular matrix multiplication to evaluate it. A probabilistic polynomial for a function
f is a polynomial p such that for every input x

Pr[f(x) 6= p(x)] ≤ 1

3
(6)

We use the following tools in our algorithm. THRd is the threshold function that outputs 1 if
at least d of its inputs are 1.

Lemma 5 ([4]). There is a probabilistic polynomial for THRd on n variables and error ε with
degree O(

√

n log(1/ε)).

Lemma 6 ([35, 40]). There is a probabilistic polynomial for the disjunction of n variables and error
ε with degree O(log(1/ε))

Lemma 7 ([43]). Given a polynomial P (x1, . . . , xm, y1, . . . ym) with at most n0.17 monomials and
two sets X,Y ⊆ {0, 1}m with |X| = |Y | = n, we can evaluate P on all pairs (x, y) ∈ X ×Y in time
Õ(n2 +m · n1.17).

We construct a probabilistic polynomial that outputs 1 if there is a blocking pair. To minimize
the degree of the polynomial, we pick a parameter s and divide the men and women into sets of
size at most s. The polynomial takes the description of s men m1, . . . ,ms and s women w1, . . . , ws

along with their respective partners as input, and outputs 1 if and only if there is a blocking pair
(mi, wj) among the s2 pairs of nodes with high probability.

Lemma 8. Let u be a large constant and s = n1/uc log2 c. There is a probabilistic polynomial with
the following inputs:

• The attributes and weights of s men, A(m1), . . . , A(ms), α(m1), . . . , α(ms)

• The attributes of the s women that are matched with these men A(µ(m1)), . . . , A(µ(ms))

• The attributes and weights of s women, A(w1), . . . , A(ws), α(w1), . . . , α(ws)

• The attributes of the s men that are matched with these women A(µ(w1)), . . . , A(µ(ws))

The output of the polynomial is 1 if and only if there is a blocking pair with respect to the matching
µ among the s2 pairs in the input. The number of monomials is at most n0.17 and the polynomial
can be constructed efficiently.

Proof. A pair (mi, wj) is a blocking pair if and only if 〈α(mi), A(µ(mi))〉 < 〈α(mi), A(wj)〉 and
〈α(wj), A(µ(wj))〉 < 〈α(wj), A(mi)〉. Rewriting

F (x, y, a, b) := 〈x, y〉 < 〈a, b〉 = THRd+1 (¬(x1 ∧ y1), . . . ,¬(xd ∧ yd), a1 ∧ b1, . . . , ad ∧ bd) (7)

we have a blocking pair if and only if
∨

i∈[1,s]
j∈[1,s]

(

F (α(mi), A(µ(mi)), α(mi), A(wj)) ∧ F (α(wj), A(µ(wj)), α(wj), A(mi))
)

(8)
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Note that we can easily adapt this algorithm to finding strongly blocking pairs by defining
F (x, y, a, b) as 〈x, y〉 ≤ 〈a, b〉.

Using Lemma 5 with ε = 1
s3

and Lemma 6 with ε = 1/4 we get a probabilistic polynomial of
degree a

√
d log s for some constant a and error 1/4 + 1/s < 1/3. Furthermore, since we are only

interested in boolean inputs we can assume the polynomial to be multilinear. For large enough u
we have 2d > a

√

d log(s) (i.e. the degree is at most half of the number of variables) and the number

of monomials is then bounded by O

(

(

s2
( 4d
a
√

d log(s)

)

)2
)

.

Simplifying the binomial coefficient we have

(

4d

a
√
d log s

)

=

(

4c log n

a
√

(log2 n)/u log2 c

)

=

(

4c log n

a log n/
√
u log c

)

Setting δ = a/(
√
u log(c)) we can upper bound this using Stirling’s inequality by

(

4c log n

δ log n

)

≤
(

(4c log n) · e
δ

)δ logn

= nδ log(4ce/δ)

By choosing u to be a large enough constant, we can make δ and the exponent arbitrarily small.
The factor of s2 only contributes a trivial constant to the exponent. Therefore we can bound the
number of monomials by n0.17.

Theorem 6. In the d-attribute model with n men and women, and d = c log n boolean attributes
and weights, there is a randomized algorithm to decide if a given matching is stable in time
Õ(n2−1/O(c log2(c))) with error probability at most 1/3.

Proof. We again choose s = n1/uc log2 c and construct the probabilistic polynomial as in Lemma 8.
We then divide the men and women into ⌈ns ⌉ groups of size at most s.

For a group of men m1, . . . ,ms we let the corresponding input vector be

A(m1), . . . , A(ms), α(m1), . . . , α(ms), A(µ(m1)), . . . , A(µ(ms))

We set X as the set of all input vectors for the ⌈ns ⌉ groups. We define the set Y symmetrically for
the input vectors corresponding to the ⌈ns ⌉ groups of women.

Using Lemma 7 we evaluate the polynomial on all pairs x ∈ X, y ∈ Y in time

Õ

(

(n

s

)2
+O(sd)

(n

s

)1.17
)

= Õ

(

(n

s

)2
)

= Õ(n2−1/O(c log2(c))) (9)

The probability that the output is wrong for any fixed input pair is at most 1/3. We repeat this
process O(log n) times and take the threshold output for every pair of inputs, such that the error
probability is at most O

(

1
n2

)

for any fixed pair of inputs. Using a union bound we can make the
probability of error at most 1/3 on any input.

6 Conditional Hardness

6.1 Background

The Strong Exponential Time Hypothesis has proved useful in arguing conditional hardness for a
large number of problems. We show SETH-hardness for both verifying and finding a stable matching
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in the d-attribute model, even if the weights and attributes are boolean. The main step of the proof
is a reduction from the maximum inner product problem to the stable matching problem. The
maximum inner product problem is known to be SETH-hard. We give the fine-grained reduction
from cnfsat to the vector orthogonality problem and from the vector orthogonality problem to
the maximum inner product problem for the sake of completeness.

Definition 1 ([23, 25]). The Strong Exponential Time Hypothesis (SETH) stipulates that for each
ε > 0 there is a k such that k-sat requires time Ω(2(1−ε)n).

Definition 2. For any d, the vector orthogonality problem is to decide if two input sets U, V ⊆ R
d

with |U | = |V | = n have a pair u ∈ U , v ∈ V such that 〈u, v〉 = 0.
The boolean vector orthogonality problem is the variant where U, V ⊆ {0, 1}d.

Definition 3. For any d and input l, the maximum inner product problem is to decide if two input
sets U, V ⊆ R

d with |U | = |V | = n have a pair u ∈ U , v ∈ V such that 〈u, v〉 ≥ l.
The boolean maximum inner product problem is the variant where U, V ⊆ {0, 1}d.

Lemma 9 ([25, 42, 4]). Assuming SETH, for any ε > 0, there is a c such that solving the boolean
maximum inner product problem on d = c log n dimensions requires time Ω(n2−ε).

Proof. The proof is a series of reductions from k-sat to boolean inner product. By the Sparsification
Lemma [25] we can reduce k-sat to a subexponential number of k-sat instances with at most
d = ckn clauses, where ck does not depend on n. Hence, assuming SETH, for any ε > 0, there is a
c such that cnfsat with cn clauses requires time Ω(2(1−ε)n).

We reduce cnfsat to the boolean vector orthogonality problem using a technique called Split
and List. Divide the variable set into two sets S, T of size n

2 and for each set consider all N = 2n/2

assignments to the variables. For every assignment we construct a d-dimensional vector where the
ith position is 1 if and only if the assignment does not satisfy the ith clause of the CNF formula.
Let U be the set of vectors corresponding to the assignments to S and let V be the set of vectors
corresponding to T . A pair u ∈ U , v ∈ V is orthogonal if and only if the corresponding assignment
satisfies all clauses. An algorithm for boolean vector orthogonality in dimension d = cn = 2c logN
and time O(N2−ε) = O(2(1−ε/2)n) would contradict SETH. Hence assuming SETH, for every ε > 0
there is a c such that the boolean vector orthogonality problem with d = c logN requires time
Ω(N2−ε).

Finally, we reduce the boolean vector orthogonality problem to the boolean maximum inner
product problem by partitioning the set U into sets Ui for 0 ≤ i ≤ d where Ui contains all vectors
with Hamming weight i. Observe that a vector v ∈ V is orthogonal to a vector u ∈ Ui if and only
if 〈u,¬v〉 = i, where ¬v is the element-wise complement of v. Thus U and V have an orthogonal
pair, if and only if there is an i such that Ui and ¬V = {¬v | v ∈ V } have a pair with inner product
at least i. Therefore, for any ε > 0 there is a c such that the maximum inner product problem on
d = c logN dimensions requires time Ω(N2−ε) assuming SETH.

6.2 Finding Stable Matchings

In this subsection we give a fine-grained reduction from the maximum inner product problem to
the problem of finding a stable matching in the boolean d-attribute model. This shows that the
stable matching problem in the d-attribute model is SETH-hard, even if we restrict the attributes
and weights to booleans.

Theorem 7. Assuming SETH, for any ε > 0, there is a c such that finding a stable matching in
the boolean d-attribute model with d = c log n dimensions requires time Ω(n2−ε).
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Proof. The proof is a reduction from maximum inner product to finding a stable matching. Given
an instance of the maximum inner product problem with sets U, V ⊆ {0, 1}d where |U | = |V | = n
and threshold l, we construct a matching market with n men and n women. For every u ∈ U we
have a man mu with A(mu) = u and α(mu) = u. Similarly, for vectors v ∈ V we have women wv

with A(wv) = v and α(wv) = v. This matching market is symmetric in the sense that for mu and
wv, valmu

(wv) = valwv
(mu) = 〈u, v〉.

We claim that any stable matching contains a pair (mu, wv) such that the inner product 〈u, v〉
is maximized. Indeed, suppose there are vectors u ∈ U , v ∈ V with 〈u, v〉 ≥ l but there exists a
stable matching µ with 〈u′, v′〉 < l for all pairs (mu′ , wv′) ∈ µ. Then (mu, wv) is clearly a blocking
pair for µ which is a contradiction.

6.3 Verifying Stable Matchings

In this section we give a reduction from the maximum inner product problem to the problem of
verifying a stable matching, showing that this problem is also SETH-hard.

Theorem 8. Assuming SETH, for any ε > 0, there is a c such that verifying a stable matching in
the boolean d-attribute model with d = c log n dimensions requires time Ω(n2−ε).

Proof. We give a reduction from maximum inner product with sets U, V ⊆ {0, 1}d where |U | =
|V | = n and threshold l. We construct a matching market with 2n men and women in the d′-
attribute model with d′ = d + 2(l − 1). Since d′ < 3d the theorem then follows immediately from
the SETH-hardness of maximum inner product.

For u ∈ U , let mu be a man in the matching market with attributes and weights A(mu) =
α(mu) = u ◦ 1l−1 ◦ 0l−1 where we use ◦ for concatenation. Similarly, for v ∈ V we have a woman
wv with A(wv) = α(wv) = v ◦ 0l−1 ◦ 1l−1. We further introduce dummy women w′

u for u ∈ U
with A(w′

u) = α(w′
u) = 0d ◦ 1l−1 ◦ 0l−1 and dummy men m′

v for v ∈ V with A(m′
v) = α(m′

v) =
0d ◦ 0l−1 ◦ 1l−1.

We claim that the matching consisting of pairs (mu, w
′
u) for all u ∈ U and (m′

v, wv) for all
v ∈ V is stable if and only if there is no pair u ∈ U , v ∈ V with 〈u, v〉 ≥ l. For u, u′ ∈ U we have
valmu

(w′
u′) = valw′

u′
(mu) = l − 1, and for v, v′ ∈ V we have valwv

(m′
v′) = valm′

v′
(wv) = l − 1. In

particular, any pair in µ has (symmetric) value l−1. Hence there is a blocking pair with respect to
µ if and only if there is a pair with value at least l. For u 6= u′ and v 6= v′ the pairs (mu, w

′
u′) and

(wv,m
′
v′) can never be blocking pairs as their value is l − 1. Furthermore for any pair of dummy

nodes w′
u and m′

v we have valm′
v
(w′

u) = valw′
u
(m′

v) = 0, thus no such pair can be a blocking pair
either. This leaves pairs of real nodes as the only candidates for blocking pairs. For non-dummy
nodes mu and wv we have valmu

(wv) = valwv
(mu) = 〈u, v〉 so (mu, wv) is a blocking pair if and

only if 〈u, v〉 ≥ l.
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mu1

mu2

mu3

w′
u1

w′
u2

w′
u3

wv1

wv2

wv3

u1 ◦ 1l−1 ◦ 0l−1

u2 ◦ 1l−1 ◦ 0l−1

u3 ◦ 1l−1 ◦ 0l−1

v1 ◦ 0l−1 ◦ 1l−1

v2 ◦ 0l−1 ◦ 1l−1

v3 ◦ 0l−1 ◦ 1l−1

0d ◦ 1l−1 ◦ 0l−1

0d ◦ 1l−1 ◦ 0l−1

0d ◦ 1l−1 ◦ 0l−1

m′
v1

m′
v2

m′
v3

0d ◦ 0l−1 ◦ 1l−1

0d ◦ 0l−1 ◦ 1l−1

0d ◦ 0l−1 ◦ 1l−1

Figure 1: A representation of the reduction from maximum inner product to verifying a stable
matching

6.4 Checking a Stable Pair

In this section we give a reduction from the maximum inner product problem to the problem of
checking whether a given pair is part of any or all stable matchings, showing that these questions
are SETH-hard when d = c log n for some constant c. For general preferences, both questions can
be solved in time O(n2) [27, 20] and are known to require quadratic time [33, 38, 19].

Theorem 9. Assuming SETH, for any ε > 0, there is a c such that determining whether a
given pair is part of any or all stable matchings in the boolean d-attribute model with d = c log n
dimensions requires time Ω(n2−ε).

Proof. We again give a reduction from maximum inner product with sets U, V ⊆ {0, 1}d where
|U | = |V | = n and threshold l. We construct a matching market with 2n men and women in the
d′-attribute model with d′ = 7d+7(l−1)+18. Since d′ < 15d the theorem then follows immediately
from the SETH-hardness of maximum inner product.

For simplicity, we will first describe the preference scheme, then provide weight and attribute
vectors that result in those preferences. For u ∈ U , let mu be a man in the matching market and
for v ∈ V we have a woman wv. We also have n − 1 dummy men mi : i = 1 . . . n − 1 and n − 1
dummy women wj : j = 1 . . . n−1. Finally, we have a special man m∗ and special woman w∗. This
special pair is the one we will test for stability. Let the preferences be

mu :{wv : 〈u, v〉 ≥ l} ≻ {wj}n−1
j=1 ≻ w∗ ≻ {wv : 〈u, v〉 < l} ∀u ∈ U

mi :{wv} ≻ {wj}n−1
j=1 ≻ w∗ ∀i ∈ {1 . . . n− 1}

m∗ :w∗ ≻ {wv} ≻ {wj}n−1
j=1

wv :{mu : 〈u, v〉 ≥ l} ≻ {mi}n−1
i=1 ≻ m∗ ≻ {mu : 〈u, v〉 < l} ∀v ∈ V

wj :{mu} ≻ {mi}n−1
i=1 ≻ m∗ ∀j ∈ {1 . . . n− 1}

w∗ :{mi}n−1
i=1 ≻ {mu} ≻ m∗
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so that, for example, man mu corresponding to u ∈ U will most prefer women wv for some
v ∈ V with 〈u, v〉 ≥ l (in decreasing order of 〈u, v〉), then all of the dummy women (equally), then
the special woman w∗, and finally the remaining women wv (in decreasing order of 〈u, v〉).

First suppose for some û ∈ U and v̂ ∈ V we have 〈û, v̂〉 ≥ l and let this be the pair with largest
inner product. Now consider the deferred acceptance algorithm for finding the woman-optimal
stable matching. First, wv̂ will propose to mû and will be accepted. The dummy women will
propose to the remaining men corresponding to U . Then any other woman wv will be accepted
by either a dummy man or a man mu, causing the dummy woman matched with him to move to
a dummy man. In any case, all men besides m∗ are matched to a woman they prefer over w∗, so
when she proposes to them, they will reject her. Thus w∗ will match with m∗. Since w∗ receives
her least preferred choice in the woman optimal stable matching, (m∗, w∗) is a pair in every stable
matching.

Now suppose 〈u, v〉 < l for every u ∈ U ,v ∈ V . Consider the deferred acceptance algorithm
for finding the man-optimal stable matching. First, the dummy men will propose to the women
corresponding to V and will be accepted. Then every man mu will propose to the dummy women,
but only n−1 of them can be accepted. The remaining one will propose to w∗. When m∗ proposes
to w∗, she rejects him, causing him to eventually be accepted by the available woman wv. Thus
m∗ will not match with w∗ in any stable matching since she is his most preferred choice but he is
not matched with her in the man-optimal stable matching, so (m∗, w∗) is not a pair in any stable
matching. Figure 2 demonstrates each of these cases.

Since the stable pair questions for whether (m∗, w∗) are a stable pair in any or all stable
matchings are equivalent with these preferences, this reduction works for both.

Finally, we claim the following vectors realize the preferences above for the attribute model. We
leave it to the reader to verify this. As in our other hardness reductions, the weight and attribute
vectors are identical for each participant.

mu : u7 ◦ 17(l−1) ◦ 07(l−1) ◦ 16 ◦ 06 ◦ 06

mi : 07d ◦ 17(l−1) ◦ 17(l−1) ◦ 06 ◦ 16 ◦ 06

m∗ : 07d ◦ 17(l−1) ◦ 17(l−1) ◦ 06 ◦ 06 ◦ 16

wv : v7 ◦ 07(l−1) ◦ 17(l−1) ◦ 06 ◦ 16 ◦ (1 ◦ 05)
wj : 07d ◦ 17(l−1) ◦ 07(l−1) ◦ 16 ◦ (15 ◦ 0) ◦ 06

w∗ : 07d ◦ 17(l−1) ◦ 07(l−1) ◦ (13 ◦ 03) ◦ (14 ◦ 02) ◦ (12 ◦ 04)
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{mu}
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{wv}

{wj}
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(a) A representative stable matching when there
is a pair (u, v) with 〈u, v〉 ≥ l

{mu}

{mi}

m∗

{wv}

{wj}

w∗

(b) A representative stable matching when
〈u, v〉 < l for every pair (u, v)

Figure 2: A representation of the reduction from maximum inner product to checking a stable pair

This reduction also has consequences on the existence of nondeterministic algorithms for the
stable pair problem assuming the Nondeterministic Strong Exponential Time Hypothesis.

Definition 4 ([11]). The Nondeterministic Strong Exponential Time Hypothesis (NSETH) stipu-
lates that for each ε > 0 there is a k such that k-sat requires co-nondeterministic time Ω(2(1−ε)n).

In other words, the Nondeterministic Strong Exponential Time Hypothesis stipulates that for
cnfsat there is no proof of unsatisfiability that can be checked deterministically in time Ω(2(1−ε)n).

Assuming NSETH, any problem that is SETH-hard at time T (n) under deterministic reductions
either require T (n) time nondeterministically or co-nondeterministically, i.e. either there is no proof
that an instance is true or there is no proof that an instance is false that can be checked in time
faster than T (n). Note that all reductions in this paper are deterministic. In particular, the
maximum inner product problem does not have a O(N2−ε) co-nondeterministic time algorithm for
any ε > 0 assuming NSETH, since it has a simple linear time nondeterministic algorithm.

Since the reduction of Theorem 9 is a simple reduction that maps a true instance of maximum
inner product to a true instance of the stable pair problem, we can conclude that the stable pair
problem is also hard co-nondeterministically.

Corollary 2. Assuming NSETH, for any ε > 0, there is a c such that determining whether a
given pair is part of any or all stable matchings in the boolean d-attribute model with d = c log n
dimensions requires co-nondeterministic time Ω(n2−ε).

We also have a reduction so that the given pair is stable in any or all stable matchings if and
only if there is not a pair of vectors with large inner product. This shows that the stable pair
problem is also hard nondeterministically.

Theorem 10. Assuming NSETH, for any ε > 0, there is a c such that determining whether a
given pair is part of any or all stable matchings in the boolean d-attribute model with d = c log n
dimensions requires nondeterministic time Ω(n2−ε).
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Proof. This reduction uses the same setup as the one in Theorem 9 except that we now have n
dummy men and women instead of n− 1 and we slightly change the preferences as follows:

mu :{wv : 〈u, v〉 ≥ l} ≻ {wj}nj=1 ≻ w∗ ≻ {wv : 〈u, v〉 < l} ∀u ∈ U

mi :{wv} ≻ w∗ ≻ {wj}nj=1 ∀i ∈ {1 . . . n}
m∗ :w∗ ≻ {wv} ≻ {wj}nj=1

wv :{mu : 〈u, v〉 ≥ l} ≻ {mi}ni=1 ≻ m∗ ≻ {mu : 〈u, v〉 < l} ∀v ∈ V

wj :{mu} ≻ {mi}ni=1 ≻ m∗ ∀j ∈ {1 . . . n}
w∗ :{mi}ni=1 ≻ {mu} ≻ m∗

First suppose for some û ∈ U and v̂ ∈ V we have 〈û, v̂〉 ≥ l and let this be the pair with largest
inner product. Consider the deferred acceptance algorithm for finding the man-optimal stable
matching. First, some of the men corresponding to U will propose to the women corresponding to
V and at least mû will be accepted by wv̂. The remaining men corresponding to U will be accepted
by dummy women. The dummy men will propose to the women corresponding to V but not all can
be accepted. These rejected dummy men will propose to w∗ who will accept one. Then when m∗

proposes to w∗ she will reject him, as will the women corresponding to V , so he will be matched
with a dummy woman. Since m∗ and w∗ are not matched in the man optimal stable matching,
(m∗, w∗) is not a pair in any stable matching.

Now suppose 〈u, v〉 < l for every u ∈ U ,v ∈ V and consider the deferred acceptance algorithm
for finding the woman-optimal stable matching. First, the dummy women will propose to the men
corresponding to U and will be accepted. Then every woman wv will propose to the dummy men
and be accepted. Since every man besides m∗ is matched with a woman he prefers to w∗, when
she proposes to them, she will be rejected, so she will pair with m∗. Since w∗ receives her least
preferred choice in the woman optimal stable matching, (m∗, w∗) is a pair in every stable matching.
Figure 3 demonstrates each of these cases.

We can amend the vectors from Theorem 9 as follows so that they realize the changed preferences
with the attribute model.

mu : u7 ◦ 17(l−1) ◦ 07(l−1) ◦ 16 ◦ 06 ◦ 06

mi : 07d ◦ 17(l−1) ◦ 17(l−1) ◦ 06 ◦ 16 ◦ 06

m∗ : 07d ◦ 17(l−1) ◦ 17(l−1) ◦ 06 ◦ 06 ◦ 16

wv : v7 ◦ 07(l−1) ◦ 17(l−1) ◦ 06 ◦ 16 ◦ (1 ◦ 05)
wj : 07d ◦ 17(l−1) ◦ 07(l−1) ◦ 16 ◦ (13 ◦ 03) ◦ 06

w∗ : 07d ◦ 17(l−1) ◦ 07(l−1) ◦ (13 ◦ 03) ◦ (14 ◦ 02) ◦ (12 ◦ 04)

20



{mu}

{mi}

m∗

{wv}

{wj}

w∗

(a) A representative stable matching when there
is a pair (u, v) with 〈u, v〉 ≥ l
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(b) A representative stable matching when
〈u, v〉 < l for every pair (u, v)

Figure 3: A representation of the reduction from maximum inner product to checking a stable pair
such that a true maximum inner product instance maps to a false stable pair instance

We would like to point out that the results on the hardness for (co-)nondeterministic algorithms
do not apply to Merlin-Arthur (MA) algorithms, i.e. algorithms with access to both nondetermin-
istic bits and randomness. Williams [44] gives fast MA algorithms for a number of SETH-hard
problems, and the same techniques also yield a O(dn) time MA algorithm for the verification of a
stable matching in the boolean attribute model with d attributes. We can obtain MA algorithms
with time O(dn) for finding stable matchings and certifying that a pair is in at least one stable
matching by first nondeterministically guessing a stable matching.

7 Other Succinct Preference Models

In this section, we provide subquadratic algorithms for other succinct preference models, single-
peaked and geometric, which are motivated by economics.

7.1 One Dimensional Single-Peaked Preferences

Formally, we say the men’s preferences over the women in a matching market are single-peaked
if the women can be ordered as points along a line (p(w1) < p(w2) < · · · < p(wn)) and for each
man m there is a point q(m) and a binary preference relation ≻m such that if p(wi) ≤ q(m) then
p(wi) ≻m p(wj) for j < i and if p(wi) ≥ q(m) then p(wi) ≻m p(wj) for j > i. Essentially, each man
prefers the women that are “closest” to his ideal point q(m). One example of a preference relation
for m would be the distance from q(m). If the women’s preferences are also single-peaked then we
say the matching market has single peaked preferences. Since these preferences only consist of the
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p and q values and the preference relations for the participants, they can be represented succinctly
as long as the relations require subquadratic space.

7.1.1 Verifying a Stable Matching for Single-Peaked Preferences

Here we demonstrate a subquadratic algorithm for verifying if a given matching is stable when the
preferences of the matching market are single-peaked. We assume that the preference relations can
be computed in constant time.

Theorem 11. There is an algorithm to verify a stable matching in the single-peaked preference
model in O(n log n) time.

Proof. Let p(mi) be the point associated with man mi, q(mi) be mi’s preference point, and ≻mi
be

mi’s preference relation. The women’s points are denoted analogously. We assume that p(mi) <
p(mj) if and only if i < j and the same for the women. Let µ be the given matching we are to
check for stability.

First, for each man m, we compute the intervals along the line of women which includes all
women m strictly prefers to µ(m). If this interval is empty, m is with his most preferred woman
and cannot be involved in any blocking pairs so we can ignore him. For all nonempty intervals each
endpoint is p(w) for some woman w. We also compute these intervals for the women. Note that
for any man m and woman w, (m,w) is a blocking pair for µ if and only if m is in w’s interval and
w is in m’s interval.

We will process each of the women in order from w1 to wn maintaining a balanced binary search
tree of the men who prefer that woman to their partners. This will allow us to easily check if she
prefers any of them by seeing if any elements in the tree are between the endpoints of her interval.
Initially this tree is empty. When processing a woman w, we first add any man m whose interval
begins with w to the search tree. Then we check to see if w prefers any men in the tree. If so, we
know the matching is not stable. Otherwise, we remove any man m from the tree whose interval
ends with w and proceed to the next woman. Algorithm 5 provides pseudocode for this algorithm.

Computing the intervals requires O(n log n). Since we only insert each man into the tree at
most once, maintaining the tree requires O(n log n). The queries also require O(log n) for each
woman so the total time is O(n log n).
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Algorithm 5: Single-Peaked Stable Matching Verification

for each woman w do
Create two empty lists w.begin and w.end.
Use binary search to find the leftmost man m and rightmost man m′ that w prefers to
µ(w) if any. (Otherwise remove w.)
Let w.s = p(m) and w.t = p(m′).

for each man m do

Use binary search to find the leftmost woman w and rightmost woman w′ that m prefers
to µ(m) if any. (Otherwise ignore m.)
Add m to w.begin and w′.end.

Initialize an empty balanced binary search tree T .
for i = 1 to n do

for m ∈ wi.begin do
T. insert(p(m))

if there are any points p(m) in T between wi.s and wi.t then
return (m,wi) is a blocking pair.

for m ∈ wi.end do
T.delete(p(m))

return µ is stable.

7.1.2 Remarks on Finding a Stable Matching for Single-Peaked Preferences

The algorithm in [7] relies on the observation that there will always be a pair or participants who
are each other’s first choice with narcissistic single-peaked preferences. Thus a greedy approach
where one such pair is selected and then removed works well. However, this is not the case when
we remove the narcissistic assumption. In fact, as with the two-list case, Table 4 presents an
example where no participant is matched with their top choice in the unique stable matching.
Note that the preferences for the men and women are symmetric. The reader can verify that these
preferences can be realized in the single-peaked preference model using the orderings p(m1) <
p(m2) < p(m3) < p(m4) and p(w1) < p(w2) < p(w3) < p(w4) and that the unique stable matching
is {(m1, w4), (m2, w2), (m3, w3), (m4, w1)} where no participant receives their first choice.

Table 4: Single-peaked preferences where no participant receives their top choice in the stable
matching

Man Preference List

m1 w3 ≻ w2 ≻ w4 ≻ w1

m2 w3 ≻ w2 ≻ w4 ≻ w1

m3 w4 ≻ w3 ≻ w2 ≻ w1

m4 w2 ≻ w1 ≻ w3 ≻ w4

Woman Preference List

w1 m3 ≻ m2 ≻ m4 ≻ m1

w2 m3 ≻ m2 ≻ m4 ≻ m1

w3 m4 ≻ m3 ≻ m2 ≻ m1

w4 m2 ≻ m1 ≻ m3 ≻ m4

Also no greedy algorithm following the model inspired by [15] will succeed for single-peak
preferences because the preferences in Table 2 can be realized in the single-peaked preference
model using the orderings p(m1) < p(m2) < p(m3) and p(w1) < p(w2) < p(w3).
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7.2 Geometric Preferences

We say the men’s preferences over the women in a matching market are geometric in d dimensions
if each women w is defined by a location p(w) and for each man m there is an ideal q(m) such that
m prefers woman w1 to w2 if and only if ‖p(m)− q(w1)‖22 < ‖p(m)− q(w2)‖22, i.e. p(w1) has smaller
euclidean distance from the man’s ideal than p(w2). If the women’s preferences are also geometric
we call the matching market geometric. We further call the preferences narcissistic if p(x) = q(x)
for every participant x. Our results for the attribute model extend to geometric preferences.

Note that one-dimensional geometric preferences are a special case of single-peaked preferences.
As such, geometric preferences might be used to model preferences over political candidates who
are given a score on several (linear) policy areas, e.g. protectionist vs. free trade and hawkish vs.
dovish foreign policy.

Arkin et al. [5] also consider geometric preferences, but restrict themselves to the narcissistic
case. Our algorithms do not require the preferences to be narcissistic, hence our model is more
general. On the other hand, our lower bounds for large dimensions also apply to the narcissistic
special case. While Arkin et al. take special care of different notions of stability in the presence
of ties, we concentrate on weakly stable matchings. Although we restrict ourselves to the stable
matching problem for the sake of presentation, all lower bounds and verification algorithms naturally
extend to the stable roommate problem. Since all proofs in this section are closely related those
for the attribute model, we restrict ourselves to proof sketches highlighting the main differences.

Theorem 1 extends immediately to the geometric case without any changes in the proof.

Corollary 3 (Geometric version of Theorem 1). There is an algorithm to find a stable matching in
the d-dimensional geometric model with at most a constant C distinct values in time O(C2dn(d+
log n)).

For the verification of a stable matching with real-valued vectors we use a standard lifting
argument.

Corollary 4 (Geometric version of Theorem 4). There is an algorithm to verify a stable matching
in the d-dimensional geometric model with real-valued locations and ideals in time Õ(n2−1/2(d+1))

Proof. Let q ∈ R
d be an ideal and let a, b ∈ R

d be two locations. Define q′, a′, b′ ∈ R
d+1 as

q′ = (q1, . . . , qd,−1/2), a′ = (a1, . . . , ad,
∑d

i=1 a
2
i ) and b′ = (b1, . . . , bd,

∑d
i=1 b

2
i ).

We have 〈a′, q〉 = 1/2
∑d

i=1 qi − 1/2‖q − a‖22. Hence we get ‖q − a‖22 < ‖q − b‖22 if and only
if 〈q′, a′〉 > 〈q′, b′〉, so we can reduce the stable matching problem in the d-dimensional geometric
model to the d+ 1-attribute model.

For the boolean case, we can adjust the proof of Theorem 6 by using a threshold of parities
instead of a threshold of conjunctions. The degree of the resulting polynomial remains the same.

Corollary 5 (Geometric version of Theorem 6). In the geometric model with n men and women,
with locations and ideals in {0, 1}d with d = c log n, there is a randomized algorithm to decide if a

given matching is stable in time Õ(n2−1/O(c log2(c))) with error probability at most 1/3.

For lower bounds we reduce from the minimum Hamming distance problem which is SETH-hard
with the same parameters as the maximum inner product problem [4]. The Hamming distance of
two boolean vectors is exactly their squared euclidean distance, hence a matching market where
the preferences are defined by Hamming distances is geometric.

Definition 5. For any d and input l, the minimum Hamming distance problem is to decide if two
input sets U, V ⊆ {0, 1}d with |U | = |V | = n have a pair u ∈ U , v ∈ V such that ‖u− v‖22 < l.
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Lemma 10 ([4]). Assuming SETH, for any ε > 0, there is a c such that solving the minimum
Hamming distance problem on d = c log n dimensions requires time Ω(n2−ε).

For the hardness of finding a stable matching, the construction from Theorem 7 works without
adjustments.

Corollary 6 (Geometric version of Theorem 7). Assuming SETH, for any ε > 0, there is a c
such that finding a stable matching in the (boolean) d-dimensional geometric model with d = c log n
dimensions requires time Ω(n2−ε).

For the hardness of verifying a stable matching, the construction is as follows.

Corollary 7 (Geometric version of Theorem 8). Assuming SETH, for any ε > 0, there is a c such
that verifying a stable matching in the (boolean) d-dimensional geometric model with d = c log n
dimensions requires time Ω(n2−ε).

Proof. Let U, V ⊆ {0, 1}d be the inputs to the minimum Hamming distance problem and let l be
the threshold.

For every u ∈ U , define a real man mu with both ideal and location as u ◦ 0l and a dummy
woman w′

u with ideal and location u ◦ 1l. Symmetrically for v ∈ V define wv with v ◦ 0l and m′
v

with v ◦ 1l. The matching (mu, w
′
u) for all u ∈ U and (wv ,m

′
v) for all v ∈ V is stable if and only if

there is there is no pair u, v with Hamming distance less than l.

The hardness results for checking a stable pair also translate to the geometric model. In partic-
ular, since both variants of the proof extend to the geometric model we have the same consequences
for nondeterministic algorithms.

Corollary 8 (Geometric version of Theorem 9). Assuming SETH, for any ε > 0, there is a c
such that determining whether a given pair is part of any or all stable matchings in the (boolean)
d-dimensional geometric model with d = c log n dimensions requires time Ω(n2−ε).

Proof. We again reduce from the minimum Hamming distance problem. We assume without loss
of generality that d is even and the threshold l is exactly d/2 + 1, i.e. the instance is true if and
only if there are vectors u, v with Hamming distance at most d/2. We can reduce to this case from
any other threshold by padding the vectors.

We use the same preference orders as in the d-attribute model. The following narcissistic
instance realizes the preference order from Theorem 9. For a vector u ∈ {0, 1}d, u denotes its
component-wise complement.

mu :(u ◦ u ◦ u ◦ u)3◦000000000
mi :0

12d ◦100000000
m∗ :012d ◦001111111
wv :(v ◦ v ◦ v ◦ v)3 ◦000000000
wj :(0

2d ◦ 12d)3 ◦010000000
w∗ :(02d ◦ 12d)3 ◦101110000

Likewise the preference orders for Theorem 10 are achieved by the following vectors.
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mu :(u ◦ u ◦ u ◦ u)3◦00000000000
mi :0

12d ◦10000000000
m∗ :012d ◦00111111100
wv :(v ◦ v ◦ v ◦ v)3 ◦00000000000
wj :(0

2d ◦ 12d)3 ◦01000000011
w∗ :(02d ◦ 12d)3 ◦10111000000

7.3 Strategic Behavior

With geometric and single-peaked preferences, we assume that the participants are not allowed to
misrepresent their location points. Rather they may only misrepresent their preference ideal. As
such, the results of this section do not apply when preferences are narcissistic.

Theorem 12. There is no strategy proof algorithm to find a stable matching in the geometric
preference model.

Proof. We consider one-dimensional geometric preferences. Let the preference points and ide-
als be as given in Table 5 which yield the depicted preference lists. As in the proof for 3,
there are two stable matchings: the man-optimal matching {(m1, w3), (m2, w1), (m3, w2)} and the
woman-optimal matching {(m1, w3), (m2, w2), (m3, w1)}. However, if w2 changes her ideal to 5/3
then her preference list is m2 ≻ m1 ≻ m3. Now there is a unique stable matching which is
{(m1, w3), (m2, w2), (m3, w1)}, the woman-optimal stable matching from the original preferences.
Therefore, any mechanism that does not always output the woman optimal stable matching can
be manipulated by the women to their advantage. Similarly, any mechanism that does not always
output the man-optimal matching could be manipulated by the men in some instances. Thus there
is no strategy-proof mechanism for geometric preferences.

Table 5: Geometric preferences that can be manipulated

Man Location (p) Ideal (q)

m1 1 7/3
m2 2 1
m3 3 5/3

Woman Location (p) Ideal (q)

w1 1 3
w2 2 7/3
w3 3 3

Man Preference List

m1 w2 ≻ w3 ≻ w1

m2 w1 ≻ w2 ≻ w3

m3 w2 ≻ w1 ≻ w3

Woman Preference List

w1 m3 ≻ m2 ≻ m1

w2 m2 ≻ m3 ≻ m1

w3 m3 ≻ m2 ≻ m1

Since one-dimensional geometric preferences are a special case of single-peaked preferences the
following corollary results directly from Theorem 12.
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Corollary 9. There is no strategy proof algorithm to find a stable matching in the single-peaked
preference model.

8 Conclusion and Open Problems

We give subquadratic algorithms for finding and verifying stable matchings in the d-attribute model
and d-list model. We also show that, assuming SETH, one can only hope to find such algorithms
if the number of attributes d is bounded by O(log n).

For a number of cases there is a gap between the conditional lower bound and the upper
bound. Our algorithms with real attributes and weights are only subquadratic if the dimension is
constant. Even for small constants our algorithm to find a stable matching is not tight, as it is not
subquadratic for any d = O(log n). The techniques we use when the attributes and weights are
small constants do not readily apply to the more general case.

There is also a gap between the time complexity of our algorithms for finding a stable matching
and verifying a stable matching. It would be interesting to either close or explain this gap. On
the one hand, subquadratic algorithms for finding a stable matching would demonstrate that the
attribute and list models are computationally simpler than the general preference model. On the
other hand, proving that there are no subquadratic algorithms would show a distinction between
the problems of finding and verifying a stable matching in these settings which does not exist for
the general preference model. Currently, we do not have a subquadratic algorithm for finding a
stable matching even in the 2-list case, while we have an optimal algorithm for verifying a stable
matching for d lists. This 2-list case seems to be a good starting place for further research.

Additionally it is worth considering succinct preference models for other computational problems
that involve preferences to see if we can also develop improved algorithms for these problems. For
example, the Top Trading Cycles algorithm [39] can be made to run in subquadratic time for d-
attribute preferences (when d is constant) using the ray shooting techniques applied in this paper
to find participants’ top choices.
Acknowledgment: We would like to thank Russell Impagliazzo, Vijay Vazirani, and the anony-
mous reviewers for helpful discussions and comments.
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